Startseite Topological densities of periodic graphs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Topological densities of periodic graphs

  • Anton Shutov und Andrey Maleev
Veröffentlicht/Copyright: 25. November 2020

Abstract

We propose a new method to calculate topological densities of periodic graphs based on the concept of layer-by-layer growth. Topological density is expressed in terms of metric characteristics: the volume of the fundamental domain and the volume of the growth polytope of the graph. Our method is universal (works for all d-periodic graphs) and is easily automated. As examples, we calculate topological densities of all 20 plane 2-uniform graphs and 14 carbon allotrope modifications.


Corresponding author: Anton Shutov, Vladimir State University, Gorky Street, 87, Vladimir, 600000, Russian Federation, E-mail:

Unfortunately, Andrey Maleev passed away in November, 2020.


  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. O’Keeffe, M. Dense and rare four-connected nets. Z. Kristallogr. 1991, 196, 21; https://doi.org/10.1524/zkri.1991.196.1-4.21.Suche in Google Scholar

2. Bader, M., Klee, W. E., Thimm, G. The 3-regular nets with four and six vertices per unit cell. Z. Kristallogr. 1997, 212, 553; https://doi.org/10.1524/zkri.1997.212.8.553.Suche in Google Scholar

3. Baerlocher, Ch., McCusker, L. B., Olson, D. H. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, 2007.Suche in Google Scholar

4. Herrero, C. P., Ramirez, R. Topological characterization of crystalline ice structures from coordination sequences. Phys. Chem. Chem. Phys. 2013, 15, 16676; https://doi.org/10.1039/c3cp52167b.Suche in Google Scholar

5. Akporiaye, D. E., Price, G. D. Relative stability of zeolite frameworks from calculated energetics of known and theoretical structures. Zeolites 1989, 9, 321; https://doi.org/10.1016/0144-2449(89)90079-1.Suche in Google Scholar

6. Herrero, C. P. Framework dependence of atom ordering in tectosilicates. A lattice gas model. Chem. Phys. Lett. 1993, 215, 587; https://doi.org/10.1016/0009-2614(93)89360-t.Suche in Google Scholar

7. Barthomeuf, D. Topology and maximum content of isolated species (Al, Ga, Fe, B, Si, …) in a zeolitic framework. An approach to acid catalysis. J. Phys. Chem. 1993, 97, 10092; https://doi.org/10.1021/j100141a032.Suche in Google Scholar

8. Grosse-Kunstleve, R. W., Brunner, G. O., Sloane, N. J. A. Algebraic description of coordination sequences and exact topological densities for zeolites. Acta Crystallogr. 1996, A52, 879; https://doi.org/10.1107/s0108767396007519.Suche in Google Scholar

9. Goodman-Strauss, C., Sloane, N. J. A. A coloring book approach to finding coordination sequences. Acta Crystallogr. 2019, A75, 121; https://doi.org/10.1107/s2053273318014481.Suche in Google Scholar

10. Shutov, A., Maleev, A. Coordination sequences and layer-by-layer growth of periodic structures. Z. Kristallogr. 2019, 234, 291; https://doi.org/10.1515/zkri-2018-2144.Suche in Google Scholar

11. Eon, J.-G. Algebraic determination of generating functions for coordination sequences in crystal structures. Acta Crystallogr. 2002, A58, 47; https://doi.org/10.1107/s0108767301016609.Suche in Google Scholar PubMed

12. Eon, J.-G. Topological density of nets: a direct calculation. Acta Crystallogr. 2004, A60, 7; https://doi.org/10.1107/s0108767303022037.Suche in Google Scholar PubMed

13. Eon, J.-G. Topological density of lattice nets. Acta Crystallogr. 2012, A69, 119; https://doi.org/10.1107/s0108767312042298.Suche in Google Scholar PubMed

14. Rau, V. G., Zhuravlev, V. G., Rau, T. F., Maleev, A. V. Morphogenesis of crystal structures in the discrete modeling of packings. Crystallogr. Rep. 2002, 47, 727; https://doi.org/10.1134/1.1509384.Suche in Google Scholar

15. Zhuravlev, V. G. Self-similar growth of periodic partitions and graphs. St Petersburg Math. J. 2002, 13, 201.Suche in Google Scholar

16. Maleev, A. V., Shutov, A. V. Layer-By-Layer Growth Model for Tilings, Packings and Graphs. Vladimir, Tranzit_X. 2011; pp. 107.Suche in Google Scholar

17. Akiyama, S., Caalim, J., Imai, K., Kaneko, H. Corona limits of tilings: periodic case. Discrete Comput. Geom. 2019, 61, 626; https://doi.org/10.1007/s00454-018-0033-x.Suche in Google Scholar

18. Fritz, T. Velocity polytopes of periodic graphs and a no-go theorem for digital physics. Discrete Math. 2013, 313, 1289; https://doi.org/10.1016/j.disc.2013.02.010.Suche in Google Scholar

19. Barber, C. B., Dobkin, D. P., Huhdanpaa, H. T. The Quickhull algorithm for convex hulls. ACM Trans. Math Software 1996, 22, 469; https://doi.org/10.1145/235815.235821.Suche in Google Scholar

20. Qhull code for Convex Hull, Delaunay Triangulation Voronoi diagram, and halfspace intersection about a point. http://qhull.org.Suche in Google Scholar

21. Reticular Chemistry Structure Resource (RCSR). http://rcsr.net.Suche in Google Scholar

22. Grunbaum, B., Shephard, G. C. Tilings and Patterns; Freeman: New York, 1987.Suche in Google Scholar

23. Shutov, A., Maleev, A. Coordination sequences of 2-uniform graphs. Z. Kristallogr. 2020, 235, 157–166, https://doi.org/10.1515/zkri-2020-0002.Suche in Google Scholar

24. Ivanovskii, A. L. Search for superhard carbon: between graphite and diamond. J. Superhard Mater. 2013, 35, 1; https://doi.org/10.3103/s1063457613010012.Suche in Google Scholar

25. Hoffmann, R., Kabanov, A. A., Golov, A. A., Proserpio, D. M. Homo citans and carbon allotropes: for an ethics of citation. Angew. Chem. Int. Ed. 2016, 55, 10962; https://doi.org/10.1002/anie.201600655.Suche in Google Scholar PubMed PubMed Central

26. Samara Carbon Allotrope Database. http://sacada.sctms.ru.Suche in Google Scholar

27. Shutov, A. V., Maleev, A. V. Layer-by-Layer growth of vertex graph of Penrose tiling. Crystallogr. Rep. 2017, 62, 683; https://doi.org/10.1134/s1063774517050194.Suche in Google Scholar

28. Shutov, A. V., Maleev, A. V. Layer-by-Layer growth of Ammann–Beenker graph. Crystallogr. Rep. 2020, 64, 851; https://doi.org/10.1134/S1063774519060191.Suche in Google Scholar

Received: 2020-07-06
Accepted: 2020-10-12
Published Online: 2020-11-25
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0065/html?lang=de
Button zum nach oben scrollen