Abstract
The hydrogen bonding in the structure of the lead uranyl-oxide mineral sayrite has been refined and described directly from XRD data for the first time. Sayrite is monoclinic, a = 10.6925(4), b = 6.9593(2), c = 13.6035(5) Å, β = 107.680(3), with V = 964.46(6) Å3, and Z = 2, space group P 21/n. The structure has been refined to an R = 2.34% based on 2252 unique [I > 3σI] reflections. Sayrite possesses a layered structure with the uranyl-hydroxo-oxide sheets of the topology characterized by the topology symbol P4(UD)8R5. Between adjacent sheets, there are Pb2+ cations and molecular H2O. All H2O groups in sayrite belong to non-transformer groups, which distribute bond-valence from equally from all the cationic parts of the structure to anions. The structural formula of sayrite is Pb2(H2[4]O)4[(UO2)5O6(OH)2].
Acknowledgements
Dr. Florias Mees (The Royal Museum for Central Africa, Tervuren, Belgium) is acknowledged for providing access to sayrite stored in the museum’s collections. Eddy Van Der Meersche (Gent, Belgium) is thanked for mineral microphotography. Anthony Kampf and an anonymous reviewer, as well as the handling editor, are thanked for their constructive comments. This research was supported by project No. LO1603 under the Ministry of Education, Youth and Sports National sustainability program I of the Czech Republic.
References
[1] R. J. Finch, R. C. Ewing, J. Nucl. Mater.1992, 190, 133.10.1016/0022-3115(92)90083-WSearch in Google Scholar
[2] R. J. Finch, T. Murakami, Systematics and paragenesis of uranium minerals, in Uranium: Mineralogy, Geochemistry and the Environment, (Eds. P. C. Burns and R. J. Finch) Reviews in Mineralogy and Geochemistry, Vol. 38, Mineralogical Society of America and Geochemical Society, Washington, DC, pp. 91–179, 1999.10.1515/9781501509193-008Search in Google Scholar
[3] S. V. Krivovichev, J. Plášil, Mineralogy and crystallography of uranium, in Uranium, from Cradle to Grave, (Eds. P. C. Burns and G. E. Sigmon) Mineralogical Association of Canada Short Course, Vol. 43, Mineralogical Society of Canada, Winnipeg, MB, pp. 15–119, 2013.Search in Google Scholar
[4] J. Plášil, J. Geosci.2014, 59, 99.10.3190/jgeosci.163Search in Google Scholar
[5] J. Plášil, Eur. J. Mineral.2018, 30, 237.10.1127/ejm/2017/0029-2690Search in Google Scholar
[6] D. J. Wronkiewicz, J. K. Bates, T. J. Gerding, E. Veleckis, J. Nucl. Mater.1992, 190, 107.10.1016/0022-3115(92)90081-USearch in Google Scholar
[7] D. J. Wronkiewicz, J. K. Bates, S. F. Wolf, E. C. Buck, J. Nucl. Mater.1996, 238, 78.10.1016/S0022-3115(96)00383-2Search in Google Scholar
[8] J. Janeczek, R. C. Ewing, V. M. Oversby, L. O. Werme, J. Nucl. Mater.1996, 238, 121.10.1016/S0022-3115(96)00345-5Search in Google Scholar
[9] R. C. Ewing, Nature Mater.2015, 14, 252.10.1038/nmat4226Search in Google Scholar PubMed
[10] J. Plášil, A. R. Kampf, R. Škoda, J. Čejka, Acta Cryst. B2018, 74, 362.10.1107/S2052520618007321Search in Google Scholar PubMed PubMed Central
[11] Y. Zhang, R. Aughterson, I. Karatchevtseva, L. Kong, T. Trong Tran, J. Čejka, I. Aharonovich, G. R. Lumpkin, New J. Chem.2018, 42, 12386.10.1039/C8NJ01376DSearch in Google Scholar
[12] P. Piret, M. Deliens, J. Piret-Meunier, G. Germain, Bull. Minéral.1983, 106, 299.10.3406/bulmi.1983.7709Search in Google Scholar
[13] Rigaku Oxford Diffraction, CrysAlisCCD, CrysAlisRED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK, 2019.Search in Google Scholar
[14] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar
[15] G. M. Sheldrick, Acta Cryst. A2015, 71, 3.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central
[16] I. D. Brown, The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford, 2002.Search in Google Scholar
[17] O. C. Gagné, F. C. Hawthorne, Acta Crystallogr. 2015, B71, 562.10.1107/S2052520615016297Search in Google Scholar
[18] P. C. Burns, Can. Mineral.2005, 43, 1839.10.2113/gscanmin.43.6.1839Search in Google Scholar
[19] A. J. Lussier, R. A. K. Lopez, P. C. Burns, Can. Mineral.2016, 54, 177.10.3749/canmin.1500078Search in Google Scholar
[20] P. C. Burns, R. C. Ewing, F. C. Hawthorne, Can. Mineral.1997, 35, 1551.Search in Google Scholar
[21] S. Ghazisaeed, B. Kiefer, J. Plášil, RSC Adv.2019, 9, 10058.10.1039/C8RA09557DSearch in Google Scholar
[22] F. C. Hawthorne, M. Schindler, Z. Kristallogr.2008, 223, 41.10.1524/zkri.2008.0003Search in Google Scholar
[23] M. Schindler, F. C. Hawthorne, Can. Mineral.2008, 46, 467.10.3749/canmin.46.2.467Search in Google Scholar
[24] F. C. Hawthorne, Am. Mineral.2015, 100, 696.10.2138/am-2015-5114Search in Google Scholar
[25] I. D. Brown, Chem. Rev.2009, 109, 6858.10.1021/cr900053kSearch in Google Scholar PubMed PubMed Central
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Crystal structure of a new polymorphic modification of Na2Mn3(SO4)4
- Order/disorder processes and electromechanical properties of monoclinic GdCa4O(BO3)3
- Production of iron oxide and nickel oxide nanostructural particles, investigation of the supercapacitor and photocatalytic properties
- Hydrogen bonding in lead uranyl oxide mineral sayrite
- Influence of the alkali cation size on the Cu2+ coordination environments in (AX)[Cu(HSeO3)2] (A=Na, K, NH4, Rb, Cs; X=Cl, Br) layered copper hydrogen selenite halides
- Copper hydroselenite nitrates (A+NO3)n [Cu(HSeO3)2] (A=Rb+, Cs+ and Tl+, n=1, 2) related to Ruddlesden – Popper phases
- Reliable Sn–Ag–Cu lead-free melt-spun material required for high-performance applications
- Micro Review
- William Barlow’s early publications in the ‘Zeitschrift für Krystallographie und Mineralogie’ and their influence on crystal structure research
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Crystal structure of a new polymorphic modification of Na2Mn3(SO4)4
- Order/disorder processes and electromechanical properties of monoclinic GdCa4O(BO3)3
- Production of iron oxide and nickel oxide nanostructural particles, investigation of the supercapacitor and photocatalytic properties
- Hydrogen bonding in lead uranyl oxide mineral sayrite
- Influence of the alkali cation size on the Cu2+ coordination environments in (AX)[Cu(HSeO3)2] (A=Na, K, NH4, Rb, Cs; X=Cl, Br) layered copper hydrogen selenite halides
- Copper hydroselenite nitrates (A+NO3)n [Cu(HSeO3)2] (A=Rb+, Cs+ and Tl+, n=1, 2) related to Ruddlesden – Popper phases
- Reliable Sn–Ag–Cu lead-free melt-spun material required for high-performance applications
- Micro Review
- William Barlow’s early publications in the ‘Zeitschrift für Krystallographie und Mineralogie’ and their influence on crystal structure research