Home Synthesis, X-ray powder diffraction and DFT-D studies of indole-based compounds
Article
Licensed
Unlicensed Requires Authentication

Synthesis, X-ray powder diffraction and DFT-D studies of indole-based compounds

  • ElSayed M. Shalaby EMAIL logo , Aladdin M. Srour , Siva S. Panda , Riham F. George , Andrew N. Fitch and Adel S. Girgis EMAIL logo
Published/Copyright: December 4, 2017

Abstract

Four indole-based compounds have been synthesized and their crystal structures determined using high-resolution synchrotron powder X-ray diffraction. In vacuo density function theory (DFT) optimization has been used in building initial molecular models for structure solution with the help of the Cambridge structure database. All four compounds were found to crystallize in the monoclinic space group P21/c. Dispersion-corrected DFT (DFT-D) has been used for experimental crystal structure validation with acceptable agreement found between the DFT-optimized and final refined structures. Three of the compounds exhibit bronchodilation properties with potency comparable to the theophylline (standard reference).

Acknowledgments

This work was supported financially by National Research Centre, Egypt, project ID: 11010341.

References

[1] K. D. M. Harris, M. Tremayne, Crystal structure determination from powder diffraction data, Chem. Mater.1996, 8, 2554.10.1021/cm960218dSearch in Google Scholar

[2] A. Le Bail, H. Duroy, J. L. Fourquet, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction, Mater. Res. Bull.1988, 23, 447.10.1016/0025-5408(88)90019-0Search in Google Scholar

[3] E. M. Shalaby, A. S. Girgis, H. Farag, A. F. Mabied, A. N. Fitch, Synthesis, X-ray powder diffraction and DFT calculations of vasorelaxant active 3-(arylmethylidene) pyrrolidine-2,5-diones, RSC Adv.2016, 6, 112950.10.1039/C6RA24302ASearch in Google Scholar

[4] M.-C. Li, W.-S. Sun, W. Cheng, D. Liu, H. Liang, Q.-Y. Zhang, W.-H. Lin, Four new minor brominated indole related alkaloids with antibacterial activities from Laurencia similis, Bioorg. Med. Chem. Lett.2016, 26, 3590.10.1016/j.bmcl.2016.06.015Search in Google Scholar PubMed

[5] Z. Han, X. Liang, Y. Wang, J. Qing, L. Cao, L. Shang, Z. Yin, The discovery of indole derivatives as novel hepatitis C virus inhibitors, Eur. J. Med. Chem.2016, 116, 147.10.1016/j.ejmech.2016.03.062Search in Google Scholar PubMed

[6] S. Brigg, N. Pribut, A. E. Basson, M. Avgenikos, R. Venter, M. A. Blackie, W. A. L. van Otterlo, S. C. Pelly, Novel indole sulfides as potent HIV-1 NNRTIs, Bioorg. Med. Chem. Lett.2016, 26, 1580.10.1016/j.bmcl.2016.02.006Search in Google Scholar PubMed

[7] N. Zhang, A. Turpoff, X. Zhang, S. Huang, Y. Liu, N. Almstead, F. G. Njoroge, Z. Gu, J. Graci, S. P. Jung, J. Pichardo, J. Colacino, F. Lahser, P. Ingravallo, M. Weetall, A. Nomeir, G. M. Karp, Discovery of 2-(4-sulfonamidophenyl)-indole 3-carboxamides as potent and selective inhibitors with broad hepatitis C virus genotype activity targeting HCV NS4B, Bioorg. Med. Chem. Lett.2016, 26, 594.10.1016/j.bmcl.2015.11.065Search in Google Scholar PubMed

[8] I. A. Andreev, D. Manvar, M. L. Barreca, D. S. Belov, A. Basu, N. L. Sweeney, N. K. Ratmanova, E. R. Lukyanenko, G. Manfroni, V. Cecchetti, D. N. Frick, A. Altieri, N. Kaushik-Basu, A. V. Kurkin, Discovery of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole as a novel anti-hepatitis C virus targeting scaffold, Eur. J. Med. Chem.2015, 96, 250.10.1016/j.ejmech.2015.04.022Search in Google Scholar PubMed PubMed Central

[9] G. Chen, H. Ren, N. Zhang, W. Lennox, A. Turpoff, S. Paget, C. Li, N. Almstead, F. G. Njoroge, Z. Gu, J. Graci, S. P. Jung, J. Colacino, F. Lahser, X. Zhao, M. Weetall, A. Nomeir, G. M. Karp, 6-(Azaindol-2-yl)pyridine-3-sulfonamides as potent and selective inhibitors targeting hepatitis C virus NS4B, Bioorg. Med. Chem. Lett.2015, 25, 781.10.1016/j.bmcl.2014.12.093Search in Google Scholar PubMed

[10] M.-Z. Zhang, N. Mulholland, D. Beattie, D. Irwin, Y.-C. Gu, Q. Chen, G.-F. Yang, J. Clough, Synthesis and antifungal activity of 3-(1,3,4-oxadiazol-5-yl)-indoles and 3-(1,3,4-oxadiazol-5-yl)methyl-indoles, Eur. J. Med. Chem.2013, 63, 22.10.1016/j.ejmech.2013.01.038Search in Google Scholar PubMed

[11] A. Özdemir, M. D. Altıntop, G. Turan-Zitouni, G. A. Çiftçi, İ. Ertorun, Ö. Alataş, Z. A. Kaplancıklı, Synthesis and evaluation of new indole-based chalcones as potential antiinflammatory agents, Eur. J. Med. Chem.2015, 89, 304.10.1016/j.ejmech.2014.10.056Search in Google Scholar PubMed

[12] M. A. A. Radwan, E. A. Ragab, N. M. Sabry, S. M. El-Shenawy, Synthesis and biological evaluation of new 3-substituted indole derivatives as potential anti-inflammatory and analgesic agents, Bioorg. Med. Chem.2007, 15, 3832.10.1016/j.bmc.2007.03.024Search in Google Scholar PubMed

[13] S. Mehndiratta, Y.-L. Hsieh, Y.-M. Liu, A. W. Wang, H.-Y. Lee, L.-Y. Liang, S. Kumar, C.-M. Teng, C.-R. Yang, J.-P. Liou, Indole-3-ethylsulfamoylphenylacrylamides: potent histone deacetylase inhibitors with anti-inflammatory activity, Eur. J. Med. Chem.2014, 85, 468.10.1016/j.ejmech.2014.08.020Search in Google Scholar PubMed

[14] M. P. Fortes, P. B. N. da Silva, T. G. da Silva, T. S. Kaufman, G. C. G. Militão, C. C. Silveira, Synthesis and preliminary evaluation of 3-thiocyanato-1H-indoles as potential anticancer agents, Eur. J. Med. Chem.2016, 118, 21.10.1016/j.ejmech.2016.04.039Search in Google Scholar PubMed

[15] R. F. George, S. S. Panda, E. M. Shalaby, A. M. Srour, I. S. Ahmed Farag, A. S. Girgis, Synthesis and molecular modeling studies of indole-based antitumor agents, RSC Adv.2016, 6, 45434.10.1039/C6RA07061BSearch in Google Scholar

[16] A. S. Girgis, S. S. Panda, A. M. Srour, H. Farag, N. S. M. Ismail, M. Elgendy, A. K. Abdel-Aziz, A. R. Katritzky, Rational design, synthesis and molecular modeling studies of novel anti-oncological alkaloids against melanoma, Org. Biomol. Chem.2015, 13, 6619.10.1039/C5OB00410ASearch in Google Scholar PubMed

[17] A. S. Girgis, S. S. Panda, M. N. Aziz, P. J. Steel, C. D. Hall, A. R. Katritzky, Rational design, synthesis, and 2D-QSAR study of anti-oncological alkaloids against hepatoma and cervical carcinoma, RSC Adv.2015, 5, 28554.10.1039/C4RA16663ASearch in Google Scholar

[18] A. S. Girgis, S. S. Panda, I. S. Ahmed Farag, A. M. El-Shabiny, A. M. Moustafa, N. S. M. Ismail, G. G. Pillai, C. S. Panda, C. D. Hall, A. R. Katritzky, Synthesis, and QSAR analysis of anti-oncological active spiro-alkaloids, Org. Biomol. Chem.2015, 13, 1741.10.1039/C4OB02149ESearch in Google Scholar PubMed

[19] R. F. George, N. S. M. Ismail, J. Stawinski, A. S. Girgis, Design, synthesis and QSAR studies of dispiroindole derivatives as new antiproliferative agents, Eur. J. Med. Chem.2013, 68, 339.10.1016/j.ejmech.2013.07.035Search in Google Scholar PubMed

[20] J. Sączewski, A. Hudson, M. Scheinin, A. Wasilewska, F. Sączewski, A. Rybczyńska, M. Ferdousi, J. M. Laurila, K. Boblewski, A. Lehmann, H. Watts, D. Ma, Transfer of SAR information from hypotensive indazole to indole derivatives acting at α-adrenergic receptors: in vitro and in vivo studies, Eur. J. Med. Chem.2016, 115, 406.10.1016/j.ejmech.2016.03.026Search in Google Scholar PubMed

[21] W. Zhu, X. Bao, H. Ren, Y. Da, D. Wu, F. Li, Y. Yan, L. Wang, Z. Chen, N-Phenyl indole derivatives as AT1 antagonists with anti-hypertension activities: design, synthesis and biological evaluation, Eur. J. Med. Chem.2016, 115, 161.10.1016/j.ejmech.2016.03.021Search in Google Scholar PubMed

[22] W.-J. Shan, L. Huang, Q. Zhou, H.-L. Jiang, Z.-H. Luo, K.-F. Lai, X.-S. Li, Dual β2-adrenoceptor agonists-PDE4 inhibitors for the treatment of asthma and COPD, Bioorg. Med. Chem. Lett.2012, 22, 1523.10.1016/j.bmcl.2012.01.013Search in Google Scholar PubMed

[23] H. J. Gutke, J. H. Guse, M. Khobzaoui, T. Renukappa-Gutke, M. Burnet, AWD-12-281 (inhaled) (elbion/GlaxoSmithKline), Curr. Opin. Investig. Drugs2005, 6, 1149.Search in Google Scholar

[24] A. Liu, L. Huang, Z. Wang, Z. Luo, F. Mao, W. Shan, J. Xie, K. Lai, X. Li, Hybrids consisting of the pharmacophores of salmeterol and roflumilast or phthalazinone: dual β₂-adrenoceptor agonists-PDE4 inhibitors for the treatment of COPD, Bioorg. Med. Chem. Lett.2013, 23, 1548.10.1016/j.bmcl.2012.11.058Search in Google Scholar PubMed

[25] P. J. Barnes, New anti-inflammatory targets for chronic obstructive pulmonary disease, Nat. Rev. Drug Discov.2013, 12, 543.10.1038/nrd4025Search in Google Scholar PubMed

[26] M. F. Dalence-Guzmán, J. Toftered, V. T. Oltner, D. Wensbo, M. H. Johansson, Synthesis of novel tetrahydroisoquinoline bronchodilators, Bioorg. Med. Chem. Lett.2010, 20, 4999.10.1016/j.bmcl.2010.07.057Search in Google Scholar PubMed

[27] R. Bergamasco, Q. N. Porter, C. Yap, Vinylindenes and some heteroanalogues in the Diels-Alder reaction. IV. Reactions of ethenetetracarbonitrile with some 3-vinylindoles, Aust. J. Chem.1977, 30, 1531.10.1071/CH9771531Search in Google Scholar

[28] A. El Maatougui, A. Crespo, A. M. S. Silva, A. Coelho, Supported TBD-assisted solution phase diversification of formyl-aza-heterocycles through alkylation-knoevenagel one pot sequences, Comb. Chem. High Throughput Screen.2011, 14, 570.10.2174/138620711796367229Search in Google Scholar PubMed

[29] A. N. Fitch, The high resolution powder diffraction beam line at ESRF, J. Res. Natl. Inst. Stand. Technol.2004, 109, 133.10.6028/jres.109.010Search in Google Scholar PubMed PubMed Central

[30] A. N. Fitch, Applications of high-resolution powder X-ray diffraction, Solid State Phenom.2007, 130, 7.10.4028/3-908451-40-x.7Search in Google Scholar

[31] A. A. Coelho, Indexing of powder diffraction patterns by iterative use of singular value decomposition, J. Appl. Crystallogr. 2003, 36, 86.10.1107/S0021889802019878Search in Google Scholar

[32] A. A. Coelho, A bound constrained conjugate gradient solution method as applied to crystallographic refinement problems, J. Appl. Crystallogr. 2005, 38, 455.10.1107/S0021889805006096Search in Google Scholar

[33] A. A. Coelho, “TOPAS-Academic V4” Coelho Software, Brisbane, Australia. Available at www.topas-academic.net, 2007.Search in Google Scholar

[34] G. S. Pawley, Unit-cell refinement from powder diffraction scans, J. Appl. Crystallogr. 1981, 14, 357.10.1107/S0021889881009618Search in Google Scholar

[35] L. W. Finger, D. E. Cox, A. P. Jephcoat, A correction for powder diffraction peak asymmetry due to axial divergence, J. Appl. Crystallogr. 1994, 27, 892.10.1107/S0021889894004218Search in Google Scholar

[36] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, The Cambridge structural database, Acta Crystallogr. B2016, 72, 171.10.1016/B978-0-12-409547-2.02529-4Search in Google Scholar

[37] M. Järvinen, Application of symmetrized harmonics expansion to correction of the preferred orientation effect, J. Appl. Crystallogr.1993, 26, 525.10.1107/S0021889893001219Search in Google Scholar

[38] N. S. M. Ismail, R. F. George, R. A. T. Serya, F. N. Baselious, M. El-Manawaty, E. M. Shalaby, A. S. Girgis, Rational design, synthesis and 2D-QSAR studies of antiproliferative tropane-based compounds, RSC Adv.2016, 6, 101911.10.1039/C6RA21486JSearch in Google Scholar

[39] A. F. Mabied, A. S. Girgis, E. M. Shalaby, R. F. George, B. E. M. El-Gendy, F. N. Baselious, stereoselective synthesis, structural and spectroscopic study of 4, 5, 11-triazatricyclo [6.2. 1.0* 2, 6*] Undec-5-ene, J. Heterocycl. Chem.2016, 53, 1074.10.1002/jhet.2440Search in Google Scholar

[40] A. S. Girgis, A. F. Mabied, J. Stawinski, L. Hegazy, R. F. George, H. Farag, E. M. Shalaby, I. S. Ahmed Farag, Synthesis and DFT studies of an antitumor active spiro-oxindole, New J. Chem.2015, 39, 8017.10.1039/C5NJ01109DSearch in Google Scholar

[41] A. S. Girgis, S. S. Panda, E. M. Shalaby, A. F. Mabied, P. J. Steel, C. D. Hall, A. R. Katritzky, Regioselective synthesis and theoretical studies of an anti-neoplastic fluoro-substituted dispiro-oxindole, RSC Adv.2015, 5, 14780.10.1039/C4RA13433HSearch in Google Scholar

[42] E. M. Shalaby, A. S. Girgis, A. M. Moustafa, A. M. ElShaabiny, B. E. M. El-Gendy, A. F. Mabied, I. S. Ahmed Farag, Regioselective synthesis, stereochemical structure, spectroscopic characterization and geometry optimization of dispiro[3H-indole-3,2′-pyrrolidine-3′,3″-piperidines], J. Mol. Struct.2014, 1075, 327.10.1016/j.molstruc.2014.07.014Search in Google Scholar

[43] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. 2005, 220, 567.10.1524/zkri.220.5.567.65075Search in Google Scholar

[44] J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 1996, 77, 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

[45] A. Tkatchenko, M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Phys. Rev. Lett. 2009, 102, 073005.10.1103/PhysRevLett.102.073005Search in Google Scholar PubMed

[46] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, Mercury CSD 2.0–new features for the visualization and investigation of crystal structures, J. Appl. Crystallogr. 2008, 41, 466.10.1107/S0021889807067908Search in Google Scholar

[47] A. S. Girgis, M. N. Aziz, E. M. Shalaby, D. O. Saleh, F. M. Asaad, W. I. El-Eraky, I. S. Ahmed Farag, Crystal structure studies and bronchodilation properties of novel benzocycloheptapyridines, J. Chem. Crystallogr.2016, 46, 280.10.1007/s10870-016-0657-8Search in Google Scholar

[48] A. S. Girgis, M. N. Aziz, E. M. Shalaby, D. O. Saleh, N. Mishriky, W. I. El-Eraky, I. S. Ahmed Farag, Molecular structure studies of novel bronchodilatory-active 4-azafluorenes, Z. Kristallogr. Mater.2016, 231, 179.10.1515/zkri-2015-1892Search in Google Scholar

[49] A. S. Girgis, D. O. Saleh, R. F. George, A. M. Srour, G. G. Pillai, C. S. Panda, A. R. Katritzky, Synthesis, bioassay, and QSAR study of bronchodilatory active 4H-pyrano [3, 2-c] pyridine-3-carbonitriles, Eur. J. Med. Chem.2015, 89, 835.10.1016/j.ejmech.2013.12.032Search in Google Scholar PubMed

[50] E. M. Shalaby, A. M. Moustafa, A. S. Girgis, A. M. ElShaabiny, Crystal structures of ethyl 4-(4-florophenyl)-6-phenyl-2-substituted-3-pyridinecarboxylates, J. Crystallogr.2014, 148741. http://dx.doi.org/10.1155/2014/148741.10.1155/2014/148741Search in Google Scholar

[51] A. M. Moustafa, S. M. Shalaby, N. A. Ali, A. M. El-Shabiny, A. A. Ramadan, I. S. Ahmed Farag, A. S. Girgis, Crystal structures of two substituted pyridinecarboxylates, Egypt. J. Solids2006, 29, 163.10.21608/ejs.2006.149151Search in Google Scholar

[52] J. Van De Streek, M. A. Neumann, Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations, Acta Crystallogr. Sect. B2010, 66, 544.10.1107/S0108768110031873Search in Google Scholar PubMed PubMed Central

[53] J. Van De Streek, M. A. Neumann, Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D), Acta Crystallogr. Sect. B2014, 70, 1020.10.1107/S2052520614022902Search in Google Scholar PubMed PubMed Central


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2017-2106).


Received: 2017-9-27
Accepted: 2017-11-1
Published Online: 2017-12-4
Published in Print: 2018-6-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2017-2106/html
Scroll to top button