Hydrogen bonding in 2,6-bis(4-fluorophenyl)-3,5-dimethylpiperidin-4-one methanol solvate
-
T. Suresh
, Mukesh M. Jotani
Abstract
The crystal structure analysis of a 2,6-diaryl 4-piperidone derivative, isolated as a mono-methanol solvate, reveals that both the piperidone and the methanol molecule lie on a crystallographic mirror plane. A chair conformation is found for the piperidone ring with the aryl and methyl groups in equatorial positions. The most prominent feature of the molecular packing is the formation of supramolecular zigzag chains mediated by amine-N–H···O(methanol) and hydroxyl-O–H···N(amine) hydrogen bonds, i.e. the methanol molecule serves as a bridge between piperidone molecules. The molecular structure is compared with that determined in an unsolvated form and the gas-phase equilibrium structure, obtained using density-functional theory (DFT); differences relate, in the main, to the relative dispositions of the aryl rings. An analysis of the Hirshfeld surfaces of the experimental structures indicates very similar relative contributions with the notable exception being the contribution by O···H/H···O which at 13.7% in the methanol solvate is >8.5% in the unsolvated form.
Acknowledgments
The VIT University is thanked for providing facilities. The authors also grateful to SIF-Chemistry, VIT University, for providing the NMR and X-ray diffractometer (PXRD) facilities. AOR thanks the Spanish Malta/Consolider initiative (no. CSD2007-00045) and Alberta Innovates Technology Futures (AITF) for funding. The authors also express their gratitude to the anonymous reviewers, specifically for their suggestion to re-evaluate the literature structure.
References
[1] G. R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam, 1989.Search in Google Scholar
[2] M. C. Etter, Acc. Chem. Res. 1990, 23, 120.10.1021/ar00172a005Search in Google Scholar
[3] G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford, 1999.Search in Google Scholar
[4] G. R. Desiraju, J. Am. Chem. Soc. 2013, 135, 9952.10.1021/ja403264cSearch in Google Scholar PubMed
[5] T. Shattock, K. K. Arora, P. Vishweshwar, M. J. Zaworotko, Cryst. Growth Des. 2008, 8, 4533.10.1021/cg800565aSearch in Google Scholar
[6] C. Aakeröy, Acta Crystallogr. B,2015, 71, 387.10.1107/S2052520615010872Search in Google Scholar PubMed
[7] W. Bolton, Acta Crystallogr. 1964, 17, 147.10.1107/S0365110X6400041XSearch in Google Scholar
[8] F. H. Allen, C. A. Baalham, J. P. M. Lommerse, P. R. Raithby, Acta Crystallogr. B, 1998, 54, 320.10.1107/S0108768198001463Search in Google Scholar
[9] M. V. Câmpion, I. Haiduc, E. R. T. Tiekink, Z. Kristallogr. – Cryst. Mat. 2013, 228, 187.10.1524/zkri.2013.1579Search in Google Scholar
[10] J. D. Dunitz, W. B. Schweizer, CrystEngComm, 2007, 9, 266.10.1039/b700475cSearch in Google Scholar
[11] D. Gayathri, D. Velmurugan, G. Aridoss, S. Kabilan, K. Ravikumar, Acta Cryst. E, 2008, 64, o429.10.1107/S1600536807068699Search in Google Scholar PubMed PubMed Central
[12] C. Ramalingam, Y. T. Park, S. Kabilan, Eur. J. Med. Chem. 2006, 41, 683.10.1016/j.ejmech.2006.02.005Search in Google Scholar PubMed
[13] G. Aridoss, S. Amirthaganesan, Y. Y. Jeong, Bioorg. Med. Chem Lett. 2010, 20, 2242.10.1016/j.bmcl.2010.02.015Search in Google Scholar
[14] N. Rameshkumar, A. Veena, R. Ilavarasan, M. Adiraj, P. Shanmugapandiyan, S. K. Sridhar, Biol. Pharm. Bull. 2003, 26, 188.10.1248/bpb.26.188Search in Google Scholar
[15] S. Balasubramanian, G. Aridoss, P. Parthiban, C. Ramalingam, S. Kabilan, Biol. Pharm. Bull. 2006, 29, 125.10.1248/bpb.29.125Search in Google Scholar
[16] G. Aridoss, S. Amirthaganesan, N. Ashok Kumar, J. T. Kim, K. T. Lim, S. Kabilan, Y. T. Jeong, Bioorg. Med. Chem. Lett. 2008, 18, 6542.10.1016/j.bmcl.2008.10.045Search in Google Scholar
[17] B. Ileana, V. Dobre, I. Niculescu-Duvaz, J. Prakt. Chem. 1985, 327, 667.10.1002/prac.19853270418Search in Google Scholar
[18] M. Bazzaro, K. A. Ravi, R. M. Mohana Krishna, O. Issaenko, S. Kumar, B. Karanam, Z. Lin, R. I. Vogel, R. Gavioli, F. Destro, V. Ferretti, R. B. S. Roden, S. R. Khan, J. Med. Chem. 2011, 54, 449.10.1021/jm100589pSearch in Google Scholar
[19] S. Rastigi, H. Rastogi, Indian J. Chem. 2010, 49, 547.10.1021/bi9011989Search in Google Scholar
[20] I. G. Mobio, A. T. Soldatenkov, V. O. Fedrov, E. A. Ageev, N. D. Sergeeva, S. Lin, E. E. Stashenko, N. S. Prostakov, E. I. Andreeva, Khim. Farm. Zh. 1989, 23, 421.Search in Google Scholar
[21] A. Casy, J. Coates, C. Rostron, J. Pharm. Pharmacol. 1976, 28, 106.10.1111/j.2042-7158.1976.tb04107.xSearch in Google Scholar
[22] V. Vijayakumar, M. Sundaravadivelu, S. Perumal, Mag. Reson. Chem. 2001, 39, 101.10.1002/1097-458X(200102)39:2<101::AID-MRC797>3.0.CO;2-FSearch in Google Scholar
[23] G. L. Balaji, V. Vijayakumar, K. Rajesh, Arab. J. Chem. 2012, doi:10.1016/j.arabjc.2011.12.011.10.1016/j.arabjc.2011.12.011Search in Google Scholar
[24] K. Rajesh, B. Palakshi Reddy, V. Vijayakumar, Ultrason. Sonochem. 2012, 19, 522.10.1016/j.ultsonch.2011.10.018Search in Google Scholar
[25] N. Kourkoumelis, PowDLL, A program for the interconversion of powder diffraction data files, Version 2.19; 2009; http://users.uoi.gr/nkourkou/powdll.htm.Search in Google Scholar
[26] X’Pert HighScore Plus. PANalytical B.V. Almelo, The Netherlands, 2009.Search in Google Scholar
[27] C. R. Noller, V. Baliah, J. Am. Chem. Soc. 1948, 70, 3853.10.1021/ja01191a092Search in Google Scholar
[28] Agilent Technologies, CrysAlisPro. Santa Clara, CA, USA. 2014.Search in Google Scholar
[29] G. M. Sheldrick, Acta Crystallogr. A2008, 64, 112.10.1107/S0108767307043930Search in Google Scholar
[30] G. M. Sheldrick, Acta Crystallogr. C2015, 71, 3.10.1107/S2053229614024218Search in Google Scholar
[31] L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.10.1107/S0021889812029111Search in Google Scholar
[32] A. L. Spek, Acta Crystallogr. D2009, 65, 148.10.1107/S090744490804362XSearch in Google Scholar
[33] J. Gans, D. Shalloway, J. Mol. Graph. Model. 2001, 19, 557.10.1016/S1093-3263(01)00090-0Search in Google Scholar
[34] DIAMOND, Visual Crystal Structure Information System, Version 3.1, CRYSTAL IMPACT, Postfach 1251, D-53002, 2006.Search in Google Scholar
[35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, USA, 2009.Search in Google Scholar
[36] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.10.1063/1.464913Search in Google Scholar
[37] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B1988, 37, 785.10.1103/PhysRevB.37.785Search in Google Scholar PubMed
[38] AIMAll (Version 16.01.09), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2016.Search in Google Scholar
[39] J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Crystallogr.B2004, 60, 627.10.1107/S0108768104020300Search in Google Scholar PubMed
[40] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer (Version 3.1), University of Western Australia, 2012.Search in Google Scholar
Supplemental Material:
The online version of this article (DOI: 10.1515/zkri-2015-1915) offers supplementary material, available to authorized users.
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Ni4 and Ni3Ga clusters as building units in Ca3Ni4Ga4 and Sr3Ni3□Ga4
- Crystallographic, DFT and docking (cathepsin B) studies on an organotellurium(IV) compound
- Organic and Metalorganic Crystal Structures
- Structural systematics of aryl-1,3-dithiane derivatives: crystal and energy-minimised structures, and Hirshfeld surface analysis
- Bis(phosphane)copper(I) and silver(I) dithiocarbamates: crystallography and anti-microbial assay
- Nanoscratching meets nanoindentation
- Hydrogen bonding in 2,6-bis(4-fluorophenyl)-3,5-dimethylpiperidin-4-one methanol solvate
- Investigation of the crystal structures and Hirshfeld surfaces of three closely related N-(2-fluorobenzoyl)-arylsulfonamides
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Ni4 and Ni3Ga clusters as building units in Ca3Ni4Ga4 and Sr3Ni3□Ga4
- Crystallographic, DFT and docking (cathepsin B) studies on an organotellurium(IV) compound
- Organic and Metalorganic Crystal Structures
- Structural systematics of aryl-1,3-dithiane derivatives: crystal and energy-minimised structures, and Hirshfeld surface analysis
- Bis(phosphane)copper(I) and silver(I) dithiocarbamates: crystallography and anti-microbial assay
- Nanoscratching meets nanoindentation
- Hydrogen bonding in 2,6-bis(4-fluorophenyl)-3,5-dimethylpiperidin-4-one methanol solvate
- Investigation of the crystal structures and Hirshfeld surfaces of three closely related N-(2-fluorobenzoyl)-arylsulfonamides