Abstract
A two-dimensional coordination polymer [Zn(L)2]n (1) (L = 3-aminopyrazine-2-carboxylate) synthesized from the solvothermal reaction of zinc(II) salt with 3-aminopyrazine-2-carboxylic acid (HL) is described. Compound 1 has been characterized by single X-ray diffraction, IR spectra and thermogravimetric analyses. Crystal structure analysis reveals that each hexacoordinated zinc(II) center adopts a distorted octahedral geometry occupied by three Ocarboxylate and three Npyrazine atoms. The L– ligand binds the metal cation by means of a pyrazine N-atom and one, or both, carboxylate O-atoms. A three-dimensional supramolecular associate in the crystal lattice of 1 has been stabilized by a number of non-covalent interactions. The IR spectroscopic and TGA properties are investigated in this work. Topological analysis of the two-dimensional network has been also discussed.
Acknowledgments
Financial supports from the Fundação para a Ciência e a Tecnologia (FCT), Portugal for fellowship grants (Ref. Nos. SFRH/BPD/76192/2011 and SFRH/BPD/78264/2011) to A. Karmakar and S. Hazra are gratefully acknowledged.
References
[1] H.-C. J. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev.2014, 43, 5415.10.1039/C4CS90059FSearch in Google Scholar
[2] Z.-J. Lin, J. Lü, M. Hong, R. Cao, Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev.2014, 43, 5867.10.1039/C3CS60483GSearch in Google Scholar
[3] A. Karmakar, I. Goldberg, Coordination polymers of flexible tetracarboxylic acids with metal ions. II. Supramolecular assemblies of 5,5′-methylene- and 5,5′-(ethane-1,2-diyl)-bis(oxy)diisophthalic acid ligands with d-transition metals. CrystEngComm.2011, 13, 350.10.1039/C0CE00268BSearch in Google Scholar
[4] A. Karmakar, I. Goldberg, Coordination polymers of flexible tetracarboxylic acids with metal ions. I. Synthesis of CH2- and (CH2)2-spaced bis(oxy)isophthalic acid ligands and structural characterization of their polymeric adducts with lanthanoid ions. CrystEngComm. 2011, 13, 339.10.1039/C0CE00474JSearch in Google Scholar
[5] M. Eddaoudi, D. F. Sava, J. F. Eubank, K. Adil, V. Guillerm, Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis and properties. Chem. Soc. Rev.2015, 44, 228.10.1039/C4CS00230JSearch in Google Scholar
[6] M. O’Keeffe, O. M. Yaghi, Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev.2012, 112, 675.10.1021/cr200205jSearch in Google Scholar
[7] O. R. Evans, W. Lin, Crystal engineering of NLO materials based on metal–organic coordination networks. Acc. Chem. Res.2002, 35, 511.10.1021/ar0001012Search in Google Scholar
[8] C. Wang, T. Zhang, W. Lin, Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem. Rev.2012, 112, 1084.10.1021/cr200252nSearch in Google Scholar
[9] Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal–organic frameworks. Chem. Soc. Rev.2014, 43, 5657.10.1039/C4CS00032CSearch in Google Scholar
[10] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Carbon dioxide capture in metal–organic frameworks. Chem. Rev.2012, 112, 724.10.1021/cr2003272Search in Google Scholar
[11] M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev.2012, 112, 782.10.1021/cr200274sSearch in Google Scholar
[12] A. Karmakar, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Zinc metal–organic frameworks: efficient catalysts for the diastereoselective Henry reaction and transesterification. Dalton Trans. 2014, 43, 7795.10.1039/C4DT00219ASearch in Google Scholar
[13] A. Karmakar, S. Hazra, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Synthesis, structure and catalytic application of lead(II) complexes in cyanosilylation reactions. Dalton Trans. 2015, 44, 268.10.1039/C4DT02316ASearch in Google Scholar
[14] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev.2014, 43, 6011.10.1039/C4CS00094CSearch in Google Scholar
[15] A. J. Fletcher, E. J. Cussen, D. Bradshaw, M. J. Rosseinsky, K. M. Thomas, Adsorption of gases and vapors on nanoporous Ni2(4,4′-Bipyridine)3(NO3)4 metal–organic framework materials templated with methanol and ethanol: structural effects in adsorption kinetics. J. Am. Chem. Soc.2004, 126, 9750.10.1021/ja0490267Search in Google Scholar
[16] L. Alaerts, C. E. A. Kirschhock, M. Maes, M. A. van der Veen, V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. E. M. Denayer, D. E. De Vos, Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew. Chem. Int. Ed.2007, 46, 4293.10.1002/anie.200700056Search in Google Scholar
[17] O. K. Farha, A. M. Spokoyny, K. L. Mulfort, M. F. Hawthorne, C. A. Mirkin, J. T. Hupp, Synthesis and hydrogen sorption properties of carborane based metal–organic framework materials. J. Am. Chem. Soc.2007, 129, 12680.10.1021/ja076167aSearch in Google Scholar
[18] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc. Chem. Res.2001, 34, 319.10.1021/ar000034bSearch in Google Scholar
[19] Y. He, B. Li, M. O’Keeffe, B. Chen, Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev.2014, 43, 5618.10.1039/C4CS00041BSearch in Google Scholar
[20] S. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long, Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc.2007, 129, 14176.10.1021/ja076877gSearch in Google Scholar
[21] K. Hirai, S. Furukawa, M. Kondo, M. Meilikhov, Y. Sakata, O. Sakata, S. Kitagawa, Targeted functionalisation of a hierarchically-structured porous coordination polymer crystal enhances its entire function. Chem. Commun.2012, 48, 6472.10.1039/c2cc31421eSearch in Google Scholar
[22] D. Sun, S. Ma, Y. Ke, D. J. Collins, H. Zhou, An interweaving MOF with high hydrogen uptake. J. Am. Chem. Soc.2006, 128, 3896.10.1021/ja058777lSearch in Google Scholar
[23] B. Chen, M. Eddaoudi, S. T. Hyde, M. O’Keeffe, O. M. Yaghi, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science2001, 291, 1021.10.1126/science.1056598Search in Google Scholar PubMed
[24] K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjeant, J. T. Hupp, Post-synthesis alkoxide formation within metal–organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc.2009, 131, 3866.10.1021/ja809954rSearch in Google Scholar
[25] L. Ma, D. J. Mihalcik, W. Lin, Highly porous and robust 4,8-connected metal–organic frameworks for hydrogen storage. J. Am. Chem. Soc.2009, 131, 4610.10.1021/ja809590nSearch in Google Scholar
[26] Y. Liu, J. F. Eubank, A. J. Cairns, J. Eckert, V. C. Kravtsov, R. Luebke, M. Eddaoudi, Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew. Chem. Int. Ed.2007, 46, 3278.10.1002/anie.200604306Search in Google Scholar
[27] W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle III, M. Bosch, H.-C. Zhou, Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev.2014, 43, 5561.10.1039/C4CS00003JSearch in Google Scholar
[28] D. Bradshaw, S. El-Hankari, L. Lupica-Spagnolo, Supramolecular templating of hierarchically porous metal–organic frameworks. Chem. Soc. Rev. 2014, 43, 5431.10.1039/C4CS00127CSearch in Google Scholar
[29] R. Tayebee, V. Amani, H. R. Khavasi, Supramolecular architecture from a sodium coordination polymer with a 3D net containing 3-aminopyrazine-2-carboxylic acid (APZC): synthesis, characterization and crystal structure of [Na2(APZC)2(μ-H2O)2(μ3-H2O)]n. Chin. J. Chem.2008, 26, 500.10.1002/cjoc.200890094Search in Google Scholar
[30] W. Starosta, J. Leciejewicz, catena-Poly[[bis(μ-3-aminopyrazine-2-carboxylato)-κ3N1,O:O;κ3O:N1,O)-dilithium]-di-μ-aqua]. Acta Cryst.2010, E66, m744.10.1107/S1600536810020647Search in Google Scholar
[31] X.-L. Cheng, S. Gao, S. W. Ng, Ammonium tris(3-aminopyrazine-2-carboxylato-κ2N1,O)nickelate(II) trihydrate. Acta Cryst.2009, E65, m1631.10.1107/S1600536809048363Search in Google Scholar
[32] S. Gao, S. W. Ng, (3-Aminopyrazin-4-ium-2-carboxylate-κ2N1,O)diaquazinc(II)dinitrate. Acta Cryst.2010, E66, m1466.10.1107/S1600536810042509Search in Google Scholar
[33] Z.-P. Deng, W. Kang, L.-H. Huo, H. Zhao, S. Gao, Rare-earth organic frameworks involving three types of architecture tuned by the lanthanide contraction effect: hydrothermal syntheses, structures and luminescence. Dalton Trans.2010, 39, 6276.10.1039/c0dt00031kSearch in Google Scholar
[34] T. Sunahara, S. Onaka, M. Ito, H. Imai, K. Inoue, T. Ozeki, Construction of nano-channels based on zinc(II) pyrazine-2-carboxylate complexes. Eur. J. Inorg. Chem.2004, 4882.10.1002/ejic.200400438Search in Google Scholar
[35] J.-M. Li, J.-M. Shi, C.-J. Wu, W. Xu, Synthesis, crystal structure and fluorescence of a 1-D polymeric zinc(II) complex with pyrazine-2-carboxylate as a bridging ligand. J. Coord. Chem.2003, 56, 869.10.1080/0095897031000123831Search in Google Scholar
[36] X. Hu, Y.-P. Li, Y.-J. Wang, W.-J. Du, J.-X. Guo, Synthesis and crystal structures of two complexes with carboxylic derivatives of nitrogen-containing heterocycle ligands. J. Chem. Cryst.2010, 40, 846.10.1007/s10870-010-9752-4Search in Google Scholar
[37] G. Fan, S.-P. Chen, S.-L. Gao, Diaqua(5-methylpyrazine-2-carboxylato-κ2N,O)zinc(II). Acta Cryst.2007, E63, m774.10.1107/S1600536807003455Search in Google Scholar
[38] Y.-M. Cui, J. Li, X. Zhang, Q.-F. Zeng, Aquabis(5-methylpyrazine-2-carboxylato)zinc(II) trihydrate. Acta Cryst.2009, E65, m1083.10.1107/S1600536809031778Search in Google Scholar
[39] Bruker–Nonius, APEX-II, SAINT-Plus and TWINABS Bruker–Nonius AXS Inc., Madison, WI, 2004.Search in Google Scholar
[40] G. M. Sheldrick, SAINT (version 6 02), SADABS (version 2 03). Bruker AXS Inc., Madison, WI, 2002.Search in Google Scholar
[41] SHELXTL (version 6 10). Bruker AXS Inc., Madison, WI, 2002.Search in Google Scholar
[42] G. M. Sheldrick, SHELXL-97, Crystal Structure Refinement Program. University of Gottingen, 1997.Search in Google Scholar
[43] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edition, Wiley & Sons, New York, 1997.Search in Google Scholar
[44] V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Applied topological analysis of crystal structures with the Program Package ToposPro. Cryst. Growth Des.2014, 14, 3576.10.1021/cg500498kSearch in Google Scholar
Supplemental Material
The online version of this article (DOI: 10.1515/zkri-2014-1828) offers supplementary material, available to authorized users.
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Information on real-structure phenomena in metastable GeTe-rich germanium antimony tellurides (GeTe)nSb2Te3 (n ≥ 3) by semi-quantitative analysis of diffuse X-ray scattering
- Organic and Metalorganic Crystal Structures
- Three ammonium salts of sulfathiazole: crystallography and anti-microbial assay
- Bipodal benzoylthiocarbamic acid esters: crystal and molecular structures of R = Et (a polymorph), and of a binuclear Cu(I) complex, R = iPr
- Dinuclear zinc(II) complex with tris(2-aminoethyl)amine ligand: synthesis, structure and properties
- Synthesis, structure and thermal study of a new 3-aminopyrazine-2-carboxylate based zinc(II) coordination polymer
- Synthesis, crystal structure and spectroscopic properties of one-dimensional zinc(II)–cyanide complex with 1-methylimidazole, [Zn(μ-CN)(CN)(1-meim)]n
- Crystal and molecular structures of two 1H-2-substituted benzimidazoles
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Information on real-structure phenomena in metastable GeTe-rich germanium antimony tellurides (GeTe)nSb2Te3 (n ≥ 3) by semi-quantitative analysis of diffuse X-ray scattering
- Organic and Metalorganic Crystal Structures
- Three ammonium salts of sulfathiazole: crystallography and anti-microbial assay
- Bipodal benzoylthiocarbamic acid esters: crystal and molecular structures of R = Et (a polymorph), and of a binuclear Cu(I) complex, R = iPr
- Dinuclear zinc(II) complex with tris(2-aminoethyl)amine ligand: synthesis, structure and properties
- Synthesis, structure and thermal study of a new 3-aminopyrazine-2-carboxylate based zinc(II) coordination polymer
- Synthesis, crystal structure and spectroscopic properties of one-dimensional zinc(II)–cyanide complex with 1-methylimidazole, [Zn(μ-CN)(CN)(1-meim)]n
- Crystal and molecular structures of two 1H-2-substituted benzimidazoles