Home Crystallography between Kiel and St. Petersburg: review of collaboration and the crystal structure of [Tl5(SiO4)(OH)]2[Tl6(SO4)(OH)4]
Article
Licensed
Unlicensed Requires Authentication

Crystallography between Kiel and St. Petersburg: review of collaboration and the crystal structure of [Tl5(SiO4)(OH)]2[Tl6(SO4)(OH)4]

  • Oleg I. Siidra , Sergey N. Britvin , Sergey V. Krivovichev EMAIL logo , Dmitry A. Klimov and Wulf Depmeier
Published/Copyright: November 5, 2014

Abstract

In this contribution, we briefly review the results of collaborative research between crystallography groups in St. Petersburg and Kiel, and report on the synthesis and crystal structure of Tl16(SiO4)2(SO4)(OH)6 (1), a new and unusual compound obtained from highly-alkaline TlOH solution. Its structure [monoclinic, C2/m, a = 28.7140(18), b = 7.3686(5), c = 7.4426(5) Å, β = 104.653(2)°, V = 1523.50(17) Å3, R1 = 0.066 for 1528 independent observed reflections] can be described as an alternation of electroneutral [Tl5(SiO4)(OH)] and [Tl3(SO4)0.5(OH)2] layers. The [Tl5(SiO4)(OH)] layer consists of Tl(1)O4 tetragonal pyramids sharing common corners with the SiO4 tetrahedra to form pseudotetragonal [Tl(SiO4)]3- layers capped by OH(1)-centered [(OH)Tl4] square pyramids with the Tl(2) and Tl(3) atoms in their apices. The [Tl3(SO4)0.5(OH)2] layers contain OH(2)- and OH(3)-centered [(OH)Tl4] square pyramids sharing common edges to form large (∼ 7.4 × 7.4 Å) cavities occupied by disordered (SO4) tetrahedra. The electroneutral character of the [Tl5(SiO4)(OH)] and [Tl6(SO4)(OH)4] layers allows us to suggest that the phases with these chemical compositions may form as independent compounds in highly alkaline Tl-bearing systems.


Corresponding author: Sergey V. Krivovichev, Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia; and Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia, E-mail:

Acknowledgments

This work was supported by St. Petersburg State University through internal grant 3.38.136.2014 and Russian President grant MK-3756.2014.5. We thank Guest Editor Elena Boldyreva for the invitation to participate in this issue of the world’s oldest crystallographic journal.

References

[1] S. V. Krivovichev, S. K. Filatov, T. F. Semenova, On the systematics and description of polyions of linked polyhedra. Z. Kristallogr. 1997, 212, 411.Search in Google Scholar

[2] S. V. Krivovichev, S. K. Filatov, T. F. Semenova, I. V. Rozhdestvenskaya, Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra-I. Crystal structure of chloromenite, Cu9O2(SeO3)4Cl6. Z. Kristallogr. 1998, 213, 645.Search in Google Scholar

[3] G. L. Starova, S. V. Krivovichev, S. K. Filatov, Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. II. Crystal structure of Cu4O2[(As,V)O4]Cl. Z. Kristallogr. 1998, 213, 650.Search in Google Scholar

[4] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, K. Knorr, Complex topology of uranyl polyphosphate frameworks: Crystal structures of α-, β-K[(UO2)(P3O9)] and K[(UO2)2(P3O10)]. Z. Anorg. Allg. Chem. 2008c, 634, 1527.Search in Google Scholar

[5] E. V. Alekseev, S. V. Krivovichev, T. Malcherek, W. Depmeier, Crystal chemistry of anhydrous Li uranyl phosphates and arsenates. I. Polymorphism and structure topology: Synthesis and crystal structures of α-Li[(UO2)(PO4)], α-Li[(UO2)(AsO4)], β-Li[(UO2)(AsO4)] and Li2[(UO2)3(P2O7)2]. J. Solid State Chem. 2008d, 181, 3010.Search in Google Scholar

[6] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Crystal chemistry of anhydrous Li uranyl phosphates and arsenates. II. Tubular fragments and cation-cation interactions in the 3D framework structures of Li6[(UO2)12(PO4)8(P4O13)], Li5[(UO2)13(AsO4)9(As2O7)], Li[(UO2)4(AsO4)3] and Li3[(UO2)7(AsO4)5O)]. J. Solid State Chem. 2009a, 182, 2977.Search in Google Scholar

[7] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Rubidium uranyl phosphates and arsenates with polymeric tetrahedral anions: Syntheses and structures of Rb4[(UO2)6(P2O7)4(H2O)], Rb2[(UO2)3(P2O7)(P4O12)] and Rb[(UO2)2(As3O10)]. J. Solid State Chem. 2009b, 182, 2074.Search in Google Scholar

[8] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, K2[(UO2)As2O7]-The first uranium polyarsenate. Z. Anorg. Allg. Chem. 2007b, 633, 1125.Search in Google Scholar

[9] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Crystal structure of [CH3NH3][(UO2)(H2AsO4)3]. Radiochem. 2008a, 50, 445.Search in Google Scholar

[10] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Novel layered uranyl arsenates, Ag6[(UO2)2(As2O7)(As4O13)] and AI6[(UO2)2(AsO4)2(As2O7)] (AI - Ag and Na): First observation of a linear As4O136- anion and structure type evolution. J. Mater. Chem. 2009c, 19, 2583.Search in Google Scholar

[11] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Structural complexity of barium uranyl arsenates: Synthesis, structure, and topology of Ba4[(UO2)2(As2O7)3], Ba3[(UO2)2(AsO4)2(As2O7)], and Ba5Ca[(UO2)8(AsO4)4O8]. Cryst. Growth Des. 2011, 11, 3295.Search in Google Scholar

[12] S. V. Krivovichev, T. Armbruster, D. Y. Chernyshov, P. C. Burns, E. V. Nazarchuk, W. Depmeier, Chiral open-framework uranyl molybdates. 3. Synthesis, structure and the C2221P212121 low-temperature phase transition of [C6H16N]2[(UO2)6(MoO4)7(H2O)2] (H2O)2. Micropor. Mesopor. Mater. 2005a, 78, 225.Search in Google Scholar

[13] S. V. Krivovichev, P. C. Burns, T. Armbruster, E. V. Nazarchuk, W. Depmeier, Chiral open-framework uranyl molybdates. 2. Flexibility of the U:Mo = 6:7 frameworks: Syntheses and crystal structures of (UO2)0.82[C8H20N]0.36[(UO2)6(MoO4)7 (H2O)2](H2O)n and [C6H14N2][(UO2)6(MoO4)7 (H2O)2](H2O)m. Micropor. Mesopor. Mater. 2005b, 78, 217.Search in Google Scholar

[14] S. V. Krivovichev, C. L. Cahill, E. V. Nazarchuk, P. C. Burns, T. Armbruster, W. Depmeier, Chiral open-framework uranyl molybdates. 1. Topological diversity: Synthesis and crystal structure of [(C2H5)2NH2]2[(UO2)4(MoO4)5(H2O)](H2O). Micropor. Mesopor. Mater. 2005c, 78, 209.Search in Google Scholar

[15] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, A crown ether as template for microporous and nanostructured uranium compounds. Angew. Chem. Int. Ed. 2008b, 47, 549.Search in Google Scholar

[16] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, T. Armbruster, H. Katzke, E. V. Suleimanov, E. V. Chuprunov, One-dimensional chains in uranyl tungstates: Syntheses and structures of A8[(UO2)4(WO4)4(WO5)2] (A = Rb, Cs) and Rb6[(UO2)2O(WO4)4]. J. Solid State Chem. 2006a, 179, 2977.Search in Google Scholar

[17] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, O. I. Siidra, K. Knorr, E. V. Suleimanov, E. V. Chuprunov, Na2Li8L[(UO2)11O12(WO5)2]: Three different uranyl-ion coordination geometries and cation-cation interactions. Angew. Chem. Int. Ed. 2006b, 45, 7233.Search in Google Scholar

[18] E. V. Alekseev, S. V. Krivovichev, W. Depmeier, T. Malcherek, E. V. Suleimanov, E. V. Chuprunov, The crystal structure of Li4[(UO2)2(W2O10)] and crystal chemistry of Li uranyl tungstates. Z. Kristallogr. 2007c, 222, 391.Search in Google Scholar

[19] E. V. Alekseev, S. V. Krivovichev, T. Armbruster, W. Depmeier, E. V. Suleimanov, E. V. Chuprunov, A. V. Golubev, Dimensional reduction in alkali metal uranyl molybdates: Synthesis and structure of Cs2[(UO2)O(MoO4)]. Z. Anorg. Allg. Chem. 2007a, 633, 1979.Search in Google Scholar

[20] E. V. Alekseev, S. V. Krivovichev, T. Malcherek, W. Depmeier, One-dimensional array of two- and three-center cation-cation bonds in the structure of Li4[(UO2)10O10(Mo2O8)]. Inorg. Chem. 2007d, 46, 8442.Search in Google Scholar

[21] E. V. Nazarchuk, O. I. Siidra, S. V. Krivovichev, T. Malcherek, W. Depmeier, First mixed alkaline uranyl molybdates: Synthesis and crystal structures of CsNa3[(UO2)4O4(Mo2O8)] and Cs2Na8[(UO2)8O8(Mo5O20)]. Z. Anorg. Allg. Chem. 2009, 635, 1231.Search in Google Scholar

[22] S. V. Krivovichev, V. N. Yakovenchuk, T. Armbruster, Y. A. Pakhomovskiy, W. Depmeier, Crystal structure of the K, Ti analogue of ilímaussite-(Ce), (Ba,K,Na,Ca)11-12(REE,Fe,Th)4(Ti,Nb)6 (Si6O18)4(OH)12·4.5H2O: Revision of structure model and structural formula. Z. Kristallogr. 2003, 218, 392.Search in Google Scholar

[23] S. V. Krivovichev, V. N. Yakovenchuk, T. Armbruster, N. Döbelin, P. Pattison, H.-P. Weber, W. Depmeier, Porous titanosilicate nanorods in the structure of yuksporite, (Sr,Ba)2K4(Ca,Na)14 (□,Mn,Fe){(Ti,Nb)4 (O,OH)4[(Si6O17]2[Si2O7]3}(H2O,OH)n, resolved using synchrotron radiation. Amer. Mineral. 2004c, 89, 1561.Search in Google Scholar

[24] S. V. Krivovichev, V. N. Yakovenchuk, T. Armbruster, Y. A. Pakhomovsky, H.-P. Weber, W. Depmeier, Synchrotron X-ray diffraction study of the structure of shafranovskite, K2Na3(Mn,Fe,Na)4[Si9(O,OH)27](OH)2·nH2O, a rare manganese phyllosilicate from the Kola peninsula, Russia. Amer. Mineral. 2004d, 89, 1816.Search in Google Scholar

[25] I. Rozhdenstvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, A. Reinholdt, T. Weirich, The structure of charoite, (K,Sr,Ba,Mn)15-16(Ca,Na)32((Si70(O,OH)180)) (OH,F)4.0.n(H2O), solved by conventional and automated electron diffraction. Mineral. Mag. 2010, 74, 159.Search in Google Scholar

[26] I. V. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, S. Merlino, Essential features of the polytypic charoite-96 structure compared to charoite-90. Mineral. Mag. 2011, 75, 2833.Search in Google Scholar

[27] S. V. Krivovichev, T. Armbruster, W. Depmeier, One-dimensional lone electron pair micelles in the crystal structure of Pb5(SiO4)(VO4)2. Mater. Res. Bull. 2004a, 39, 1717.Search in Google Scholar

[28] S. V. Krivovichev, T. Armbruster, W. Depmeier, Crystal structures of Pb8O5(AsO4)2 and Pb5O4(CrO4), and review of PbO-related structural units in inorganic compounds. J. Solid State Chem. 2004b, 177, 1321.Search in Google Scholar

[29] S. V. Krivovichev, O. I. Siidra, E. V. Nazarchuk, P. C. Burns, W. Depmeier, Particular topological complexity of lead oxide blocks in Pb31O22X18 (X = Br, Cl). Inorg. Chem. 2006, 45, 3846.Search in Google Scholar

[30] O. I. Siidra, S. V. Krivovichev, T. Armbruster, W. Depmeier, Lead rare-earth oxyhalides: Syntheses and characterization of Pb6LaO7X (X = Cl, Br). Inorg. Chem. 2007a, 46, 1523.Search in Google Scholar

[31] O. I. Siidra, S. V. Krivovichev, W. Depmeier, Crystal chemistry of natural and synthetic lead oxyhalides. I. Crystal structure of Pb13O10Cl6. Geol. Ore Depos. 2007b, 49, 827.Search in Google Scholar

[32] O. I. Siidra, S. V. Krivovichev, W. Depmeier, Structure and mechanism of the ionic conductivity of the nonstoichiometric compound Pb2+xOCl2+2x. Dokl. Phys. Chem. 2007c, 414, 128.Search in Google Scholar

[33] O. I. Siidra, S. V. Krivovichev, T. Armbruster, W. Depmeier, Crystal chemistry of the mendipite-type system Pb3O2Cl2-Pb3O2Br2. Z. Kristallogr. 2008a, 223, 204.Search in Google Scholar

[34] O. I. Siidra, S. V. Krivovichev, W. Depmeier, Crystal chemistry of natural and synthetic lead oxohalides: II. Crystal structure of Pb7O4(OH)4Br2. Geol. Ore Depos. 2008b, 50, 801.Search in Google Scholar

[35] O. I. Siidra, S. V. Krivovichev, W. Depmeier, Crystal structure of Pb6O[(Si6Al2)O20]. Glas. Phys. Chem. 2009a, 35, 406.Search in Google Scholar

[36] O. I. Siidra, S. V. Krivovichev, C. Teske, W. Depmeier, Synthesis and crystal structure of a new oxohalide CdPb2O2Cl2. Glas. Phys. Chem. 2009b, 35, 411.Search in Google Scholar

[37] S. N. Britvin, O. I. Siidra, S. V. Krivovichev, W. Depmeier, Synthesis and crystal structure of the first thallium hydrous nesosilicate Tl4SiO4·0.5H2O. Z. Anorg. Allg. Chem. 2009, 635, 518.Search in Google Scholar

[38] O. I. Siidra, S.N. Britvin, S.V. Krivovichev, W. Depmeier, Hydroxocentered [(OH)Tl3]2+ triangle as a building unit in thallium compounds: Synthesis and crystal structure of Tl4(OH)2CO3. Z. Kristallogr. 2009c, 224, 563.Search in Google Scholar

[39] O. I. Siidra, S. N. Britvin, S. V. Krivovichev, W. Depmeier, Polytypism of layered alkaline hydroxides: Crystal structure of TlOH. Z. Anorg. Allg. Chem. 2010, 636, 595.Search in Google Scholar

[40] O. I. Siidra, S. N. Britvin, S. V. Krivovichev, D. A. Klimov, W. Depmeier, Synthesis and crystal structure of the disordered modification of Tl6Si2O7. Glas. Phys. Chem. 2012, 38, 473.Search in Google Scholar

[41] S. N. Britvin, A. Lotnyk, L. Kienle, S. V. Krivovichev, W. Depmeier, Layered hydrazinium titanate: Advanced reductive adsorbent and chemical toolkit for design of titanium dioxide nanomaterials. J. Am. Chem. Soc.2011, 133, 9516.Search in Google Scholar

[42] S. N. Britvin, Y. I. Korneyko, B. E. Burakov, A. Lotnyk, L. Kienle, W. Depmeier, S. V. Krivovichev, Sorption of nuclear waste components by layered hydrazinium titanate: A straightforward route to durable ceramic forms. Mater. Res. Soc. Symp. Proc. 2012a, 1475, 191.Search in Google Scholar

[43] Y. I. Korneyko, S. N. Britvin, B. E. Burakov, A. Lotnyk, L. Kienle, W. Depmeier, S. V. Krivovichev, Crystalline titanate ceramic for immobilization of Tc-99. Mater. Res. Soc. Symp. Proc. 2012, 1475, 185.Search in Google Scholar

[44] S. N. Britvin, O. I. Siidra, A. Lotnyk, S. V. Krivovichev, W. Depmeier, Niobate and tantalate pyrochlores: Soft synthesis by the fluoride route. Eur. J. Inorg. Chem. 2010a, 2010, 1082.Search in Google Scholar

[45] S. N. Britvin, O. I. Siidra, A. Lotnyk, L. Kienle, S. V. Krivovichev, W. Depmeier, The fluoride route to Lindqvist clusters: Synthesis and crystal structure of layered hexatantalate Na8Ta6O19·26H2O. Inorg. Chem. Commun. 2012b, 25, 18.Search in Google Scholar

[46] S. N. Britvin, D. V. Spiridonova, O. I. Siidra, A. Lotnyk, L. Kienle, S. V. Krivovichev, W. Depmeier, Synthesis, structure and properties of hydrazinium germanate pharmacosiderite, (N2H5)3Ge7O15(OH)·2.5H2O. Micropor. Mesopor. Mater. 2010b, 131, 282.Search in Google Scholar

[47] Y. Le Page, Computer derivation of the symmetry elements implied in a structure description. J. Appl. Crystallogr. 1987, 20, 264.Search in Google Scholar

[48] A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7.Search in Google Scholar

[49] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, A64, 112.Search in Google Scholar

[50] V. Kahlenberg, P. Perfler, J. Konzett, P. Blaha, Structural, spectroscopic, and computational studies on Tl4Si5O12: A microporous thallium silicate. Inorg. Chem. 2013, 52, 8941.Search in Google Scholar

[51] S.V. Krivovichev, P.C. Burns, Crystal chemistry of basic lead carbonates. II. Crystal structure of synthetic ‘plumbonacrite’. Mineral. Mag. 2000, 64, 1069.Search in Google Scholar

[52] M. S. Wickleder, Chains of OH-centered [Pb2+]3 triangles in the crystal structure of Pb3(OH)2(NH2SO3)4. Z. Anorg. Allg. Chem. 2005, 631, 2540.Search in Google Scholar

Received: 2014-4-14
Accepted: 2014-8-29
Published Online: 2014-11-5
Published in Print: 2014-11-1

©2014 by De Gruyter

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2014-1760/html
Scroll to top button