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Abstract: This study extends evolutionary economic geog-
raphy to science by mapping how regional scientific capa-
bilities emerge and evolve across Europe. Using Web of
Science publications (2000-2017) geo-coded to 1,216 regions
in 35 countries and classified into 228 subjects, we con-
struct a pan-European “Science Space” based on subject co-
occurrence and relatedness, and test whether relatedness
density, i.e., the embeddedness of a subject in a region’s
existing portfolio, predicts subsequent entry (Revealed Sci-
entific Advantage > 1). Network evidence shows Europe’s
science system becoming more interdisciplinary, with
technology-adjacent subjects (e.g., nanoscience, robotics,
computer science) gaining centrality, while Life Sciences
& Biomedicine remain dominant by volume. Economet-
ric results (pooled OLS and GLM for binary entry, with
region/subject/period fixed effects and controls for the
regional economy and knowledge base) indicate that higher
relatedness density significantly raises the likelihood of
scientific entry. The effect is stronger in non-metropolitan
regions and when a subject’s initial RSA is very low, con-
sistent with relatedness seeding new capabilities rather
than merely consolidating near-threshold strengths. These
findings generalise the principle of relatedness from tech-
nology to science and advise regional innovation policy to
prioritise adjacent scientific opportunities, invest in bridg-
ing infrastructures, and design interdisciplinary platforms
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where relatedness density is high but specialisation has not
yet emerged.
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1 Introduction

Regions continuously evolve, reshaping their economic
structures from within, an idea central to the Evolutionary
Economic Geography (EEG) theoretical framework (Kogler
et al. 2023a). This perspective builds on two foundational
insights from the Geography of Innovation literature (Feld-
man and Kogler 2010): innovation is geographically con-
centrated (Feldman 1994, 1999), and knowledge flows are
spatially localised (Bottazzi and Peri 2003; Jaffe et al. 1993;
Maurseth and Verspagen 2002; Soon and Storper 2008).
Knowledge is widely considered an important input for
innovation and growth, and in many cases, regional per-
formance is shaped by the type and quantity of knowledge
generated locally. Close interactions among regional actors
foster not only knowledge diffusion but also exposure to
diverse perspectives that fuel creativity (Cowan and Jonard
2004). The seminal contributions by Gertler (1995, 2003)
emphasise that much of the spatial stickiness of valuable
knowledge can be attributed to its tacit nature. Essentially,
it is tacit knowledge, deeply embedded in people and place
and reliant on face-to-face interaction, and thus particu-
larly difficult to transfer across space, which creates per-
sistent barriers to knowledge flows. Consequently, knowl-
edge accumulation unfolds unevenly over space and time
due to regional unique histories of resource use, industrial
development, institutional structures, and production sys-
tems (Rigby and Essletzbichler 1997; Saxenian 1994; Storper
1997). It is then those regional knowledge production and
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utilisation trajectories that give rise to specialised techno-
industrial clusters, where long-standing capabilities and
skills reinforce path dependency and institutional inertia in
knowledge production (Asheim and Gertler 2006).

Investigations into regional development trajectories
indeed find that places tend to expand and diversify into
economic activities that are closely aligned to their pre-
existing local capabilities (Boschma et al. 2015, 2017; Kogler
2015a). This path-dependent logic implies that there are
potential opportunities for regional economies to branch
out into closely related knowledge domains that drive spe-
cific capabilities, but less so in very distant ones (Kogler
2017). Thus, long-term investigations into the underpinnings
that determine structural change in patterns of regional
knowledge production, which by extension define compet-
itive advantages vis-a-vis other localities, are important to
understand the mechanisms behind these structural trans-
formations along with anticipated future sustainability and
growth prospects.

Following this call, and building on the regional
‘knowledge space’ methodology by Kogler et al. (2013, 2017),
which employs earlier proposed measures of knowledge
proximity from patent data proposed by Engelsman and
van Raan (1994), numerous empirical studies have shown
a strong positive correlation between technological relat-
edness and regional knowledge development, as reflected
in patterns of specialisation and diversification (Antonietti
and Montresor 2021; Boschma et al. 2015; Feldman et al. 2015;
Kogler et al. 2017; Rigby 2015; Tanner 2014). In these stud-
ies, patents are treated as proxies for knowledge produc-
tion and resulting innovative outputs, and in general many
studies have utilised patent data as a device to indicate
main properties and trends of industrial or governmental
research and development (R & D) activities (Acs et al. 2002).
Accordingly, the use of patent data was also approved by
studies regarding regional technological domains: it enables
to represent regional technological competences, demon-
strate knowledge recombinant process and change, illus-
trate patterns of geographical concentration, and indicate
intangible assets of regions or organisations (Belenzon and
Schankerman 2013; Breschi et al. 2003).

While patent data is widely perceived as a reliable
proxy for regional knowledge production, it might only offer
a partial view (Engelsman and van Raan 1994). Not all inno-
vations are patented, and patents typically reflect only the
most successful technological outcomes, and therefore only
reveal the upper end of the knowledge landscape. Further-
more, the propensity to patent varies greatly among indus-
try sectors, and once accounted for patent metrics might
be more reflective of regional patterns of specialisation
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rather than being directly indicative of general innovative
performance (Kogler 2015b). As a complement, publication
data captures a broader range of scientific activity, doc-
umenting the state-of-the-art in research and the foun-
dational stages of innovation (Acs et al. 2002; Fleming
and Sorenson 2004). It is widely accepted that scientific
research has an essential role in technological innova-
tion and economic growth. Scientific knowledge provides
fundamental understanding, and the cumulative knowl-
edge accelerates practical applications for technological
advancements and growth (Ahmadpoor and Jones 2017). It
is therefore worthwhile to investigate the scientific knowl-
edge landscape since it provides a foundation for ulti-
mate technological applications. Indeed, according to Jef-
ferson et al. (2018), a large magnitude of patents includes
references to scientific publications in their description of
prior art, and that the number of citations to the scientific
literature found in patents has grown dramatically over
time.

A related line of argument emphasises that economic
agents beyond firms, such as universities and research
institutions, play a substantial role in producing econom-
ically valuable knowledge and facilitating spillovers, yet
their contributions are often underrepresented in patent-
based analyses. For instance, Belenzon and Schankerman
(2013) estimate that only about 10 % of scientific find-
ings at universities are patented. Given the importance,
but often unobserved scale, of knowledge transfer from
science to technology (Jefferson et al. 2018; Patelli et al.
2017), it is highly likely that regional capabilities are built
on a much broader spectrum of knowledge foundations
than is typically captured by patent-focused investigations
(Kogler et al. 2024). In this context, scientific publications
can provide a more accurate reflection of underlying local-
global learning dynamics and knowledge transfer processes
than patent-based co-inventor networks, which tend to be
largely intra-organisational and mainly driven by profit
motives (Wanzenbock et al. 2025). This distinction is crucial,
asregional knowledge production ecosystems operate at the
interface of local and global influences, often shaped by
internationally connected scientific and professional com-
munities (Bathelt and Cantwell 2025; Wolfe and Gertler
2004). Therefore, the extensive literature on the geography
of knowledge flows and innovation spillovers, primarily
grounded in patent data (Buzard et al. 2020; Murata et al.
2014), may significantly underestimate the indirect yet piv-
otal role of globally accessed scientific knowledge in driving
regional knowledge diversification.

To address this significant research gap, the objec-
tive of this study is to extent the knowledge relatedness
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framework in accordance with EEG theoretical insights to
investigate the underlying processes that drive structural
change in scientific knowledge production patterns across
European regional economies. At the onset, the most fun-
damental research question to be answered is if regional
scientific knowledge follows the same principles that drive
technical knowledge development trajectories: Do advance-
ments in existing, and the emergence of new, regional sci-
entific capabilities mainly result from the recombination
of knowledge that is already present in a place? Follow-
ing prior research efforts, the study introduces the con-
cept of the “Science Space”, which is a research field co-
occurrence representation of regional scientific knowledge
based on publication data. This methodological approach
enables us to model the evolution of regional scientific
knowledge spaces, and in parallel to evaluate the over-
all spatial configuration of the state-of-the-art in science.
Thus, the spatial configuration of a region’s existing knowl-
edge base along with the dynamics resulting in patterns of
specialisation/diversification over time will be explored in
detail.

For this purpose, data from the Web of Science (WoS)
and the European Regional Database (ERD), covering the
scientific publications and regional indicators of the Euro-
pean regions from 2000 to 2017 will be utilised. To the
best of our knowledge, this study is the first of a kind
that employs a large-scale geo-coded publication database
to explore how regional scientific knowledge production
processes unfold. The analysis proceeds along two steps:
first, the Science Space will be constructed to highlight
changes in the overall structure of scientific knowledge
production trajectories, and second a an econometric anal-
ysis that features a scientific knowledge-entry model will
be conducted, in order to determine if new regional sci-
entific capabilities are indeed related to the existing sci-
entific base as it would be the case with regional pat-
terns of technical knowledge evolution. Finally, we will also
engage in sensitivity exercise where the base model is tested
and compared across short- and long-term periods, as well
as between less-specialised and least-specialised science
subjects.

This study is organised as follows. Section 2 highlights
the relevant literature that speaks to the concept of knowl-
edge spaces and how these can be utilised to determine
regional relatedness and knowledge entry patterns. The
following section introduces the data and methodology in
more detail, while the subsequent section presents the
results along with a discussion. Section 5 offers some con-
cluding remarks.
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2 Knowledge in space - conceptual
and empirical insights towards
the mapping of scientific
knowledge

2.1 The Science Space

Science Space refers to a networked representation of sci-
entific knowledge in which research fields are nodes and
the links between them capture patterns of relatedness
inferred from co-occurrence across publications. Mapping
Science Space enables the analysis of how regional scien-
tific capabilities emerge and evolve over time and across
places, thereby extending the Evolutionary Economic Geog-
raphy (EEG) perspective, which emphasises path depen-
dency conditioned by local stocks of knowledge and tech-
nology (Kogler 2015a; Kogler et al. 2023a). Essentially, pre-
existing knowledge sets, experiences, and capabilities estab-
lished in particular places, together with the localised
nature of tacit and institutionally embedded knowledge
(Gertler 2004), shape current configurations and future
pathways of regional knowledge trajectories (Feldman and
Kogler 2010).

An intuitive way to test these theoretical underpinnings
and trace the evolution of knowledge in space and over time
is the ‘knowledge space’ methodology (Kogler et al. 2013).
This framework offers a clear approach for tracking struc-
tural changes in innovation over time (Kogler et al. 2017;
Whittle and Kogler 2020). Built on patent data, it leverages
the co-occurrence of patent classification codes to map the
structure of technological activity (Engelsman and van Raan
1994). By identifying technologies that frequently appear
together in patents, the approach captures technological
relatedness, placing closely related technologies near each
other in the knowledge space. Because patents are often
assigned to multiple classes, they provide strong evidence
of links between those technologies. In addition, patent doc-
uments are legally standardised, detailed, and offer relevant
geo-references (via inventor and assignee addresses), while
their patent classification systems enable longitudinal anal-
yses of the evolution of technical knowledge production (Joo
and Kim 2010).

The networked representation of knowledge domains,
globally and at specific localities, rests on the principle of
relatedness (Hidalgo et al. 2018). Knowledge domains that
require similar cognitive capabilities, skills, and inputs, or
that complement one another, are located close together
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in the knowledge space (Boschma 2017; Kogler 2017). Over
the longer term, novelty in the space often arises from the
recombination of existing, frequently locally present, tech-
nological capabilities, i.e., combining knowledge domains
that have not previously appeared together in a single
invention (Fleming and Sorenson 2001; Strumsky and Lobo
2015; Weitzman 1998).

Early measurements of technological relatedness based
on patent class co-occurrence were used to assess firms’
competencies to detect techno-economic paradigm changes
(Breschi et al. 2003, Engelsman and van Raan 1994). Sub-
sequent work combined the relatedness and evolution-
ary perspectives to analyse structural change in observed
spatial patterns of specialisation and diversification along
dimensions such products, technologies, and skills (Whittle
and Kogler 2020).! Initial national-level attempts by Haus-
mann and Klinger (2007) and Hidalgo et al. (2007) used
international trade data to measure product relatedness
through co-export patterns, introducing the product spaces
as a network-based representation in which links reflect
the frequency with which product categories co-occur in
a country’s exports. In similar spirit at the subnational
level, Neffke et al. (2011) derived industry relatedness from
the co-occurrence of products in manufacturing of Swedish
regions (1969-2002), while Boschma et al. (2013) analysed
the industrial dynamics of Spanish regions (1988 and 2008)
based on product relatedness.

Following the same analytical framework, many stud-
ies have investigated technological relatedness in regional
economic structures by identifying knowledge/technology
spaces from patent data. Kogler et al. (2013) used patent
co-classification to measure relatedness between technolo-
gies and to examine the evolution of the US knowledge
space, both nationally and for metropolitan areas, dur-
ing 1975-2005. Boschma et al. (2015) showed entry and
exit dynamics of technological knowledge in US cities for
1981-2010. For Europe, the evolution of regional knowledge
spaces has been traced by Balland et al. (2019), Kim et al.
(2024), and Kogler et al. (2017), linking long-term technolog-
ical relatedness to regional diversification patterns and the
Smart Specialisation Strategy (Foray 2015).

By contrast, relatively few attempts have mapped the
evolution of scientific knowledge using scientific publica-
tion databases. Until recently, a limiting factor was the
lack of large-scale publication databases with precise spa-
tial information on the origin of scientific work. While

1 For a detailed overview of the relevant recent literature concerning
the relatedness framework, including details on associated measure-
ments and empirical evidence, see Whittle and Kogler (2020).
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patent data reflects inventive technological developments,
publication data represents the state-of-the-art in science
(Engelsman and van Raan 1994). Mapping regional knowl-
edge spaces based on publication field co-occurrence, i.e.,
Science Space, would therefore allow analysis of scientific
knowledge dynamics in a spatial context, analogous to prior
work on technological knowledge. Compared with the tech-
nological focus, mapping scientific knowledge has been less
common, partly because large-scale publication databases
with precise spatial information were less accessible until
recently. While patent data reflects inventive technologi-
cal developments, publication data represents the evolv-
ing state of the art in science (Engelsman and van Raan
1994). A Science Space, constructed from publication field
co-occurrence, therefore provides an analogue to technol-
ogy spaces for studying the spatial dynamics of scientific
knowledge.

The mapping of publication data has been explored in
a few studies. Tijssen and Van Raan (1994) highlight sev-
eral avenues for mapping scientific knowledge: co-citation
analysis between articles and journals, co-word analysis
(co-occurrence of keywords), and co-classification analysis.
While co-citation analysis can reveal clusters of research
specialties, it is prone to time lags inherent in citation prac-
tices and may overlook relevant non-cited publications. Co-
word analysis indicates networks of conceptual and intel-
lectual content but can suffer from inconsistencies over
time. By contrast, co-classification analysis appears advan-
tageous, as assigned classification systems are well defined
and consistent in meaning across the scientific domain
over time. In line with these methodological considera-
tions, more recent efforts have mapped scientific knowledge
using large-scale publication databases, most commonly by
constructing maps from co-citation links between articles
(Borner et al. 2012) or journals (Leydesdorff and Rafols
2009). Such co-citation maps aim to represent knowledge
flows between academic fields. As an alternative to flow-
based science maps, Guevara et al. (2016) introduced a
‘research map’ that traces scholars’ career trajectories to
predict future research output of countries, organisations,
and individuals. In these representations, nodes denote
research fields and links indicate the likelihood of collabo-
ration between fields, resembling measures of skill related-
ness derived from labour flows and mobility among indus-
tries in knowledge space to illustrate regional industrial
evolution (Neffke and Henning 2013). Although spatial ele-
ments are embedded in these prior attempts to map the
Science Space, a comprehensive regional analysis of the evo-
lutionary paths of scientific knowledge production across
localities and over extended periods, using what appears the
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most reasonable methodological approach, namely relat-
edness measures based on the co-occurrence of research
fields, remains largely absent. The Science Space method
addresses this gap directly.

2.2 Science relatedness and knowledge
entry

Knowledge exchange depends on shared frameworks
of understanding, yet the transfer of knowledge, espe-
cially complex and tacit forms (Gertler 2003), is con-
strained by cognitive, social, and geographical distances
between individuals and organisations (Boschma 2005;
Nooteboom 2000). Consequently, knowledge flows more
readily between similar or related domains. Because knowl-
edge flows and spillovers are localised, places develop dis-
tinctive stocks of knowledge over time, which in turn shape
their future evolutionary trajectories (Kogler et al. 2023a).
This path-dependent logic implies that branching into new
domains is most viable when those domains are closely
related to a region’s existing portfolio (Kogler 2015a; Martin
and Sunley 2006, 2022).

The regional diversification literature emphasises the
benefits of expanding into emerging, complex industries
while recognising path dependence. Concepts such as
regional branching (Boschma and Frenken 2011), path cre-
ation (MacKinnon et al. 2019), and path development (Gril-
litsch et al. 2018; Hassink et al. 2019) all highlight that
new competencies are shaped by pre-existing capabili-
ties; a finding supported by extensive empirical evidence
(Boschma et al. 2015; Essletzbichler 2015; Kogler et al. 2017).
In short, regional branching tends to occur where existing
industries share technological relatedness with emerging
sectors, rooted in common or complementary knowledge
bases (Breschi et al. 2003; Frenken and Boschma 2007; Tan-
ner 2014).

The relatedness—entry relationship was first shown at
the national level by Hidalgo et al. (2007), who introduced
the product space, a network of product relatedness based
on co-export patterns, demonstrating that countries expand
exports around products in which they already have com-
parative advantage. Hausmann and Klinger (2007) simi-
larly found that nations are more likely to develop new
export products related to their existing capabilities, and
that greater variety and density of related products expand
growth opportunities. Regional extensions by Neffke et al.
(2011) showed that technological relatedness between man-
ufacturing industries predicts the emergence of new sectors
in Swedish regions. Consistent findings appear for Spanish
regions (Boschma et al. 2013) and US metropolitan areas
(Essletzbichler 2015), confirming that higher relatedness
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raises the probability of industry entry. Patent-based studies
reinforce this view: Rigby (2015) showed US metros diver-
sify into technologies related to existing strengths, while
Boschma et al. (2015) quantified that, on average, a 10 %
increase in relatedness raises the likelihood of technology
entry by 30 % at the city level. European case studies of
emerging sectors, e.g., fuel cells (Tanner 2014) and nanotech-
nology (Colombelli et al. 2014), corroborate these patterns.

The broader principle of relatedness (Hidalgo et al.
2018), coupled with the advantages of knowledge diversi-
fication, aligns with Smart Specialisation Strategy initia-
tives (Kim et al. 2024). Regional competitiveness stems from
leveraging intrinsic knowledge assets to enter related, high-
value domains (Balland et al. 2019; European Commission
2014). Simply adding new knowledge domains is insuffi-
cient; what matters is how well new capabilities integrate
with existing structures to unlock broader benefits. Because
regional knowledge spaces reflect unique evolutionary tra-
jectories, the entry potential of any given domain varies by
place, making a region-knowledge—time level of analysis
essential for identifying optimal branching opportunities
(Kogler et al. 2022, 2023b).

In summary, across products, industries, and technolo-
gies, the probability that new activity enters a region is
positively conditioned by relatedness to existing capabil-
ities. Extending this logic, we expect science (field) relat-
edness to similarly influence a region’s ability to develop
new scientific specialisations, an expectation we test in the
subsequent sections.

3 Data and methodology

3.1 Data

In this study, the WoS and ERD databases are employed.?
First, regional scientific knowledge measures are obtained
from the WoS database covering the 2000 to 2017 timeframe
and grouped into 3-year time periods (2000-2002,
2003-2005, 2006-2008, 2009-2011, 2012-2014, 2015-2017).
The WoS provides information of publications including
publication year, title, journal title, author, institution,
institution’s address, subheading, subject, funding,

2 Restrictions apply to the publication dataset used in this paper.
The Web of Science data is owned by Clarivate Analytics. To
obtain the bibliometric data in the same manner as authors
(i.e., by purchasing them), readers can contact Clarivate Analytics
at https://clarivate.com/webofsciencegroup/solutions/web-of-science/
contact-us/in order to gain access to the following Web of Science
bibliographic databases: 1980-2017 — Annual Science Citation Index
Expanded and Proceedings-Science Combined’.
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Figure 1: Number of science subjects and publications by region.

citation, etc. It covers five main research areas (labelled
“subheading”): Arts & Humanities, Life Sciences &
Biomedicine, Physical Sciences, Social Sciences, and
Technology. Among them, our sample is restricted to
publications that fall into the category of Life Sciences &
Biomedicine, Physical Sciences, and Technology which are
related to technological or industrial activities. Further, the
WoS database also provides a lower-tier classification of
science (labelled “subject”), which includes 265 disciplines.
Utilising this information, the Science Space is then
constructed to discuss how regional science is structured
and has changed over time.

We restrict our scope to scientific activities in European
regions; in other words, publications that are published
from institutions located in European regions are selected.
Following the retrieval of institutional address’ information,
additional data processing tasks were required to correct
for errors and duplications, e.g., multiple database entries
that referred to a single institution, and to supplement
the data with geo-location information. All data process-
ing and geo-coding tasks were completed in data prepa-
ration stage, and subsequently all publications originating
from European regions could be filtered accordingly. For
the spatial definition of regions, we apply the metropoli-
tan and non-metropolitan (NUTS3) classification that is
based on EUROSTAT’s Urban Audit’s Functional Urban

Metro Non-Metro

Area.® In alignment with the established regional classifica-
tion and time periods schema in our final dataset, regional-
level economic variables were retrieved from ERD.* Here,
we took the summation of the values of NUTS3 regions that
belong to the metropolitan regions, and then employed the
average values of the 3-year periods that are used.

Our final sample includes 6,977,525 publications from
228 science subjects, originating from 1,216 European
regions including 274 metropolitan and 942 non-metro-
politan regions across 35 countries.’ Figure 1 illustrates the

3 https://ec.europa.eu/eurostat/statistics-explained/
index.php?title=Glossary:Metro_regions.

4 The European Regional Database (ERD) was a service provided
by Cambridge Econometrics that contains information on regional
employment, level of output, and population; see: https:/www
.camecon.com/european-regional-data/. More recent data is avail-
able at the Annual Regional Database of the European Commission
(ARDECO) website: https://urban.jrc.ec.europa.eu/?Ing=en.

5 The list of countries whose regions are the focus of the present
analysis includes: AT — Austria; BE — Belgium; BG - Bulgaria; CH
— Switzerland; CY — Cyprus; CZ — Czech Republic; DE — Germany; DK
— Denmark; EE — Estonia; EL — Greece; ES — Spain; FI — Finland; FR
— France; HR - Croatia; HU — Hungary; IE — Ireland; IS — Iceland;
IT - Italy; LI — Liechtenstein; LT — Lithuania; LU — Luxembourg; LV
— Latvia; ME - Montenegro; MK — North Macedonia; MT — Malta;
NL - Netherlands; NO - Norway; PL — Poland; PT — Portugal; RO
— Romania; SE — Sweden; SI — Slovenia; SK — Slovakia; TR — Tirkiye
(Turkey); and the UK - United Kingdom.
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number of science subjects and number of publications
across European regions. Each dot indicates a region with
colour difference differentiating metro (black) and non-
metro (grey) regions. As expected, we can locate metropoli-
tan regions primarily in the top-right corner of the graph,
which indicates that they have greater numbers of pub-
lications and cover more diverse science subjects com-
pared with non-metropolitan regions. On average across
each of the two types of regions, metropolitan regions pro-
duce 31,818 publications in 198 science subjects, while non-
metropolitan regions on average produce only 2,878 publi-
cations in 115 science subjects.

3.2 Science space methodology

Following the concept of regional knowledge spaces con-
structed with patent information (Kogler et al. 2013; Righy
2015; VIckova et al. 2018; Whittle 2019), this study introduces
regional Science Spaces based on publication and science
classification information. Utilising our dataset that con-
tains the entire list of publications published by institu-
tions located in European regions, the pan-European Sci-
ence Space can be constructed. As a first step, a pair matrix
presenting a combination of subjects of a publication is
constructed. Here, the weight of each combination equals
the number of articles published in a certain period and
subject (or science field). For instance, if a publication con-
tains three science subjects, i.e., subject A, B, and C, then
the pair set has a total three rows (A-B, A-C, B—C) with all
having an equal weight of 1. Once the processes of calculat-
ing those pair sets and associated weights was completed, it
was then possible to construct the subject co-occurrence net-
work by creating the nodes and edges based on subject co-
occurrence pairs and number of publications. Considering
the relationship between subjects but also the duplication of
subject pairs, undirected and weighted network measures
are employed.

3.3 Econometric specifications

3.3.1 Research model

The objective of this study is to explore the effect of science
relatedness on the potential entry of new regional scien-

tific knowledge with comparative advantages. The research
model is specified in equation (1) as follows:

Entry,;, = RelDen, ;, , + RegEcon, ;, ,
+RegKnow, ; ,  + @, +p;+a,+¢,;, (1

where 7, i, and ¢ identify region, science field, and time
period, respectively, RegEcon is a matrix of regional
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economic variables, including total employment (Emp),
non-market service employment intensity (NMS), and GDP
per capita (GDP). RegKnow indicates a matrix of regional
knowledge variables, including the revealed comparative
advantage of science (RSA), knowledge complexity (KC),
scientific coherence (SC), and the number of publications
(Pub). @, p, @ are region, science field, and period fixed
effects. All independent variables are lagged by one period
to avoid potential endogeneity.

The dependent variable of our model is the knowledge
entry, in other words, the entry into a new specialised sci-
entific activity in a region. The first step is to calculate the
revealed comparative advantage in a science field in each
region and period. Following previous approaches that mea-
sured the revealed technological advantage (RTA) of regions
via patent data (Balland et al. 2019, Boschma et al. 2015,
Kogler et al. 2013, Whittle 2019), a new measure labelled
Revealed Scientific Advantage (RSA) that utilises region-
alised publication data is adopted (Equation (2)).

publication, ,(i)/X;publication,. ,(i)

RSA, ;=
Shrit ., publication, ,(i)/Z,Z;publication, (i)

@

RSA tells us whether a region r has a comparative
advantage in science i compared to other regions based
on a threshold of >1. Precisely, an RSA equal and above
one means that a region has an equal or greater share of
knowledge specialisation in a certain scientific field than the
average of all other regions in aggregate. Ceteris paribus, in
the cases where the value is below that threshold, a region
would be less specialised than the collective average. To
operationalise the proposed analysis that follows a binary of
RSA values is produced, i.e., one where RSA values are > 1,
and 0 when RSA values are < 1. Subsequently, RSA values
between two consecutive time periods are compared to
determine whether an entry event has occurred. In other
words, if there has been a switch from RSA < 1in one time
period to RSA > 1in the subsequent period, an entry event
has occurred. Figure 2 provides an example and illustrates
how science subject #3 in Region A and science subject #2
in Region B are the only two cases where an entry event is
observed.

Related density, our key variable, refers to the embed-
dedness of a science produced within a region to its core sci-
ence subjects. Following Balland et al. (2019), Boschma et al.
(2015), and Hidalgo et al. (2007), the relatedness density of
science i in region r at time t is measured by dividing the
summation of scientific relatedness (@ijt) of science i to all
other sciences j with RSA in region r to the summation of
all other sciences j in all other regions (Equation (3)). Sci-
entific relatedness is measured based on co-occurrence of
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t Science 1 | Science 2 | Science 3 t+1 Science 1 | Science 2 | Science 3
Region A 1 0 0 Region A 0 0 1
Region B 0] 0 1 Region B 0 1 1
t> t+1 Science 1 Science 2 Science 3
Region A (1=>0)=0 (0>0)=0 0>1)=1
Region B (0>0)=0 0>1)=1 (1>1)=0

Figure 2: Entry into a new regional science specialisation (transition from RSA < 1to RSA > 1). Note: Values “0” and “1” refer to a science subject’s RSA;
RSA <1=“0” and RSA > 1 = “1”, respectively. Entry into a newly acquired regional science subject specialisation is indicated by = “1” in lower panel.

subjects in publications; in other words, measuring the fre-
quency of the two subjects appearing in the same publica-
tion (Equation (4)). The greater value of relatedness density
indicates that a science is closely linked to the sciences with
RSA in a region, and this can be interpreted as a potential
of such a science to be developed or applied with other

sciences. ’
RelDen,,., = Zfe”i#ﬂ"”*loo ©)
j#
N..
ﬂij =7 (4)

N2 N2
Vit

Two types of control variables are included: regional
economic and knowledge variables. Regional economic
variables, all obtained from ERD, include Emp, NMS, GDP.
To control the level of regional science activity, regional
knowledge variables of RSA, KC, SC, and Pub are included.
First, KC is captured by a knowledge complexity index based
on an extended bimodal network model by Hidalgo and
Hausmann (2009), and further deployed by Balland and
Righy (2017). From the original method, patent classifica-
tions and the unit of regions are converted into publication
classifications and the European NUTS level. KC reveals the
degree of whether local knowledge developed in a region to
also be reproduced in other regions. Regarding the spatial
unevenness of regional knowledge, KC allows us to capture
the regional difference relate to the quality aspect of local
knowledge (Balland and Righy 2017; Whittle 2019). Next, SC
is also included as a control variable. The concept of coher-
ence is adopted to scientific publication data to measure the
degree to what extent different subjects of publications are
complementary to an existing scientific knowledge base of
aregion (Rocchetta and Mina 2019). In case of technological
coherence, when measured by patent, it has been found
to favour knowledge spillovers (Frenken et al. 2007) and

adaptive resilience of regional economies (Rocchetta and
Mina 2019). In a similar sense, we expect that SC controls the
region’s scientific capability of producing new publications.
Lastly, number of publications (Pub) is included to control
the size effects of publications.

List of variables and descriptive statistics are repre-
sented in Table 1 and 2.

3.3.2 Estimation strategies

For econometric estimation, three different estimation
strategies are used to confirm robustness of our finding.
First, pooled OLS estimation including different combina-
tions of variable sets is used without and with fixed effects
of region, science field, and period. This allows us to observe
whether the coefficients of our key variable change by the

Table 1: Variables.

Variable  Description

Entry Entry of science i in region j at period ¢

RelDen Relatedness density of science i in region j at period t

Emp Total employment in region j at period t

NMS Non-market service employment intensity in region j at
period t

GDP GDP per capita in region j at period t

RSA Revealed comparative advantage of science i in region j at
period t

KC Knowledge complexity in region  at period ¢

e Scientific coherence in region j at period t

Pub Number of publications of science j in region j at period ¢

Note: NMS includes NACE Rev.2 classification, O-Q (Public administration,
defence, education, human health, and social work activities) and R-U
(Arts, entertainment, and recreation; other service activities; activities of
household and extra-territorial organizations and bodies).
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Table 2: Descriptive statistics.

RelDen Emp NMS GDP RSA KC SC Pub
Emp 0.364
NMS 0.334  0.002
GDP 0.404  0.189 0.460
RSA 0.011 —0.004 0.003 0.004
KC —0.047 —0.045 0.190 0.199 -0.002
SC 0111  0.040 0.015 0.035 -—0.011 —0.135
Pub 0.140  0.264 0.036 0.090 0.006 0.003 0.007
Mean 215 1963 029 0.02 1.15 0.00 16.69 2.31
SD 122 3551 0.08 0.01 13.1 0.01 215 22.8

existence of other control variables. As a second part of
estimation, generalised linear model (GLM) estimation is
conducted. Since our dependent variable, entry, is dichoto-
mous, logit and probit model with GLM is used. In addi-
tion, regional disaggregation is considered to check whether
our result holds for both large and small regions. Subsam-
ples are divided into metropolitan and non-metropolitan
regions by using metropolitan dummy. Lastly, two differ-
ent cases of RSA values are estimated to check whether
different levels of RSA show consistent results. On the one
hand very low RSA values (<0.7) are considered as an
indicator of least specialised science subjects in a region,
while on the other hand RSA values ranging from 0.7 to
<1 are employed to signify science field that are somewhat
close to a level of specialisation. Since the probability of
knowledge entry is expected to be higher when an RSA
of a region’s science is close to 1, the impact of related-
ness density may differ depending on the RSA value. Fur-
ther, these two cases are compared in short-term and long-
term scenarios which follows the work of Perruchas et al.
(2020). In sum, short-term effect is tested with the subsample
where RSA is very low or close to specialisation in the pre-
vious period (RSA,;.; < 0.7 or 0.7 <RSA,;, ; <1), and
long-term effect is tested with the subsample where RSA is
again very low or almost at the level of specialisation in the
first period of the sample (RSA,;, < 0.70r 0.7 <RSA,;, <1
where t = 2000-2003).

4 Results and discussion

The study set out with the objective to investigate if the evo-
lution of regional scientific knowledge production capabili-
ties follows the same principles that drive technical knowl-
edge development trajectories that have been highlighted in
the relevant literature (Boschma et al. 2015; Colombelli et al.
2014; Kogler et al. 2013, 2017; Righy 2015). Specifically, the
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critical research question in this regard is: Do advance-
ments in existing, and the emergence of new, regional sci-
entific capabilities mainly result from the recombination
of knowledge that is already present at a place? The sum-
mary of results and accompanied discussion considering
this objective follows in turn.

4.1 The evolution of regional Science Spaces
in the Europe

In this section, the evolution of the overall European Sci-
ence Space is highlighted and discussed. Initially, and by
means of a network visualisation, we compare the Euro-
pean Science Space in period 1 (2000-2002) with that in
period 6 (2015-2017); see Figures 3 and 4. The node sizes
are determined by their respective eigenvector centrality
values. The eigenvector centrality value indicates how well
a certain node is connected, and by extension shows how
“important” a node, i.e., science subject, is in the overall
Science Space. Thus, a subject with a larger node size com-
pared to other nodes is indicative of its relative impor-
tance in the entire science network. For illustrative pur-
poses, and to reduce confusion and emphasise key findings,
only 40 % of the two overall networks are shown in both
figures. The node colours represent the science subhead-
ings (i.e., the clustering of subjects): pink = Life Sciences
& Biomedicine (LSB), light green = Technology (TECH),
orange = Physical Sciences (PS), blue = Social Sciences (SS),
and dark-green = Arts & Humanities (AH).% Although or
sample does not focus on publications in the Social Sciences
and Art & Humanities science domains per se, there are
few nodes from those research areas that appear in the two
networks due to multidisciplinary science outputs.

In the first observed period (2000-2002), a fairly clear
separation between our three main subjects and their asso-
ciated subheadings can be observed. Although PS and TECH
associated subjects are perhaps more intermingled with
each other compared to LSB subjects that are quite iso-
lated on their own in the left section of Figure 3. Thus,
most of the subjects belonging to the same subheading

6 The Web of Science provides a list of subject classifications for
all databases. Most subjects are assigned to a subheading category,
whereas some subjects needed to be assigned to one for the purpose of
presentation in Figures 3 and 4. A full list of all subjects and assigned
subheadings that are utilized in the analysis that follows is featured
in Table Al in the Appendix. For further information, please refer to:
https://support.clarivate.com/ScientificandAcademicResearch/s/article/
Web-of-Science-List-of-Subject-Classifications-for-All-
Databases?language=en_US.
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Figure 3: The european science space in 2000-2002. Note: The nodes represent the subjects, and their respective colour refers to the corresponding
subheading. The size of the node was determined by the eigenvector centrality value. Percentage values in the legend correspond to the share of each

science subheading in the entire network.

are located closely to each other, which indicates a cer-
tain scientific homogeneity in scientific knowledge produc-
tion where most scientific outputs drew on inputs from
within their core research area. In contrast, in the last
observed period (2015-2017) a much more heterogeneous
picture emerges where subheadings belonging to the same
research subject area do not necessarily form clearly dis-
tinguishable clusters within the overall network anymore.
It is plausible to suspect that the observed structural differ-
ences are the result of increasing inter-disciplinary research
efforts, i.e., in the later period scientific outputs are much
more likely to recombine knowledge from several subjects
belonging to different rather than the same research area.
Furthermore, and again in the latter period (Figure 4),
we observe an increasing number of nodes that repre-
sent SS and AH subjects, which provides additional sup-
port for an increasing shift towards, and growth of, inter-
disciplinary research outputs across the entire European
Science Space. In both periods, LSB turns out to be the
most prevailing science subjects in the European regions
as it includes not only many nodes but also subjects that

are with greater node size. LSB associated nodes represent
43.9% 42.8 % of all subheadings that are represented in
the first and last observed period, respectively. This aligns
with the observations from knowledge spaces based on
patents that showed the strong presence and clustering
of chemistry and biology associated technical knowledge
domains (Kogler et al. 2017). Another observation is the
TECH subheadings, that were already more scattered across
the entire network compared to other subjects in the ini-
tial period, have become very central nodes in the con-
temporary Science Space (Figure 4). Perhaps no surprise
given that TECH related subheadings that represent scien-
tific knowledge production in subjects such as nanotech-
nology or robotics, many of which are considered general
purpose technologies, have been applied to a diverse range
of subjects across the entire science spectrum. Further TECH
related advancements, such as the wide diffusion and appli-
cation of information, communication, and computer sci-
ences, which have become central to knowledge discovery
processes in non-TECH subjects, has further accelerated this
trend.
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Figure 4: The european science space in 2015-2017. Note: The nodes represent the subjects, and their respective colour refers to the corresponding
subheading. The size of the node was determined by the eigenvector centrality value. Percentage values in the legend correspond to the share of each

science subheading in the entire network.

Although insights into the overall evolution of scientific
knowledge production at the pan-European level are very
informative, the relevant follow-up question is then how
this might vary across regional settings that most likely
are characterised by distinct knowledge bases and devel-
opment trajectories (Asheim and Coenen 2005). Considering
this task, Table 3 lists the top 10 scientific knowledge pro-
ducing European metropolitan regions, determined by their
overall number of publications produced in the 2000-2002
time period. Furthermore, the table also indicates the

Table 3: Major metropolitan region’s top science subjects.

most prominent science subject, again in terms of publi-
cation output, in each of these metropolitan regions. At
the onset, it is noticeable that the top science subjects
appear to repeat themselves across these top producing
regions in both time periods. In the 2000-2002 period pub-
lications related to Biochemistry & Molecular Biology are
amongst the most produced ones across these top regions,
whereas in the 2015-2017 period the momentum had shifted
towards the subjects of “Multidisciplinary Sciences” and
“Astronomy & Astrophysics”. In the context of the earlier

. 2000-2002 2015-2017

Region

Science subject Pub Science subject Pub
Paris Biochemistry & molecular biology 4,163 Astronomy & astrophysics 4,945
London Biochemistry & molecular biology 3,481 Multidisciplinary sciences 6,524
Berlin Physics, condensed matter 1,658 Multidisciplinary sciences 2,542
Munich Biochemistry & molecular biology 1,265 Astronomy & astrophysics 3,072
Stokholm Biochemistry & molecular biology 1,249 Multidisciplinary sciences 2,048
Madrid Chemistry, physical 1,217 Multidisciplinary sciences 2,277
Rome Biochemistry & molecular biology 1,14 Astronomy & astrophysics 2,435
Milan Oncology 1,106 Oncology 2,222
Copenhagen Biochemistry & molecular biology 1,072 Multidisciplinary sciences 2,012
Barcelona Biochemistry & molecular biology 792 Multidisciplinary sciences 2,270




12 = K. Kim et al.: Scientific knowledge specialisations across European regions

discussion concerning the overall European Science Space,
it should be noted that top science subjects present in
major metropolitan regions that account for a large share of
the overall scientific knowledge production output strongly
determine the overall observed European Science Space
configuration.

4.2 Summary and discussion of the insights
derived from the regression analysis

In this section, the econometric results of the impact of
relatedness density on the scientific changes in European
regions from 2000 to 2017 are discussed. Table 4 summarises
the estimation results from multiple regression models that
incorporate different sets of control variables. Column (1)
in Table 4 presents the baseline model including only the
key independent variable, RelDen. In turn, column (2) adds
regional economic controls, column (3) then also includes
regional knowledge variables, while column (4) is the full
model that incorporates both socio-economic and regional
science variables. Finally, column (5) reports the most strin-
gent specification by employing a three-way fixed effects
model that controls for all time-invariant regional, techno-
logical, and period-specific effects.

Across all model specifications, relatedness density
(RelDen) consistently reports a positive and statistically
significant coefficient. This robust finding indicates that sci-
ence subjects embedded in a denser network of related
fields are more likely to undergo scientific transfor-
mation towards specialisation. In other words, when a

Table 4: Emergence of new specialised science in European regions.
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scientific field is surrounded by more related and scientif-
ically proximate disciplines within a region, it can benefit
from knowledge spillovers and potential knowledge recom-
bination processes that facilitate innovation and a struc-
tural restructuring in the overall scientific activity present
at a place. This result is consistent with the EEG literature
highlighted previously, which also emphasises the role of
relatedness in fostering regional diversification and techno-
logical upgrading.

Turning to the control variables, most coefficients show
consistent signs across specifications, with a few notable
exceptions. In the model excluding regional knowledge vari-
ables (column 2), total employment (EMP), non-market ser-
vice employment intensity (NMS), and GDP, all display nega-
tive coefficients. This may initially appear counterintuitive,
as one might expect regions with larger labour markets
to foster more emergence on scientific activity. However,
this result likely reflects a saturation or maturity effect:
highly developed regions may already have fully formed
scientific systems with limited room for further diversifi-
cation. In contrast, smaller or less-developed regions may
still possess untapped potential for scientific restructuring
and thus exhibit higher rates of change towards scientific
specialisation. A similar interpretation applies to the neg-
ative coefficient of number of publications (Pub). Regions
with higher existing publication output tend to be mature
in terms of their scientific development. These regions are
likely to have already consolidated their positions in key
scientific subjects, reducing the opportunity for further spe-
cialisation into new or emerging areas.

(1) (2) (3) (4) (5)
RelDen 0.004*** (0.00004) 0.004*** (0.0001) 0.003*** (0.0005) 0.003*** (0.0001) 0.009*** (0.0001)
Emp —0.0000*** (0.00000) —0.0000*** (0.00000) 0.00000 (0.00003)
NMS —0.010 (0.008) 0.020*** (0.008) —0.004 (0.038)
GDP —0.269*** (0.057) —0.203*** (0.057) 0.683* (0.411)
RSA 0.324*** (0.003) 0.316*** (0.004) 0.294*** (0.004)
KC 0.572*** (0.048) 0.657*** (0.051) 0.044 (0.074)
SC —0.001*** (0.0002) —0.001*** (0.0002) —0.0005** (0.0002)
Pub —0.064*** (0.001) —0.061*** (0.001) —0.062*** (0.001)
Constant 0.018*** (0.001) 0.022*** (0.002) 0.036%** (0.003) 0.045*** (0.004) —0.196*** (0.029)
Region FE No No No No Yes
Science FE No No No No Yes
Period FE No No No No Yes
R? 0.03 0.03 0.06 0.05 0.10
Adjusted R? 0.03 0.03 0.06 0.05 0.07
Observation 352,153 309,526 352,153 309,526 309,526

Notes: The dependent variable entry = 1if a given technology enters the technological portfolio of a given region during the corresponding 5-year
window, and 0 otherwise. All time-varying covariates are lagged by one period, with standard errors noted in parentheses; * p < 0.10, ** p < 0.05,

and *** p < 0.01.
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In case of regional knowledge variables (see results dis-
played in column 3 an onwards), RSA shows positive effects,
which is an expected observation, showing the greater pos-
sibility of specialisation to occur in well-developed science
subjectsin a particular region. This is indicative of a cumula-
tive advantage mechanism, where already strong scientific
disciplines continue to attract resources and attention. The
positive coefficient of KC shows the importance of a region’s
capability on producing better quality, or more complex,
scientific knowledge. This suggests that high-performing
regions in terms of research productivity are more likely to
evolve their scientific portfolio, likely due to better infras-
tructure, talent pools, and institutional support. The coef-
ficient of SC reports the negative and significant impact,
meaning less coherent scientific activities enhance regional
science specialisation. This implies that regions with a less
coherence across scientific subjects may be better placed
to develop new science specialisations. A possible expla-
nation is that a loosely connected scientific structure pro-
vides more opportunities for novel combinatory knowledge
production and interdisciplinary exploration, which are key
drivers in enabling emerging scientific directions.

In Table 5, the robustness of our findings is tested
with a different estimation strategy and disaggregated sub-
samples. These tests are designed to verify whether the
observed positive effect of relatedness density on scien-
tific change as reported in Table 4 also holds under differ-
ent model specifications and across varying regional con-
texts. First, in column (1) and (2), GLM estimation results
based on logit and probit model confirm the positive and
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significant effect of relatedness density on the probability
of science entry. In both models, relatedness density contin-
ues to exhibit a positive and statistically significant effect
on the probability of science entry. This finding confirms
that even when switching from linear probability models to
more appropriate nonlinear specifications for binary out-
comes, the relationship between relatedness density and
regional scientific transformation remains robust. In partic-
ular, the consistent significance across both logit and probit
models enhances confidence in the general validity of our
results.

Second, in Column (3) and (4), the results estimated
by the subsamples divided into metropolitan and non-
metropolitan regions are presented. The results reveal that
the coefficient of relatedness density is statistically sig-
nificant in both subsamples, but notably larger in non-
metropolitan regions than in metropolitan ones. This sug-
gests that relatedness plays a more critical role in shap-
ing scientific change in less-developed areas. One possible
explanation is that metropolitan regions typically enjoy a
wider array of resources for scientific advancement, such
as large universities, research centres, and highly skilled
labour pools. These regions may rely less on relatedness-
driven recombination and more on institutional or agglom-
eration advantages when it comes to scientific specialisa-
tion. In contrast, non-metropolitan regions, which often
lack these structural advantages, may depend more heav-
ily on the knowledge spillovers and cross-field synergies
facilitated by relatedness density. Thus, the local knowl-
edge structure could be a particularly vital mechanism for

Table 5: Emergence of new specialised science in European regions (robustness-check).

GLM specifications

GLM specifications (logit) & regional disaggregation

(3)Metro (4)Non-metro

(1)Logit (2)Probit
RelDen 0.043*** (0.000) 0.023*** (0.000)
Emp —0.0002*** (0.00002) —0.00008*** (0.00001)
NMS —0.219%* (0.101) —0.088* (0.051)
GDP —3.742%** (0.743) —1.770%** (0.377)
RSA 2.227*** (0.031) 1.260*** (0.018)
KC 9.370*** (0.711) 4.600%** (0.353)
SC —0.001(0.004) —0.004** (0.002)
Pub —0.478** (0.011) —0.275*** (0.006)
Constant —3.095%** (0.067) —1.730%** (0.032)
Region FE Yes Yes
Science FE Yes Yes
Period FE Yes Yes
Log-likelihood —87,960 —87,874
Observation 309,526 309,526

0.035*** (0.002)
—0.00003 (0.00003)
—1.18*** (0.226)
—6.36%** (1.42)
2.96*** (0.053)
3.91% (2.23)
—0.165*** (0.025)
—0.486"** (0.015)

0.055*** (0.001)
—0.001*** (0.000)
—0.331%** (0.117)
—3.733*%* (0.884)
1.964*** (0.041)
8.307*** (0.765)
—0.005 (0.004)
—0.569*** (0.020)

—0.052 (0.458) —3.116*** (0.072)
Yes Yes

Yes Yes

Yes Yes

—21,553 —65,965

64,274 242,252

Notes: The dependent variable entry = 1if a given technology enters the technological portfolio of a given region during the corresponding 5-year
window, and 0 otherwise. All time-varying covariates are lagged by one period, with standard errors noted in parentheses; * p < 0.10, ** p < 0.05,

and *** p < 0.01.
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Table 6: Emergence of new specialised science in European regions (short- and long-term).
Short-term Long-term
(1) (2) (3) (4)
(RSA <1 & RSA > 0.7 prior period) (RSA < 0.7 prior period) (RSA <1 & RSA > 0.7 first period) (RSA < 0.7 first period)

RelDen 0.015** (0.005) 0.049*** (0.001) 0.014*** (0.003) 0.048*** (0.0009)
Emp 0.00001 (0.00005) —0.0005*** (0.00006) 0.00002 (0.00004) —0.0004*** (0.00005)
NMS —0.820 (0.679) —0.434*** (0.139) —0.74* (0.436) —0.231** (0.116)
GDP —8.130* (4.450) —4.85*** (1.03) —1.06 (2.93) —6.23*** (0.866)
RSA 4.500%** (0.460) 2.36™** (0.085) 2.73***(0.132) 2.12*** (0.043)
KC 14.4** (6.36) 7.69%** (0.875) 3.32%** (4.94) 8.15*** (0.807)
SC 0.327*** (0.105) —0.026*** (0.005) 0.123** (0.051) —0.017*** (0.004)
Pub —0.291%** (0.032) —1.11%#* (0.035) —0.321%** (0.023) —0.687*** (0.018)
Constant —9.64*** (1.96) —2.74*** (0.091) —4.79%** (0.941) —2.88*** (0.076)
Region FE Yes Yes Yes Yes

Science FE Yes Yes Yes Yes

Period FE Yes Yes Yes Yes
Log-likelihood  —2,053 —49,585 —4,564 —69,100
Observation 3,819 210,252 10,287s 266,218

Notes: The dependent variable entry = 1if a given technology enters the technological portfolio of a given region during the corresponding 5-year
window, and 0 otherwise. All time-varying covariates are lagged by one period, with standard errors noted in parentheses; * p < 0.10, ** p < 0.05,

and *** p < 0.01.
driving scientific diversification in less resource-endowed
regions.

Table 6 reports estimates that distinguish short-term
from long-term effects of relatedness density on regional sci-
entific specialisation. The key question is whether the effect
of relatedness density holds irrespective of prior RSA values
and how it differs over time. In the short term, relatedness
density has a positive and significant impact in both specifi-
cations. The long-term estimates are also significant, indicat-
ing that the influence of relatedness density endures, consis-
tent with a path-dependent process shaped by the structural
proximity of knowledge domains. Comparing fields with
very low RSA to those close to specialisation (RSA~1), the
impact of relatedness density is larger at very low RSA. Put
differently, fields already near RSA = 1 are more likely to
specialise and are less sensitive to relatedness density, as
they have almost reached specialisation and thus additional
policy support may yield limited gains. By contrast, for fields
with very low RSA, future specialisation is uncertain, and
relatedness density plays a more important role.

5 Concluding remarks

The present paper advances the evolutionary economic
geography (EEG) literature by shifting the lens from techno-
logical invention (as proxied by patents) to scientific knowl-
edge production (as proxied by publications), and by ask-
ing whether regional science specialisation evolves through
mechanisms analogous to those documented for technology

in the context of relatedness, recombination, and path
dependence. Building a pan-European Science Space from
Web of Science data (2000-2017), we show that the relat-
edness density of a scientific field within a region robustly
predicts the probability that the region will subsequently
enter that field (attain an RSA > 1). This result holds across
pooled OLS and GLM specifications even once an extensive
set of regional economic and knowledge controls, as well as
fixed effects, are included.

The effect is consistently positive and statistically signif-
icant, stronger in non-metropolitan regions, and present in
both short- and long-term horizons. Moreover, the marginal
influence of relatedness is larger when a field’s initial
RSA is very low, suggesting that relatedness is particularly
consequential for seeding new scientific specialisations
rather than merely consolidating near-threshold strengths.
Beyond the econometric evidence, our network analyses
indicate that Europe’s scientific landscape has become more
inter-disciplinary over time: clear sub-domain clusters vis-
ible in the early 2000s give way to denser cross-field con-
nectivity by 2015-2017. Technology-adjacent subjects (e.g.,
nanoscience, robotics, computer science) become increas-
ingly central to the Science Space, consistent with their role
as general-purpose enablers. Life Sciences & Biomedicine
remain a dominant presence in terms of volume and cen-
trality, but the permeability of boundaries among broad
subjects has grown, underscoring the salience of recombi-
nant knowledge production in scientific advance.

Empirically, we provide the first large-scale, geo-coded
evidence that the principle of relatedness extends from
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technology to science at the regional level: regions are
more likely to develop comparative advantage in scien-
tific subjects that are embedded in their existing port-
folios. Conceptually, we connect the literatures on prod-
uct/technology/skill spaces (Whittle and Kogler 2020) to the
scientific domain, highlighting that scientific capabilities,
and not only inventive capacities, are structured, cumu-
lative, and place-specific. Methodologically, we adapt the
knowledge space methodology and associated tools to publi-
cation data, demonstrating a tractable way to model subject
co-occurrence and to derive relatedness density measures
for science.

For policy, the findings validate that the logic behind
Smart Specialisation Strategies also holds in the scientific
knowledge domain. Prioritising adjacent or cognate sci-
entific subjects, those most related to a region’s incum-
bent strengths, can raise the probability of successful entry
and, by extension, accelerate capability formation (Euro-
pean Commission 2014). This is especially pertinent for
smaller and non-metropolitan regions, where relatedness
appears to substitute, at least in part, for agglomeration
advantages, i.e., denser research infrastructures and large
talent pools. In practical terms, regional authorities along
with education and training focused entities can use the pro-
posed “Science-Space” methodology to: (i) identify adjacent
scientific opportunities; (ii) target bridge investments (cen-
tres, doctoral programmes, shared facilities) that connect
core subjects with promising neighbours; and (iii) design
interdisciplinary platforms that deliberately increase cross-
field co-authorship and co-funding where relatedness den-
sity is high but specialisation has yet to emerge.

A set of limitations need to be considered as they may
impact upon our derived inferences. First, the geo-coding
that was carried out on metadata that concerns the close
to 7 m publication documents in our final sample relies on
institutional addresses rather than individual author resi-
dences. This is standard in publication analytics but poten-
tially could blur the spatial locus of knowledge creation for
multi-campus or cross-border institutions. Second, our anal-
ysis covers European regions, and one needs to be careful
to generalise those to other geographies, e.g., North America
or Asia where funding regimes, institutional incentives, and
field compositions differ. Third, while we include extensive
controls, fixed effects and lag structures, unobserved shocks
such as science field specific funding waves directed by EU
framework priorities, may still correlate with both relat-
edness measures and entry. Fourth, the employed classifi-
cation system, i.e., WoS subheadings/subjects, is broad and
therefore results could vary with alternative taxonomies
or with finer-grained field definitions. Finally, although
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publication data capture a broader slice of knowledge than
other indicators, e.g., patents, they still might omit other
potential highly relevant aspects, such as tacit knowledge
exchange processes, and thus our measures most likely
understate informal, but important knowledge flows that
impact on regional outcomes.

There are a multitude of potential research avenues
stemming from this analysis, but it is especially three that
stand out. First, it would be useful to extend the dynamic
analysis with panel estimators tailored to binary transi-
tions, e.g., dynamic random-effects or correlated random-
effects probit with initial-conditions corrections, and also
to test exogenous instruments for relatedness exposure,
e.g., shift-share designs based on exogenous field-level
shocks or international co-authorship diffusion, all geared
towards mitigating remaining endogeneity concerns. Sec-
ond, it would be valuable to link regional Science Space tra-
jectories to technology space outcomes to quantify science-
to-technology translation lags, spillovers, and complemen-
tarities. For example, knowing whether scientific entry in
photonics might predict subsequent patent entry in opto-
electronics would offer ample insights for the design of
more effective place-bases science, technology and innova-
tion policy instruments. Third, ideally one would also incor-
porate funding, infrastructure, and mobility data, e.g., EU
research priorities, significant core facilities only available
in certain places, or data on the mobility of researchers,
which in turn could further open the “black box” of the
mechanisms through which relatedness is activated.

To conclude, the provided evidence highlights that
where science is done, what science is done, and with whom
it is connected, are all mutually constitutive. Regions do
not become scientifically competitive by leaping into dis-
tant subjects; rather, they build outward from their exist-
ing knowledge bases, and especially when interdisciplinary
bridges shorten the cognitive distance to new opportuni-
ties. By providing a scalable way to map those bridges, our
study offers both an analytical tool and a strategic compass
for regional research and science policy and institutional
decision-making. In a period of tightening budgets and
widening spatial disparities, aligning scientific priorities
with relatedness-informed opportunities can improve the
odds of durable capability formation, particularly in places
that lack the structural advantages that are more readily
present in major metropolitan hubs. The Science Space thus
enables a shift away from potentially fashionable scientific
disciplines that are too far to reach in a particular regional
setting, to a portfolio strategy grounded in each region’s
evolving endowments, enabling more credible, equitable,
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and effective pathways to scientific, and ultimately techno-

logical and economic, advance.
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WoS Subject

WoS Subject

WoS Subject

Acoustics (TECH)

Agricultural economics & policy (LSB)
Agricultural engineering (LSB)
Agriculture, dairy & animal science (LSB)
Agriculture, multidisciplinary (LSB)

Agronomy (LSB)

Allergy (LSB)

Anatomy & morphology (LSB)
Andrology (LSB)

Anesthesiology (LSB)

Anthropology (LSB)

Archaeology (SS)

Architecture (AH)

Art (AH)

Astronomy & astrophysics (PS)
Audiology & speech-language pathology (LSB)
Automation & control systems (TECH)
Behavioral sciences (LSB)

Biochemical research methods (LSB)
Biochemistry & molecular biology (LSB)
Biodiversity conservation (LSB)

Biology (LSB)

Biophysics (LSB)

Biotechnology & applied microbiology (LSB)
Business (SS)

Business, finance (SS)

Cardiac & cardiovascular systems (LSB)

Cell & tissue engineering (LSB)

Cell biology (LSB)

Chemistry, analytical (PS)

Chemistry, applied (PS)

Chemistry, inorganic & nuclear (PS)
Chemistry, medicinal (LSB)
Chemistry, multidisciplinary (PS)
Chemistry, organic (PS)

Chemistry, physical (PS)

Clinical neurology (LSB)
Communication (SS)

Entomology (LSB)
Environmental sciences (LSB)
Environmental studies (LSB)
Ergonomics (TECH)

Ethics (SS)

Ethnic studies (SS)

Evolutionary biology (LSB)

Family studies (SS)

Fisheries (LSB)

Food science & technology (LSB)

Forestry (LSB)

Gastroenterology & hepatology (LSB)
Genetics & heredity (LSB)

Geochemistry & geophysics (PS)
Geography (SS)

Geography, physical (PS)

Geology (PS)

Geosciences, multidisciplinary (PS)
Geriatrics & gerontology (LSB)
Gerontology (LSB)

Green & Sustainable Science & Technology
(TECH)

Health care sciences & services (LSB)
Health policy & services (LSB)

Hematology (LSB)

History (AH)

History & philosophy of science (AH)
History of social sciences (SS)

Horticulture (LSB)

Hospitality, leisure, sport & tourism (LSB)
Humanities, multidisciplinary (AH)

Imaging science & photographic technology
(TECH)

Immunology (LSB)

Infectious diseases (LSB)

Information science & library science (TECH)
Instruments & instrumentation (TECH)
Integrative & complementary medicine (LSB)
Language & linguistics (SS)

Law (SS)

Nutrition & dietetics (LSB)
Obstetrics & gynecology (LSB)
Oceanography (PS)

Oncology (LSB)

Operations research & management science
(TECH)

Ophthalmology (LSB)

Optics (PS)

Ornithology (LSB)

Orthopedics (LSB)
Otorhinolaryngology (LSB)
Paleontology (LSB)

Parasitology (LSB)

Pathology (LSB)

Pediatrics (LSB)

Peripheral vascular disease (LSB)
Pharmacology & pharmacy (LSB)
Philosophy (AH)

Physics, applied (PS)

Physics, atomic, molecular & chemical (PS)
Physics, condensed matter (PS)
Physics, fluids & plasmas (PS)

Physics, mathematical (PS)
Physics, multidisciplinary (PS)
Physics, nuclear (PS)

Physics, particles & fields (PS)
Physiology (LSB)

Planning & development (LSB)
Plant sciences (LSB)

Polymer science (PS)

Primary health care (LSB)
Psychiatry (LSB)

Psychology (SS)

Psychology, applied (SS)
Psychology, biological (SS)
Psychology, clinical (SS)
Psychology, developmental (SS)
Psychology, educational (SS)
Psychology, experimental (SS)
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Table A1: (continued)
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WoS Subject WoS Subject WoS Subject
Computer science, artificial intelligence (TECH) Limnology (LSB) Psychology, mathematical (PS)
Computer science, cybernetics (TECH) Linguistics (SS) Psychology, multidisciplinary (SS)

Computer science, hardware & architecture
(TECH)
Computer science, information systems (TECH)

Computer science, interdisciplinary applications
(TECH)

Computer science, software engineering (TECH)
Computer science, theory & methods (TECH)
Construction & building technology (TECH)

Criminology & penology (SS)

Critical care medicine (LSB)
Crystallography (PS)

Demography (SS)

Dentistry, oral surgery & medicine (LSB)
Dermatology (LSB)

Developmental biology (LSB)

Ecology (LSB)

Economics (SS)

Education & educational research (SS)
Education, scientific disciplines (SS)
Education, special (SS)
Electrochemistry (PS)

Emergency medicine (LSB)
Endocrinology & metabolism (LSB)
Energy & fuels (TECH)

Engineering, aerospace (TECH)
Engineering, biomedical (TECH)
Engineering, chemical (TECH)
Engineering, civil (TECH)

Engineering, electrical & electronic (TECH)
Engineering, environmental (TECH)
Engineering, geological (TECH)
Engineering, industrial (TECH)
Engineering, manufacturing (TECH)
Engineering, marine (TECH)
Engineering, mechanical (TECH)
Engineering, multidisciplinary (TECH)
Engineering, ocean (TECH)
Engineering, petroleum (TECH)

Logic (TECH)
Management (SS)
Marine & freshwater biology (LSB)

Materials science, biomaterials (TECH)
Materials science, ceramics (TECH)

Materials science, characterization & testing
(TECH)

Materials science, coatings & films (TECH)
Materials science, composites (TECH)
Materials science, multidisciplinary (TECH)
Materials science, paper & wood (TECH)
Materials science, textiles (TECH)
Mathematical & computational biology (LSB)
Mathematics (PS)

Mathematics, applied (PS)

Mathematics, interdisciplinary applications (PS)
Mechanics (TECH)

Medical ethics (LSB)

Medical informatics (LSB)

Medical laboratory technology (LSB)
Medicine, general & internal (LSB)
Medicine, legal (LSB)

Medicine, research & experimental (LSB)
Metallurgy & metallurgical engineering (TECH)
Meteorology & atmospheric sciences (PS)
Microbiology (LSB)

Microscopy (TECH)

Mineralogy (PS)

Mining & mineral processing (PS)
Multidisciplinary sciences (TECH)

Music (AH)

Mycology (LSB)

Nanoscience & nanotechnology (TECH)
Neuroimaging (LSB)

Neurosciences (LSB)

Nuclear science & technology (TECH)
Nursing (LSB)

Psychology, psychoanalysis (SS)

Public, environmental & occupational health
(LSB)

Radiology, nuclear medicine & medical imaging
(LSB)

Rehabilitation (LSB)

Religion (AH)

Remote sensing (TECH)

Reproductive biology (LSB)
Respiratory system (LSB)
Rheumatology (LSB)

Robotics (TECH)

Social issues (SS)

Social sciences, biomedical (SS)
Social sciences, interdisciplinary (SS)
Social sciences, mathematical methods (SS)
Social work (SS)

Sociology (SS)

Soil science (LSB)

Spectroscopy (TECH)

Sport sciences (LSB)

Statistics & probability (PS)
Substance abuse (LSB)

Surgery (LSB)

Telecommunications (TECH)
Thermodynamics (PS)

Toxicology (LSB)

Transplantation (LSB)
Transportation (TECH)
Transportation science & technology (TECH)
Tropical medicine (LSB)

Urban studies (SS)

Urology & nephrology (LSB)
Veterinary sciences (LSB)

Virology (LSB)

Water resources (PS)

Women’s studies (SS)

Zoology (LSB)
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