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Abstract: This study extends evolutionary economic geog-

raphy to science by mapping how regional scientific capa-

bilities emerge and evolve across Europe. Using Web of

Science publications (2000–2017) geo-coded to 1,216 regions

in 35 countries and classified into 228 subjects, we con-

struct a pan-European “Science Space” based on subject co-

occurrence and relatedness, and test whether relatedness

density, i.e., the embeddedness of a subject in a region’s

existing portfolio, predicts subsequent entry (Revealed Sci-

entific Advantage ≥ 1). Network evidence shows Europe’s

science system becoming more interdisciplinary, with

technology-adjacent subjects (e.g., nanoscience, robotics,

computer science) gaining centrality, while Life Sciences

& Biomedicine remain dominant by volume. Economet-

ric results (pooled OLS and GLM for binary entry, with

region/subject/period fixed effects and controls for the

regional economy and knowledge base) indicate that higher

relatedness density significantly raises the likelihood of

scientific entry. The effect is stronger in non-metropolitan

regions and when a subject’s initial RSA is very low, con-

sistent with relatedness seeding new capabilities rather

than merely consolidating near-threshold strengths. These

findings generalise the principle of relatedness from tech-

nology to science and advise regional innovation policy to

prioritise adjacent scientific opportunities, invest in bridg-

ing infrastructures, and design interdisciplinary platforms
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where relatedness density is high but specialisation has not

yet emerged.
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1 Introduction

Regions continuously evolve, reshaping their economic

structures from within, an idea central to the Evolutionary

Economic Geography (EEG) theoretical framework (Kogler

et al. 2023a). This perspective builds on two foundational

insights from the Geography of Innovation literature (Feld-

man and Kogler 2010): innovation is geographically con-

centrated (Feldman 1994, 1999), and knowledge flows are

spatially localised (Bottazzi and Peri 2003; Jaffe et al. 1993;

Maurseth and Verspagen 2002; Soon and Storper 2008).

Knowledge is widely considered an important input for

innovation and growth, and in many cases, regional per-

formance is shaped by the type and quantity of knowledge

generated locally. Close interactions among regional actors

foster not only knowledge diffusion but also exposure to

diverse perspectives that fuel creativity (Cowan and Jonard

2004). The seminal contributions by Gertler (1995, 2003)

emphasise that much of the spatial stickiness of valuable

knowledge can be attributed to its tacit nature. Essentially,

it is tacit knowledge, deeply embedded in people and place

and reliant on face-to-face interaction, and thus particu-

larly difficult to transfer across space, which creates per-

sistent barriers to knowledge flows. Consequently, knowl-

edge accumulation unfolds unevenly over space and time

due to regional unique histories of resource use, industrial

development, institutional structures, and production sys-

tems (Rigby and Essletzbichler 1997; Saxenian 1994; Storper

1997). It is then those regional knowledge production and
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utilisation trajectories that give rise to specialised techno-

industrial clusters, where long-standing capabilities and

skills reinforce path dependency and institutional inertia in

knowledge production (Asheim and Gertler 2006).

Investigations into regional development trajectories

indeed find that places tend to expand and diversify into

economic activities that are closely aligned to their pre-

existing local capabilities (Boschma et al. 2015, 2017; Kogler

2015a). This path-dependent logic implies that there are

potential opportunities for regional economies to branch

out into closely related knowledge domains that drive spe-

cific capabilities, but less so in very distant ones (Kogler

2017). Thus, long-term investigations into the underpinnings

that determine structural change in patterns of regional

knowledge production, which by extension define compet-

itive advantages vis-à-vis other localities, are important to

understand the mechanisms behind these structural trans-

formations along with anticipated future sustainability and

growth prospects.

Following this call, and building on the regional

‘knowledge space’ methodology by Kogler et al. (2013, 2017),

which employs earlier proposed measures of knowledge

proximity from patent data proposed by Engelsman and

van Raan (1994), numerous empirical studies have shown

a strong positive correlation between technological relat-

edness and regional knowledge development, as reflected

in patterns of specialisation and diversification (Antonietti

andMontresor 2021; Boschma et al. 2015; Feldman et al. 2015;

Kogler et al. 2017; Rigby 2015; Tanner 2014). In these stud-

ies, patents are treated as proxies for knowledge produc-

tion and resulting innovative outputs, and in general many

studies have utilised patent data as a device to indicate

main properties and trends of industrial or governmental

research and development (R&D) activities (Acs et al. 2002).

Accordingly, the use of patent data was also approved by

studies regarding regional technological domains: it enables

to represent regional technological competences, demon-

strate knowledge recombinant process and change, illus-

trate patterns of geographical concentration, and indicate

intangible assets of regions or organisations (Belenzon and

Schankerman 2013; Breschi et al. 2003).

While patent data is widely perceived as a reliable

proxy for regional knowledge production, itmight only offer

a partial view (Engelsman and van Raan 1994). Not all inno-

vations are patented, and patents typically reflect only the

most successful technological outcomes, and therefore only

reveal the upper end of the knowledge landscape. Further-

more, the propensity to patent varies greatly among indus-

try sectors, and once accounted for patent metrics might

be more reflective of regional patterns of specialisation

rather than being directly indicative of general innovative

performance (Kogler 2015b). As a complement, publication

data captures a broader range of scientific activity, doc-

umenting the state-of-the-art in research and the foun-

dational stages of innovation (Acs et al. 2002; Fleming

and Sorenson 2004). It is widely accepted that scientific

research has an essential role in technological innova-

tion and economic growth. Scientific knowledge provides

fundamental understanding, and the cumulative knowl-

edge accelerates practical applications for technological

advancements and growth (Ahmadpoor and Jones 2017). It

is therefore worthwhile to investigate the scientific knowl-

edge landscape since it provides a foundation for ulti-

mate technological applications. Indeed, according to Jef-

ferson et al. (2018), a large magnitude of patents includes

references to scientific publications in their description of

prior art, and that the number of citations to the scientific

literature found in patents has grown dramatically over

time.

A related line of argument emphasises that economic

agents beyond firms, such as universities and research

institutions, play a substantial role in producing econom-

ically valuable knowledge and facilitating spillovers, yet

their contributions are often underrepresented in patent-

based analyses. For instance, Belenzon and Schankerman

(2013) estimate that only about 10 % of scientific find-

ings at universities are patented. Given the importance,

but often unobserved scale, of knowledge transfer from

science to technology (Jefferson et al. 2018; Patelli et al.

2017), it is highly likely that regional capabilities are built

on a much broader spectrum of knowledge foundations

than is typically captured by patent-focused investigations

(Kogler et al. 2024). In this context, scientific publications

can provide a more accurate reflection of underlying local-

global learning dynamics and knowledge transfer processes

than patent-based co-inventor networks, which tend to be

largely intra-organisational and mainly driven by profit

motives (Wanzenböck et al. 2025). This distinction is crucial,

as regional knowledge production ecosystems operate at the

interface of local and global influences, often shaped by

internationally connected scientific and professional com-

munities (Bathelt and Cantwell 2025; Wolfe and Gertler

2004). Therefore, the extensive literature on the geography

of knowledge flows and innovation spillovers, primarily

grounded in patent data (Buzard et al. 2020; Murata et al.

2014), may significantly underestimate the indirect yet piv-

otal role of globally accessed scientific knowledge in driving

regional knowledge diversification.

To address this significant research gap, the objec-

tive of this study is to extent the knowledge relatedness
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framework in accordance with EEG theoretical insights to

investigate the underlying processes that drive structural

change in scientific knowledge production patterns across

European regional economies. At the onset, the most fun-

damental research question to be answered is if regional

scientific knowledge follows the same principles that drive

technical knowledge development trajectories: Do advance-

ments in existing, and the emergence of new, regional sci-

entific capabilities mainly result from the recombination

of knowledge that is already present in a place? Follow-

ing prior research efforts, the study introduces the con-

cept of the “Science Space”, which is a research field co-

occurrence representation of regional scientific knowledge

based on publication data. This methodological approach

enables us to model the evolution of regional scientific

knowledge spaces, and in parallel to evaluate the over-

all spatial configuration of the state-of-the-art in science.

Thus, the spatial configuration of a region’s existing knowl-

edge base along with the dynamics resulting in patterns of

specialisation/diversification over time will be explored in

detail.

For this purpose, data from the Web of Science (WoS)

and the European Regional Database (ERD), covering the

scientific publications and regional indicators of the Euro-

pean regions from 2000 to 2017 will be utilised. To the

best of our knowledge, this study is the first of a kind

that employs a large-scale geo-coded publication database

to explore how regional scientific knowledge production

processes unfold. The analysis proceeds along two steps:

first, the Science Space will be constructed to highlight

changes in the overall structure of scientific knowledge

production trajectories, and second a an econometric anal-

ysis that features a scientific knowledge-entry model will

be conducted, in order to determine if new regional sci-

entific capabilities are indeed related to the existing sci-

entific base as it would be the case with regional pat-

terns of technical knowledge evolution. Finally, we will also

engage in sensitivity exercisewhere the basemodel is tested

and compared across short- and long-term periods, as well

as between less-specialised and least-specialised science

subjects.

This study is organised as follows. Section 2 highlights

the relevant literature that speaks to the concept of knowl-

edge spaces and how these can be utilised to determine

regional relatedness and knowledge entry patterns. The

following section introduces the data and methodology in

more detail, while the subsequent section presents the

results along with a discussion. Section 5 offers some con-

cluding remarks.

2 Knowledge in space – conceptual

and empirical insights towards

the mapping of scientific

knowledge

2.1 The Science Space

Science Space refers to a networked representation of sci-

entific knowledge in which research fields are nodes and

the links between them capture patterns of relatedness

inferred from co-occurrence across publications. Mapping

Science Space enables the analysis of how regional scien-

tific capabilities emerge and evolve over time and across

places, thereby extending the Evolutionary Economic Geog-

raphy (EEG) perspective, which emphasises path depen-

dency conditioned by local stocks of knowledge and tech-

nology (Kogler 2015a; Kogler et al. 2023a). Essentially, pre-

existing knowledge sets, experiences, and capabilities estab-

lished in particular places, together with the localised

nature of tacit and institutionally embedded knowledge

(Gertler 2004), shape current configurations and future

pathways of regional knowledge trajectories (Feldman and

Kogler 2010).

An intuitiveway to test these theoretical underpinnings

and trace the evolution of knowledge in space and over time

is the ‘knowledge space’ methodology (Kogler et al. 2013).

This framework offers a clear approach for tracking struc-

tural changes in innovation over time (Kogler et al. 2017;

Whittle and Kogler 2020). Built on patent data, it leverages

the co-occurrence of patent classification codes to map the

structure of technological activity (Engelsman and vanRaan

1994). By identifying technologies that frequently appear

together in patents, the approach captures technological

relatedness, placing closely related technologies near each

other in the knowledge space. Because patents are often

assigned to multiple classes, they provide strong evidence

of links between those technologies. In addition, patent doc-

uments are legally standardised, detailed, and offer relevant

geo-references (via inventor and assignee addresses), while

their patent classification systems enable longitudinal anal-

yses of the evolution of technical knowledge production (Joo

and Kim 2010).

The networked representation of knowledge domains,

globally and at specific localities, rests on the principle of

relatedness (Hidalgo et al. 2018). Knowledge domains that

require similar cognitive capabilities, skills, and inputs, or

that complement one another, are located close together
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in the knowledge space (Boschma 2017; Kogler 2017). Over

the longer term, novelty in the space often arises from the

recombination of existing, frequently locally present, tech-

nological capabilities, i.e., combining knowledge domains

that have not previously appeared together in a single

invention (Fleming and Sorenson 2001; Strumsky and Lobo

2015; Weitzman 1998).

Earlymeasurements of technological relatedness based

on patent class co-occurrence were used to assess firms’

competencies to detect techno-economic paradigm changes

(Breschi et al. 2003, Engelsman and van Raan 1994). Sub-

sequent work combined the relatedness and evolution-

ary perspectives to analyse structural change in observed

spatial patterns of specialisation and diversification along

dimensions such products, technologies, and skills (Whittle

and Kogler 2020).1 Initial national-level attempts by Haus-

mann and Klinger (2007) and Hidalgo et al. (2007) used

international trade data to measure product relatedness

through co-export patterns, introducing the product spaces

as a network-based representation in which links reflect

the frequency with which product categories co-occur in

a country’s exports. In similar spirit at the subnational

level, Neffke et al. (2011) derived industry relatedness from

the co-occurrence of products in manufacturing of Swedish

regions (1969–2002), while Boschma et al. (2013) analysed

the industrial dynamics of Spanish regions (1988 and 2008)

based on product relatedness.

Following the same analytical framework, many stud-

ies have investigated technological relatedness in regional

economic structures by identifying knowledge/technology

spaces from patent data. Kogler et al. (2013) used patent

co-classification to measure relatedness between technolo-

gies and to examine the evolution of the US knowledge

space, both nationally and for metropolitan areas, dur-

ing 1975–2005. Boschma et al. (2015) showed entry and

exit dynamics of technological knowledge in US cities for

1981–2010. For Europe, the evolution of regional knowledge

spaces has been traced by Balland et al. (2019), Kim et al.

(2024), and Kogler et al. (2017), linking long-term technolog-

ical relatedness to regional diversification patterns and the

Smart Specialisation Strategy (Foray 2015).

By contrast, relatively few attempts have mapped the

evolution of scientific knowledge using scientific publica-

tion databases. Until recently, a limiting factor was the

lack of large-scale publication databases with precise spa-

tial information on the origin of scientific work. While

1 For a detailed overview of the relevant recent literature concerning

the relatedness framework, including details on associated measure-

ments and empirical evidence, see Whittle and Kogler (2020).

patent data reflects inventive technological developments,

publication data represents the state-of-the-art in science

(Engelsman and van Raan 1994). Mapping regional knowl-

edge spaces based on publication field co-occurrence, i.e.,

Science Space, would therefore allow analysis of scientific

knowledge dynamics in a spatial context, analogous to prior

work on technological knowledge. Compared with the tech-

nological focus, mapping scientific knowledge has been less

common, partly because large-scale publication databases

with precise spatial information were less accessible until

recently. While patent data reflects inventive technologi-

cal developments, publication data represents the evolv-

ing state of the art in science (Engelsman and van Raan

1994). A Science Space, constructed from publication field

co-occurrence, therefore provides an analogue to technol-

ogy spaces for studying the spatial dynamics of scientific

knowledge.

The mapping of publication data has been explored in

a few studies. Tijssen and Van Raan (1994) highlight sev-

eral avenues for mapping scientific knowledge: co-citation

analysis between articles and journals, co-word analysis

(co-occurrence of keywords), and co-classification analysis.

While co-citation analysis can reveal clusters of research

specialties, it is prone to time lags inherent in citation prac-

tices and may overlook relevant non-cited publications. Co-

word analysis indicates networks of conceptual and intel-

lectual content but can suffer from inconsistencies over

time. By contrast, co-classification analysis appears advan-

tageous, as assigned classification systems are well defined

and consistent in meaning across the scientific domain

over time. In line with these methodological considera-

tions,more recent efforts havemapped scientific knowledge

using large-scale publication databases, most commonly by

constructing maps from co-citation links between articles

(Börner et al. 2012) or journals (Leydesdorff and Rafols

2009). Such co-citation maps aim to represent knowledge

flows between academic fields. As an alternative to flow-

based science maps, Guevara et al. (2016) introduced a

‘research map’ that traces scholars’ career trajectories to

predict future research output of countries, organisations,

and individuals. In these representations, nodes denote

research fields and links indicate the likelihood of collabo-

ration between fields, resembling measures of skill related-

ness derived from labour flows and mobility among indus-

tries in knowledge space to illustrate regional industrial

evolution (Neffke and Henning 2013). Although spatial ele-

ments are embedded in these prior attempts to map the

Science Space, a comprehensive regional analysis of the evo-

lutionary paths of scientific knowledge production across

localities andover extendedperiods, usingwhat appears the
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most reasonable methodological approach, namely relat-

edness measures based on the co-occurrence of research

fields, remains largely absent. The Science Space method

addresses this gap directly.

2.2 Science relatedness and knowledge
entry

Knowledge exchange depends on shared frameworks

of understanding, yet the transfer of knowledge, espe-

cially complex and tacit forms (Gertler 2003), is con-

strained by cognitive, social, and geographical distances

between individuals and organisations (Boschma 2005;

Nooteboom 2000). Consequently, knowledge flows more

readily between similar or related domains. Because knowl-

edge flows and spillovers are localised, places develop dis-

tinctive stocks of knowledge over time, which in turn shape

their future evolutionary trajectories (Kogler et al. 2023a).

This path-dependent logic implies that branching into new

domains is most viable when those domains are closely

related to a region’s existing portfolio (Kogler 2015a; Martin

and Sunley 2006, 2022).

The regional diversification literature emphasises the

benefits of expanding into emerging, complex industries

while recognising path dependence. Concepts such as

regional branching (Boschma and Frenken 2011), path cre-

ation (MacKinnon et al. 2019), and path development (Gril-

litsch et al. 2018; Hassink et al. 2019) all highlight that

new competencies are shaped by pre-existing capabili-

ties; a finding supported by extensive empirical evidence

(Boschma et al. 2015; Essletzbichler 2015; Kogler et al. 2017).

In short, regional branching tends to occur where existing

industries share technological relatedness with emerging

sectors, rooted in common or complementary knowledge

bases (Breschi et al. 2003; Frenken and Boschma 2007; Tan-

ner 2014).

The relatedness–entry relationship was first shown at

the national level by Hidalgo et al. (2007), who introduced

the product space, a network of product relatedness based

on co-export patterns, demonstrating that countries expand

exports around products in which they already have com-

parative advantage. Hausmann and Klinger (2007) simi-

larly found that nations are more likely to develop new

export products related to their existing capabilities, and

that greater variety and density of related products expand

growth opportunities. Regional extensions by Neffke et al.

(2011) showed that technological relatedness between man-

ufacturing industries predicts the emergence of new sectors

in Swedish regions. Consistent findings appear for Spanish

regions (Boschma et al. 2013) and US metropolitan areas

(Essletzbichler 2015), confirming that higher relatedness

raises the probability of industry entry. Patent-based studies

reinforce this view: Rigby (2015) showed US metros diver-

sify into technologies related to existing strengths, while

Boschma et al. (2015) quantified that, on average, a 10 %

increase in relatedness raises the likelihood of technology

entry by 30 % at the city level. European case studies of

emerging sectors, e.g., fuel cells (Tanner 2014) and nanotech-

nology (Colombelli et al. 2014), corroborate these patterns.

The broader principle of relatedness (Hidalgo et al.

2018), coupled with the advantages of knowledge diversi-

fication, aligns with Smart Specialisation Strategy initia-

tives (Kim et al. 2024). Regional competitiveness stems from

leveraging intrinsic knowledge assets to enter related, high-

value domains (Balland et al. 2019; European Commission

2014). Simply adding new knowledge domains is insuffi-

cient; what matters is how well new capabilities integrate

with existing structures to unlock broader benefits. Because

regional knowledge spaces reflect unique evolutionary tra-

jectories, the entry potential of any given domain varies by

place, making a region–knowledge–time level of analysis

essential for identifying optimal branching opportunities

(Kogler et al. 2022, 2023b).

In summary, across products, industries, and technolo-

gies, the probability that new activity enters a region is

positively conditioned by relatedness to existing capabil-

ities. Extending this logic, we expect science (field) relat-

edness to similarly influence a region’s ability to develop

new scientific specialisations, an expectation we test in the

subsequent sections.

3 Data and methodology

3.1 Data

In this study, the WoS and ERD databases are employed.2

First, regional scientific knowledge measures are obtained

from theWoS database covering the 2000 to 2017 timeframe

and grouped into 3-year time periods (2000–2002,

2003–2005, 2006–2008, 2009–2011, 2012–2014, 2015–2017).

The WoS provides information of publications including

publication year, title, journal title, author, institution,

institution’s address, subheading, subject, funding,

2 Restrictions apply to the publication dataset used in this paper.

The Web of Science data is owned by Clarivate Analytics. To

obtain the bibliometric data in the same manner as authors

(i.e., by purchasing them), readers can contact Clarivate Analytics

at https://clarivate.com/webofsciencegroup/solutions/web-of-science/

contact-us/in order to gain access to the following Web of Science

bibliographic databases: ‘1980–2017 – Annual Science Citation Index

Expanded and Proceedings-Science Combined’.

https://clarivate.com/webofsciencegroup/solutions/web-of-science/contact-us/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/contact-us/
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Figure 1: Number of science subjects and publications by region.

citation, etc. It covers five main research areas (labelled

“subheading”): Arts & Humanities, Life Sciences &

Biomedicine, Physical Sciences, Social Sciences, and

Technology. Among them, our sample is restricted to

publications that fall into the category of Life Sciences &

Biomedicine, Physical Sciences, and Technology which are

related to technological or industrial activities. Further, the

WoS database also provides a lower-tier classification of

science (labelled “subject”), which includes 265 disciplines.

Utilising this information, the Science Space is then

constructed to discuss how regional science is structured

and has changed over time.

We restrict our scope to scientific activities in European

regions; in other words, publications that are published

from institutions located in European regions are selected.

Following the retrieval of institutional address’ information,

additional data processing tasks were required to correct

for errors and duplications, e.g., multiple database entries

that referred to a single institution, and to supplement

the data with geo-location information. All data process-

ing and geo-coding tasks were completed in data prepa-

ration stage, and subsequently all publications originating

from European regions could be filtered accordingly. For

the spatial definition of regions, we apply the metropoli-

tan and non-metropolitan (NUTS3) classification that is

based on EUROSTAT’s Urban Audit’s Functional Urban

Area.3 In alignment with the established regional classifica-

tion and time periods schema in our final dataset, regional-

level economic variables were retrieved from ERD.4 Here,

we took the summation of the values of NUTS3 regions that

belong to the metropolitan regions, and then employed the

average values of the 3-year periods that are used.

Our final sample includes 6,977,525 publications from

228 science subjects, originating from 1,216 European

regions including 274 metropolitan and 942 non-metro-

politan regions across 35 countries.5 Figure 1 illustrates the

3 https://ec.europa.eu/eurostat/statistics-explained/

index.php?title=Glossary:Metro_regions.
4 The European Regional Database (ERD) was a service provided

by Cambridge Econometrics that contains information on regional

employment, level of output, and population; see: https://www

.camecon.com/european-regional-data/. More recent data is avail-

able at the Annual Regional Database of the European Commission

(ARDECO) website: https://urban.jrc.ec.europa.eu/?lng=en.
5 The list of countries whose regions are the focus of the present

analysis includes: AT – Austria; BE – Belgium; BG – Bulgaria; CH

– Switzerland; CY – Cyprus; CZ – Czech Republic; DE – Germany; DK

– Denmark; EE – Estonia; EL – Greece; ES – Spain; FI – Finland; FR

– France; HR – Croatia; HU – Hungary; IE – Ireland; IS – Iceland;

IT – Italy; LI – Liechtenstein; LT – Lithuania; LU – Luxembourg; LV

– Latvia; ME – Montenegro; MK – North Macedonia; MT – Malta;

NL – Netherlands; NO – Norway; PL – Poland; PT – Portugal; RO

– Romania; SE – Sweden; SI – Slovenia; SK – Slovakia; TR – Türkiye

(Turkey); and the UK – United Kingdom.

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Metro_regions
https://www.camecon.com/european-regional-data/
https://www.camecon.com/european-regional-data/
https://urban.jrc.ec.europa.eu/?lng=en
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number of science subjects and number of publications

across European regions. Each dot indicates a region with

colour difference differentiating metro (black) and non-

metro (grey) regions. As expected, we can locate metropoli-

tan regions primarily in the top-right corner of the graph,

which indicates that they have greater numbers of pub-

lications and cover more diverse science subjects com-

pared with non-metropolitan regions. On average across

each of the two types of regions, metropolitan regions pro-

duce 31,818 publications in 198 science subjects, while non-

metropolitan regions on average produce only 2,878 publi-

cations in 115 science subjects.

3.2 Science space methodology

Following the concept of regional knowledge spaces con-

structed with patent information (Kogler et al. 2013; Rigby

2015; Vlčková et al. 2018; Whittle 2019), this study introduces

regional Science Spaces based on publication and science

classification information. Utilising our dataset that con-

tains the entire list of publications published by institu-

tions located in European regions, the pan-European Sci-

ence Space can be constructed. As a first step, a pair matrix

presenting a combination of subjects of a publication is

constructed. Here, the weight of each combination equals

the number of articles published in a certain period and

subject (or science field). For instance, if a publication con-

tains three science subjects, i.e., subject A, B, and C, then

the pair set has a total three rows (A-B, A-C, B–C) with all

having an equal weight of 1. Once the processes of calculat-

ing those pair sets and associated weights was completed, it

was thenpossible to construct the subject co-occurrencenet-

work by creating the nodes and edges based on subject co-

occurrence pairs and number of publications. Considering

the relationship between subjects but also the duplication of

subject pairs, undirected and weighted network measures

are employed.

3.3 Econometric specifications

3.3.1 Research model

The objective of this study is to explore the effect of science

relatedness on the potential entry of new regional scien-

tific knowledge with comparative advantages. The research

model is specified in equation (1) as follows:

Entryr,i,t = RelDenr,i,t−1 + RegEconr,i,t−1

+ RegKnowr,i,t−1 + 𝜑r + 𝜌i + 𝛼t + 𝜀r,i,t (1)

where r, i, and t identify region, science field, and time

period, respectively, RegEcon is a matrix of regional

economic variables, including total employment (Emp),

non-market service employment intensity (NMS), and GDP

per capita (GDP). RegKnow indicates a matrix of regional

knowledge variables, including the revealed comparative

advantage of science (RSA), knowledge complexity (KC),

scientific coherence (SC), and the number of publications

(Pub). 𝜑, 𝜌, 𝛼 are region, science field, and period fixed

effects. All independent variables are lagged by one period

to avoid potential endogeneity.

The dependent variable of our model is the knowledge

entry, in other words, the entry into a new specialised sci-

entific activity in a region. The first step is to calculate the

revealed comparative advantage in a science field in each

region andperiod. Following previous approaches thatmea-

sured the revealed technological advantage (RTA) of regions

via patent data (Balland et al. 2019, Boschma et al. 2015,

Kogler et al. 2013, Whittle 2019), a new measure labelled

Revealed Scientific Advantage (RSA) that utilises region-

alised publication data is adopted (Equation (2)).

RSAr,i,t =
publicationr,t(i)∕Σipublicationr,t(i)

Σrpublicationr,t(i)∕ΣrΣipublicationr,t(i)
(2)

RSA tells us whether a region r has a comparative

advantage in science i compared to other regions based

on a threshold of ≥1. Precisely, an RSA equal and above

one means that a region has an equal or greater share of

knowledge specialisation in a certain scientific field than the

average of all other regions in aggregate. Ceteris paribus, in

the cases where the value is below that threshold, a region

would be less specialised than the collective average. To

operationalise the proposed analysis that follows a binary of

RSA values is produced, i.e., one where RSA values are ≥ 1,

and 0 when RSA values are < 1. Subsequently, RSA values

between two consecutive time periods are compared to

determine whether an entry event has occurred. In other

words, if there has been a switch from RSA < 1 in one time

period to RSA ≥ 1 in the subsequent period, an entry event

has occurred. Figure 2 provides an example and illustrates

how science subject #3 in Region A and science subject #2

in Region B are the only two cases where an entry event is

observed.

Related density, our key variable, refers to the embed-

dedness of a science producedwithin a region to its core sci-

ence subjects. Following Balland et al. (2019), Boschma et al.

(2015), and Hidalgo et al. (2007), the relatedness density of

science i in region r at time t is measured by dividing the

summation of scientific relatedness (∅ijt) of science i to all
other sciences j with RSA in region r to the summation of

all other sciences j in all other regions (Equation (3)). Sci-

entific relatedness is measured based on co-occurrence of
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Figure 2: Entry into a new regional science specialisation (transition from RSA< 1 to RSA ≥ 1). Note: Values “0” and “1” refer to a science subject’s RSA;

RSA< 1= “0” and RSA ≥ 1= “1”, respectively. Entry into a newly acquired regional science subject specialisation is indicated by= “1” in lower panel.

subjects in publications; in other words, measuring the fre-

quency of the two subjects appearing in the same publica-

tion (Equation (4)). The greater value of relatedness density

indicates that a science is closely linked to the sciences with

RSA in a region, and this can be interpreted as a potential

of such a science to be developed or applied with other

sciences.

RelDeni,r,t =
∑

j∈r, j≠i∅i j
∑

j≠i∅i j
∗100 (3)

∅i j =
Ni j√
N2
i
∗N2

j

(4)

Two types of control variables are included: regional

economic and knowledge variables. Regional economic

variables, all obtained from ERD, include Emp, NMS, GDP.

To control the level of regional science activity, regional

knowledge variables of RSA, KC, SC, and Pub are included.

First, KC is captured by a knowledge complexity index based

on an extended bimodal network model by Hidalgo and

Hausmann (2009), and further deployed by Balland and

Rigby (2017). From the original method, patent classifica-

tions and the unit of regions are converted into publication

classifications and the European NUTS level. KC reveals the

degree of whether local knowledge developed in a region to

also be reproduced in other regions. Regarding the spatial

unevenness of regional knowledge, KC allows us to capture

the regional difference relate to the quality aspect of local

knowledge (Balland and Rigby 2017; Whittle 2019). Next, SC

is also included as a control variable. The concept of coher-

ence is adopted to scientific publication data to measure the

degree to what extent different subjects of publications are

complementary to an existing scientific knowledge base of

a region (Rocchetta and Mina 2019). In case of technological

coherence, when measured by patent, it has been found

to favour knowledge spillovers (Frenken et al. 2007) and

adaptive resilience of regional economies (Rocchetta and

Mina 2019). In a similar sense, we expect that SC controls the

region’s scientific capability of producing new publications.

Lastly, number of publications (Pub) is included to control

the size effects of publications.

List of variables and descriptive statistics are repre-

sented in Table 1 and 2.

3.3.2 Estimation strategies

For econometric estimation, three different estimation

strategies are used to confirm robustness of our finding.

First, pooled OLS estimation including different combina-

tions of variable sets is used without and with fixed effects

of region, science field, and period. This allows us to observe

whether the coefficients of our key variable change by the

Table 1: Variables.

Variable Description

Entry Entry of science i in region j at period t

RelDen Relatedness density of science i in region j at period t

Emp Total employment in region j at period t

NMS Non-market service employment intensity in region j at

period t

GDP GDP per capita in region j at period t

RSA Revealed comparative advantage of science i in region j at

period t

KC Knowledge complexity in region j at period t

SC Scientific coherence in region j at period t

Pub Number of publications of science i in region j at period t

Note: NMS includes NACE Rev.2 classification, O-Q (Public administration,

defence, education, human health, and social work activities) and R–U

(Arts, entertainment, and recreation; other service activities; activities of

household and extra-territorial organizations and bodies).
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Table 2: Descriptive statistics.

RelDen Emp NMS GDP RSA KC SC Pub

Emp 0.364

NMS 0.334 0.002

GDP 0.404 0.189 0.460

RSA 0.011 −0.004 0.003 0.004

KC −0.047 −0.045 0.190 0.199 −0.002
SC 0.111 0.040 0.015 0.035 −0.011 −0.135
Pub 0.140 0.264 0.036 0.090 0.006 0.003 0.007

Mean 21.5 196.3 0.29 0.02 1.15 0.00 16.69 2.31

SD 12.2 355.1 0.08 0.01 13.1 0.01 2.15 22.8

existence of other control variables. As a second part of

estimation, generalised linear model (GLM) estimation is

conducted. Since our dependent variable, entry, is dichoto-

mous, logit and probit model with GLM is used. In addi-

tion, regional disaggregation is considered to checkwhether

our result holds for both large and small regions. Subsam-

ples are divided into metropolitan and non-metropolitan

regions by using metropolitan dummy. Lastly, two differ-

ent cases of RSA values are estimated to check whether

different levels of RSA show consistent results. On the one

hand very low RSA values (<0.7) are considered as an

indicator of least specialised science subjects in a region,

while on the other hand RSA values ranging from 0.7 to

<1 are employed to signify science field that are somewhat

close to a level of specialisation. Since the probability of

knowledge entry is expected to be higher when an RSA

of a region’s science is close to 1, the impact of related-

ness density may differ depending on the RSA value. Fur-

ther, these two cases are compared in short-term and long-

term scenarios which follows the work of Perruchas et al.

(2020). In sum, short-termeffect is testedwith the subsample

where RSA is very low or close to specialisation in the pre-

vious period
(
RSAr,i,t−1 < 0.7 or 0.7 ≤ RSAr,i,t−1 < 1

)
, and

long-term effect is tested with the subsample where RSA is

again very low or almost at the level of specialisation in the

first period of the sample (RSAr,i,t < 0.7 or 0.7 ≤ RSAr,i,t < 1

where t = 2000–2003).

4 Results and discussion

The study set out with the objective to investigate if the evo-

lution of regional scientific knowledge production capabili-

ties follows the same principles that drive technical knowl-

edge development trajectories that have been highlighted in

the relevant literature (Boschma et al. 2015; Colombelli et al.

2014; Kogler et al. 2013, 2017; Rigby 2015). Specifically, the

critical research question in this regard is: Do advance-

ments in existing, and the emergence of new, regional sci-

entific capabilities mainly result from the recombination

of knowledge that is already present at a place? The sum-

mary of results and accompanied discussion considering

this objective follows in turn.

4.1 The evolution of regional Science Spaces
in the Europe

In this section, the evolution of the overall European Sci-

ence Space is highlighted and discussed. Initially, and by

means of a network visualisation, we compare the Euro-

pean Science Space in period 1 (2000–2002) with that in

period 6 (2015–2017); see Figures 3 and 4. The node sizes

are determined by their respective eigenvector centrality

values. The eigenvector centrality value indicates how well

a certain node is connected, and by extension shows how

“important” a node, i.e., science subject, is in the overall

Science Space. Thus, a subject with a larger node size com-

pared to other nodes is indicative of its relative impor-

tance in the entire science network. For illustrative pur-

poses, and to reduce confusion and emphasise key findings,

only 40 % of the two overall networks are shown in both

figures. The node colours represent the science subhead-

ings (i.e., the clustering of subjects): pink = Life Sciences

& Biomedicine (LSB), light green = Technology (TECH),

orange= Physical Sciences (PS), blue= Social Sciences (SS),

and dark-green = Arts & Humanities (AH).6 Although or

sample does not focus on publications in the Social Sciences

and Art & Humanities science domains per se, there are

few nodes from those research areas that appear in the two

networks due to multidisciplinary science outputs.

In the first observed period (2000–2002), a fairly clear

separation between our three main subjects and their asso-

ciated subheadings can be observed. Although PS and TECH

associated subjects are perhaps more intermingled with

each other compared to LSB subjects that are quite iso-

lated on their own in the left section of Figure 3. Thus,

most of the subjects belonging to the same subheading

6 The Web of Science provides a list of subject classifications for

all databases. Most subjects are assigned to a subheading category,

whereas some subjects needed to be assigned to one for the purpose of

presentation in Figures 3 and 4. A full list of all subjects and assigned

subheadings that are utilized in the analysis that follows is featured

in Table A1 in the Appendix. For further information, please refer to:

https://support.clarivate.com/ScientificandAcademicResearch/s/article/

Web-of-Science-List-of-Subject-Classifications-for-All-

Databases?language=en_US.

https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-List-of-Subject-Classifications-for-All-Databases?language=en_US
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Figure 3: The european science space in 2000–2002. Note: The nodes represent the subjects, and their respective colour refers to the corresponding

subheading. The size of the node was determined by the eigenvector centrality value. Percentage values in the legend correspond to the share of each

science subheading in the entire network.

are located closely to each other, which indicates a cer-

tain scientific homogeneity in scientific knowledge produc-

tion where most scientific outputs drew on inputs from

within their core research area. In contrast, in the last

observed period (2015–2017) a much more heterogeneous

picture emerges where subheadings belonging to the same

research subject area do not necessarily form clearly dis-

tinguishable clusters within the overall network anymore.

It is plausible to suspect that the observed structural differ-

ences are the result of increasing inter-disciplinary research

efforts, i.e., in the later period scientific outputs are much

more likely to recombine knowledge from several subjects

belonging to different rather than the same research area.

Furthermore, and again in the latter period (Figure 4),

we observe an increasing number of nodes that repre-

sent SS and AH subjects, which provides additional sup-

port for an increasing shift towards, and growth of, inter-

disciplinary research outputs across the entire European

Science Space. In both periods, LSB turns out to be the

most prevailing science subjects in the European regions

as it includes not only many nodes but also subjects that

are with greater node size. LSB associated nodes represent

43.9 % 42.8 % of all subheadings that are represented in

the first and last observed period, respectively. This aligns

with the observations from knowledge spaces based on

patents that showed the strong presence and clustering

of chemistry and biology associated technical knowledge

domains (Kogler et al. 2017). Another observation is the

TECH subheadings, that were alreadymore scattered across

the entire network compared to other subjects in the ini-

tial period, have become very central nodes in the con-

temporary Science Space (Figure 4). Perhaps no surprise

given that TECH related subheadings that represent scien-

tific knowledge production in subjects such as nanotech-

nology or robotics, many of which are considered general

purpose technologies, have been applied to a diverse range

of subjects across the entire science spectrum. Further TECH

related advancements, such as the wide diffusion and appli-

cation of information, communication, and computer sci-

ences, which have become central to knowledge discovery

processes in non-TECH subjects, has further accelerated this

trend.
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Figure 4: The european science space in 2015–2017. Note: The nodes represent the subjects, and their respective colour refers to the corresponding

subheading. The size of the node was determined by the eigenvector centrality value. Percentage values in the legend correspond to the share of each

science subheading in the entire network.

Although insights into the overall evolution of scientific

knowledge production at the pan-European level are very

informative, the relevant follow-up question is then how

this might vary across regional settings that most likely

are characterised by distinct knowledge bases and devel-

opment trajectories (Asheim and Coenen 2005). Considering

this task, Table 3 lists the top 10 scientific knowledge pro-

ducing Europeanmetropolitan regions, determined by their

overall number of publications produced in the 2000–2002

time period. Furthermore, the table also indicates the

most prominent science subject, again in terms of publi-

cation output, in each of these metropolitan regions. At

the onset, it is noticeable that the top science subjects

appear to repeat themselves across these top producing

regions in both time periods. In the 2000–2002 period pub-

lications related to Biochemistry & Molecular Biology are

amongst the most produced ones across these top regions,

whereas in the 2015–2017 period themomentumhad shifted

towards the subjects of “Multidisciplinary Sciences” and

“Astronomy & Astrophysics”. In the context of the earlier

Table 3:Major metropolitan region’s top science subjects.

Region
2000–2002 2015–2017

Science subject Pub Science subject Pub

Paris Biochemistry & molecular biology 4,163 Astronomy & astrophysics 4,945

London Biochemistry & molecular biology 3,481 Multidisciplinary sciences 6,524

Berlin Physics, condensed matter 1,658 Multidisciplinary sciences 2,542

Munich Biochemistry & molecular biology 1,265 Astronomy & astrophysics 3,072

Stokholm Biochemistry & molecular biology 1,249 Multidisciplinary sciences 2,048

Madrid Chemistry, physical 1,217 Multidisciplinary sciences 2,277

Rome Biochemistry & molecular biology 1,114 Astronomy & astrophysics 2,435

Milan Oncology 1,106 Oncology 2,222

Copenhagen Biochemistry & molecular biology 1,072 Multidisciplinary sciences 2,012

Barcelona Biochemistry & molecular biology 792 Multidisciplinary sciences 2,270
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discussion concerning the overall European Science Space,

it should be noted that top science subjects present in

majormetropolitan regions that account for a large share of

the overall scientific knowledge production output strongly

determine the overall observed European Science Space

configuration.

4.2 Summary and discussion of the insights
derived from the regression analysis

In this section, the econometric results of the impact of

relatedness density on the scientific changes in European

regions from 2000 to 2017 are discussed. Table 4 summarises

the estimation results frommultiple regression models that

incorporate different sets of control variables. Column (1)

in Table 4 presents the baseline model including only the

key independent variable, RelDen. In turn, column (2) adds

regional economic controls, column (3) then also includes

regional knowledge variables, while column (4) is the full

model that incorporates both socio-economic and regional

science variables. Finally, column (5) reports the most strin-

gent specification by employing a three-way fixed effects

model that controls for all time-invariant regional, techno-

logical, and period-specific effects.

Across all model specifications, relatedness density

(RelDen) consistently reports a positive and statistically

significant coefficient. This robust finding indicates that sci-

ence subjects embedded in a denser network of related

fields are more likely to undergo scientific transfor-

mation towards specialisation. In other words, when a

scientific field is surrounded by more related and scientif-

ically proximate disciplines within a region, it can benefit

from knowledge spillovers and potential knowledge recom-

bination processes that facilitate innovation and a struc-

tural restructuring in the overall scientific activity present

at a place. This result is consistent with the EEG literature

highlighted previously, which also emphasises the role of

relatedness in fostering regional diversification and techno-

logical upgrading.

Turning to the control variables,most coefficients show

consistent signs across specifications, with a few notable

exceptions. In themodel excluding regional knowledge vari-

ables (column 2), total employment (EMP), non-market ser-

vice employment intensity (NMS), andGDP, all display nega-

tive coefficients. This may initially appear counterintuitive,

as one might expect regions with larger labour markets

to foster more emergence on scientific activity. However,

this result likely reflects a saturation or maturity effect:

highly developed regions may already have fully formed

scientific systems with limited room for further diversifi-

cation. In contrast, smaller or less-developed regions may

still possess untapped potential for scientific restructuring

and thus exhibit higher rates of change towards scientific

specialisation. A similar interpretation applies to the neg-

ative coefficient of number of publications (Pub). Regions

with higher existing publication output tend to be mature

in terms of their scientific development. These regions are

likely to have already consolidated their positions in key

scientific subjects, reducing the opportunity for further spe-

cialisation into new or emerging areas.

Table 4: Emergence of new specialised science in European regions.

(1) (2) (3) (4) (5)

RelDen 0.004∗∗∗ (0.00004) 0.004∗∗∗ (0.0001) 0.003∗∗∗ (0.0005) 0.003∗∗∗ (0.0001) 0.009∗∗∗ (0.0001)

Emp −0.0000∗∗∗ (0.00000) −0.0000∗∗∗ (0.00000) 0.00000 (0.00003)

NMS −0.010 (0.008) 0.020∗∗∗ (0.008) −0.004 (0.038)
GDP −0.269∗∗∗ (0.057) −0.203∗∗∗ (0.057) 0.683∗ (0.411)

RSA 0.324∗∗∗ (0.003) 0.316∗∗∗ (0.004) 0.294∗∗∗ (0.004)

KC 0.572∗∗∗ (0.048) 0.657∗∗∗ (0.051) 0.044 (0.074)

SC −0.001∗∗∗ (0.0002) −0.001∗∗∗ (0.0002) −0.0005∗∗ (0.0002)
Pub −0.064∗∗∗ (0.001) −0.061∗∗∗ (0.001) −0.062∗∗∗ (0.001)
Constant 0.018∗∗∗ (0.001) 0.022∗∗∗ (0.002) 0.036∗∗∗ (0.003) 0.045∗∗∗ (0.004) −0.196∗∗∗ (0.029)
Region FE No No No No Yes

Science FE No No No No Yes

Period FE No No No No Yes

R 0.03 0.03 0.06 0.05 0.10

Adjusted R 0.03 0.03 0.06 0.05 0.07

Observation 352,153 309,526 352,153 309,526 309,526

Notes: The dependent variable entry= 1 if a given technology enters the technological portfolio of a given region during the corresponding 5-year

window, and 0 otherwise. All time-varying covariates are lagged by one period, with standard errors noted in parentheses; ∗ p< 0.10, ∗∗ p< 0.05,

and ∗∗∗ p< 0.01.
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In case of regional knowledge variables (see results dis-

played in column 3 an onwards), RSA shows positive effects,

which is an expected observation, showing the greater pos-

sibility of specialisation to occur in well-developed science

subjects in a particular region. This is indicative of a cumula-

tive advantage mechanism, where already strong scientific

disciplines continue to attract resources and attention. The

positive coefficient ofKC shows the importance of a region’s

capability on producing better quality, or more complex,

scientific knowledge. This suggests that high-performing

regions in terms of research productivity are more likely to

evolve their scientific portfolio, likely due to better infras-

tructure, talent pools, and institutional support. The coef-

ficient of SC reports the negative and significant impact,

meaning less coherent scientific activities enhance regional

science specialisation. This implies that regions with a less

coherence across scientific subjects may be better placed

to develop new science specialisations. A possible expla-

nation is that a loosely connected scientific structure pro-

vides more opportunities for novel combinatory knowledge

production and interdisciplinary exploration,which are key

drivers in enabling emerging scientific directions.

In Table 5, the robustness of our findings is tested

with a different estimation strategy and disaggregated sub-

samples. These tests are designed to verify whether the

observed positive effect of relatedness density on scien-

tific change as reported in Table 4 also holds under differ-

ent model specifications and across varying regional con-

texts. First, in column (1) and (2), GLM estimation results

based on logit and probit model confirm the positive and

significant effect of relatedness density on the probability

of science entry. In both models, relatedness density contin-

ues to exhibit a positive and statistically significant effect

on the probability of science entry. This finding confirms

that even when switching from linear probability models to

more appropriate nonlinear specifications for binary out-

comes, the relationship between relatedness density and

regional scientific transformation remains robust. In partic-

ular, the consistent significance across both logit and probit

models enhances confidence in the general validity of our

results.

Second, in Column (3) and (4), the results estimated

by the subsamples divided into metropolitan and non-

metropolitan regions are presented. The results reveal that

the coefficient of relatedness density is statistically sig-

nificant in both subsamples, but notably larger in non-

metropolitan regions than in metropolitan ones. This sug-

gests that relatedness plays a more critical role in shap-

ing scientific change in less-developed areas. One possible

explanation is that metropolitan regions typically enjoy a

wider array of resources for scientific advancement, such

as large universities, research centres, and highly skilled

labour pools. These regions may rely less on relatedness-

driven recombination and more on institutional or agglom-

eration advantages when it comes to scientific specialisa-

tion. In contrast, non-metropolitan regions, which often

lack these structural advantages, may depend more heav-

ily on the knowledge spillovers and cross-field synergies

facilitated by relatedness density. Thus, the local knowl-

edge structure could be a particularly vital mechanism for

Table 5: Emergence of new specialised science in European regions (robustness-check).

GLM specifications GLM specifications (logit) & regional disaggregation

(1)Logit (2)Probit (3)Metro (4)Non-metro

RelDen 0.043∗∗∗ (0.000) 0.023∗∗∗ (0.000) 0.035∗∗∗ (0.002) 0.055∗∗∗ (0.001)

Emp −0.0002∗∗∗ (0.00002) −0.00008∗∗∗ (0.00001) −0.00003 (0.00003) −0.001∗∗∗ (0.000)
NMS −0.219∗∗ (0.101) −0.088∗ (0.051) −1.18∗∗∗ (0.226) −0.331∗∗∗ (0.117)
GDP −3.742∗∗∗ (0.743) −1.770∗∗∗ (0.377) −6.36∗∗∗ (1.42) −3.733∗∗∗ (0.884)
RSA 2.227∗∗∗ (0.031) 1.260∗∗∗ (0.018) 2.96∗∗∗ (0.053) 1.964∗∗∗ (0.041)

KC 9.370∗∗∗ (0.711) 4.600∗∗∗ (0.353) 3.91∗ (2.23) 8.307∗∗∗ (0.765)

SC −0.001 (0.004) −0.004∗∗ (0.002) −0.165∗∗∗ (0.025) −0.005 (0.004)
Pub −0.478∗∗ (0.011) −0.275∗∗∗ (0.006) −0.486∗∗∗ (0.015) −0.569∗∗∗ (0.020)
Constant −3.095∗∗∗ (0.067) −1.730∗∗∗ (0.032) −0.052 (0.458) −3.116∗∗∗ (0.072)
Region FE Yes Yes Yes Yes

Science FE Yes Yes Yes Yes

Period FE Yes Yes Yes Yes

Log-likelihood −87,960 −87,874 −21,553 −65,965
Observation 309,526 309,526 64,274 242,252

Notes: The dependent variable entry= 1 if a given technology enters the technological portfolio of a given region during the corresponding 5-year

window, and 0 otherwise. All time-varying covariates are lagged by one period, with standard errors noted in parentheses; ∗ p< 0.10, ∗∗ p< 0.05,

and ∗∗∗ p< 0.01.
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Table 6: Emergence of new specialised science in European regions (short- and long-term).

Short-term Long-term

(1)

(RSA< 1 & RSA≥ 0.7 prior period)

(2)

(RSA< 0.7 prior period)

(3)

(RSA< 1 & RSA≥ 0.7 first period)

(4)

(RSA< 0.7 first period)

RelDen 0.015∗∗ (0.005) 0.049∗∗∗ (0.001) 0.014∗∗∗ (0.003) 0.048∗∗∗ (0.0009)

Emp 0.00001 (0.00005) −0.0005∗∗∗ (0.00006) 0.00002 (0.00004) −0.0004∗∗∗ (0.00005)
NMS −0.820 (0.679) −0.434∗∗∗ (0.139) −0.74∗ (0.436) −0.231∗∗ (0.116)
GDP −8.130∗ (4.450) −4.85∗∗∗ (1.03) −1.06 (2.93) −6.23∗∗∗ (0.866)
RSA 4.500∗∗∗ (0.460) 2.36∗∗∗ (0.085) 2.73∗∗∗ (0.132) 2.12∗∗∗ (0.043)

KC 14.4∗∗ (6.36) 7.69∗∗∗ (0.875) 3.32∗∗∗ (4.94) 8.15∗∗∗ (0.807)

SC 0.327∗∗∗ (0.105) −0.026∗∗∗ (0.005) 0.123∗∗ (0.051) −0.017∗∗∗ (0.004)
Pub −0.291∗∗∗ (0.032) −1.11∗∗∗ (0.035) −0.321∗∗∗ (0.023) −0.687∗∗∗ (0.018)
Constant −9.64∗∗∗ (1.96) −2.74∗∗∗ (0.091) −4.79∗∗∗ (0.941) −2.88∗∗∗ (0.076)
Region FE Yes Yes Yes Yes

Science FE Yes Yes Yes Yes

Period FE Yes Yes Yes Yes

Log-likelihood −2,053 −49,585 −4,564 −69,100
Observation 3,819 210,252 10,287s 266,218

Notes: The dependent variable entry= 1 if a given technology enters the technological portfolio of a given region during the corresponding 5-year

window, and 0 otherwise. All time-varying covariates are lagged by one period, with standard errors noted in parentheses; ∗ p< 0.10, ∗∗ p< 0.05,

and ∗∗∗ p< 0.01.

driving scientific diversification in less resource-endowed

regions.

Table 6 reports estimates that distinguish short-term

from long-termeffects of relatedness density on regional sci-

entific specialisation. The key question is whether the effect

of relatedness density holds irrespective of prior RSA values

and how it differs over time. In the short term, relatedness

density has a positive and significant impact in both specifi-

cations. The long-termestimates are also significant, indicat-

ing that the influence of relatedness density endures, consis-

tent with a path-dependent process shaped by the structural

proximity of knowledge domains. Comparing fields with

very low RSA to those close to specialisation (RSA≈1), the
impact of relatedness density is larger at very low RSA. Put

differently, fields already near RSA = 1 are more likely to

specialise and are less sensitive to relatedness density, as

they have almost reached specialisation and thus additional

policy supportmay yield limited gains. By contrast, for fields

with very low RSA, future specialisation is uncertain, and

relatedness density plays a more important role.

5 Concluding remarks

The present paper advances the evolutionary economic

geography (EEG) literature by shifting the lens from techno-

logical invention (as proxied by patents) to scientific knowl-

edge production (as proxied by publications), and by ask-

ing whether regional science specialisation evolves through

mechanisms analogous to those documented for technology

in the context of relatedness, recombination, and path

dependence. Building a pan-European Science Space from

Web of Science data (2000–2017), we show that the relat-

edness density of a scientific field within a region robustly

predicts the probability that the region will subsequently

enter that field (attain an RSA ≥ 1). This result holds across

pooled OLS and GLM specifications even once an extensive

set of regional economic and knowledge controls, as well as

fixed effects, are included.

The effect is consistently positive and statistically signif-

icant, stronger in non-metropolitan regions, and present in

both short- and long-term horizons. Moreover, the marginal

influence of relatedness is larger when a field’s initial

RSA is very low, suggesting that relatedness is particularly

consequential for seeding new scientific specialisations

rather than merely consolidating near-threshold strengths.

Beyond the econometric evidence, our network analyses

indicate that Europe’s scientific landscape has becomemore

inter-disciplinary over time: clear sub-domain clusters vis-

ible in the early 2000s give way to denser cross-field con-

nectivity by 2015–2017. Technology-adjacent subjects (e.g.,

nanoscience, robotics, computer science) become increas-

ingly central to the Science Space, consistent with their role

as general-purpose enablers. Life Sciences & Biomedicine

remain a dominant presence in terms of volume and cen-

trality, but the permeability of boundaries among broad

subjects has grown, underscoring the salience of recombi-

nant knowledge production in scientific advance.

Empirically, we provide the first large-scale, geo-coded

evidence that the principle of relatedness extends from
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technology to science at the regional level: regions are

more likely to develop comparative advantage in scien-

tific subjects that are embedded in their existing port-

folios. Conceptually, we connect the literatures on prod-

uct/technology/skill spaces (Whittle and Kogler 2020) to the

scientific domain, highlighting that scientific capabilities,

and not only inventive capacities, are structured, cumu-

lative, and place-specific. Methodologically, we adapt the

knowledge spacemethodology and associated tools to publi-

cation data, demonstrating a tractable way to model subject

co-occurrence and to derive relatedness density measures

for science.

For policy, the findings validate that the logic behind

Smart Specialisation Strategies also holds in the scientific

knowledge domain. Prioritising adjacent or cognate sci-

entific subjects, those most related to a region’s incum-

bent strengths, can raise the probability of successful entry

and, by extension, accelerate capability formation (Euro-

pean Commission 2014). This is especially pertinent for

smaller and non-metropolitan regions, where relatedness

appears to substitute, at least in part, for agglomeration

advantages, i.e., denser research infrastructures and large

talent pools. In practical terms, regional authorities along

with education and training focused entities canuse the pro-

posed “Science-Space” methodology to: (i) identify adjacent

scientific opportunities; (ii) target bridge investments (cen-

tres, doctoral programmes, shared facilities) that connect

core subjects with promising neighbours; and (iii) design

interdisciplinary platforms that deliberately increase cross-

field co-authorship and co-funding where relatedness den-

sity is high but specialisation has yet to emerge.

A set of limitations need to be considered as they may

impact upon our derived inferences. First, the geo-coding

that was carried out on metadata that concerns the close

to 7 m publication documents in our final sample relies on

institutional addresses rather than individual author resi-

dences. This is standard in publication analytics but poten-

tially could blur the spatial locus of knowledge creation for

multi-campus or cross-border institutions. Second, our anal-

ysis covers European regions, and one needs to be careful

to generalise those to other geographies, e.g., North America

or Asia where funding regimes, institutional incentives, and

field compositions differ. Third, while we include extensive

controls, fixed effects and lag structures, unobserved shocks

such as science field specific funding waves directed by EU

framework priorities, may still correlate with both relat-

edness measures and entry. Fourth, the employed classifi-

cation system, i.e., WoS subheadings/subjects, is broad and

therefore results could vary with alternative taxonomies

or with finer-grained field definitions. Finally, although

publication data capture a broader slice of knowledge than

other indicators, e.g., patents, they still might omit other

potential highly relevant aspects, such as tacit knowledge

exchange processes, and thus our measures most likely

understate informal, but important knowledge flows that

impact on regional outcomes.

There are a multitude of potential research avenues

stemming from this analysis, but it is especially three that

stand out. First, it would be useful to extend the dynamic

analysis with panel estimators tailored to binary transi-

tions, e.g., dynamic random-effects or correlated random-

effects probit with initial-conditions corrections, and also

to test exogenous instruments for relatedness exposure,

e.g., shift–share designs based on exogenous field-level

shocks or international co-authorship diffusion, all geared

towards mitigating remaining endogeneity concerns. Sec-

ond, it would be valuable to link regional Science Space tra-

jectories to technology space outcomes to quantify science-

to-technology translation lags, spillovers, and complemen-

tarities. For example, knowing whether scientific entry in

photonics might predict subsequent patent entry in opto-

electronics would offer ample insights for the design of

more effective place-bases science, technology and innova-

tion policy instruments. Third, ideally one would also incor-

porate funding, infrastructure, and mobility data, e.g., EU

research priorities, significant core facilities only available

in certain places, or data on the mobility of researchers,

which in turn could further open the “black box” of the

mechanisms through which relatedness is activated.

To conclude, the provided evidence highlights that

where science is done, what science is done, andwithwhom

it is connected, are all mutually constitutive. Regions do

not become scientifically competitive by leaping into dis-

tant subjects; rather, they build outward from their exist-

ing knowledge bases, and especially when interdisciplinary

bridges shorten the cognitive distance to new opportuni-

ties. By providing a scalable way to map those bridges, our

study offers both an analytical tool and a strategic compass

for regional research and science policy and institutional

decision-making. In a period of tightening budgets and

widening spatial disparities, aligning scientific priorities

with relatedness-informed opportunities can improve the

odds of durable capability formation, particularly in places

that lack the structural advantages that are more readily

present inmajormetropolitan hubs. The Science Space thus

enables a shift away from potentially fashionable scientific

disciplines that are too far to reach in a particular regional

setting, to a portfolio strategy grounded in each region’s

evolving endowments, enabling more credible, equitable,
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and effective pathways to scientific, and ultimately techno-

logical and economic, advance.
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Table A1:WoS subjects listed across the ca. 7 million publications that were analysed.

WoS Subject WoS Subject WoS Subject

Acoustics (TECH) Entomology (LSB) Nutrition & dietetics (LSB)

Agricultural economics & policy (LSB) Environmental sciences (LSB) Obstetrics & gynecology (LSB)

Agricultural engineering (LSB) Environmental studies (LSB) Oceanography (PS)

Agriculture, dairy & animal science (LSB) Ergonomics (TECH) Oncology (LSB)

Agriculture, multidisciplinary (LSB) Ethics (SS) Operations research & management science

(TECH)

Agronomy (LSB) Ethnic studies (SS) Ophthalmology (LSB)

Allergy (LSB) Evolutionary biology (LSB) Optics (PS)

Anatomy & morphology (LSB) Family studies (SS) Ornithology (LSB)

Andrology (LSB) Fisheries (LSB) Orthopedics (LSB)

Anesthesiology (LSB) Food science & technology (LSB) Otorhinolaryngology (LSB)

Anthropology (LSB) Forestry (LSB) Paleontology (LSB)

Archaeology (SS) Gastroenterology & hepatology (LSB) Parasitology (LSB)

Architecture (AH) Genetics & heredity (LSB) Pathology (LSB)

Art (AH) Geochemistry & geophysics (PS) Pediatrics (LSB)

Astronomy & astrophysics (PS) Geography (SS) Peripheral vascular disease (LSB)

Audiology & speech-language pathology (LSB) Geography, physical (PS) Pharmacology & pharmacy (LSB)

Automation & control systems (TECH) Geology (PS) Philosophy (AH)

Behavioral sciences (LSB) Geosciences, multidisciplinary (PS) Physics, applied (PS)

Biochemical research methods (LSB) Geriatrics & gerontology (LSB) Physics, atomic, molecular & chemical (PS)

Biochemistry & molecular biology (LSB) Gerontology (LSB) Physics, condensed matter (PS)

Biodiversity conservation (LSB) Green & Sustainable Science & Technology

(TECH)

Physics, fluids & plasmas (PS)

Biology (LSB) Health care sciences & services (LSB) Physics, mathematical (PS)

Biophysics (LSB) Health policy & services (LSB) Physics, multidisciplinary (PS)

Biotechnology & applied microbiology (LSB) Hematology (LSB) Physics, nuclear (PS)

Business (SS) History (AH) Physics, particles & fields (PS)

Business, finance (SS) History & philosophy of science (AH) Physiology (LSB)

Cardiac & cardiovascular systems (LSB) History of social sciences (SS) Planning & development (LSB)

Cell & tissue engineering (LSB) Horticulture (LSB) Plant sciences (LSB)

Cell biology (LSB) Hospitality, leisure, sport & tourism (LSB) Polymer science (PS)

Chemistry, analytical (PS) Humanities, multidisciplinary (AH) Primary health care (LSB)

Chemistry, applied (PS) Imaging science & photographic technology

(TECH)

Psychiatry (LSB)

Chemistry, inorganic & nuclear (PS) Immunology (LSB) Psychology (SS)

Chemistry, medicinal (LSB) Infectious diseases (LSB) Psychology, applied (SS)

Chemistry, multidisciplinary (PS) Information science & library science (TECH) Psychology, biological (SS)

Chemistry, organic (PS) Instruments & instrumentation (TECH) Psychology, clinical (SS)

Chemistry, physical (PS) Integrative & complementary medicine (LSB) Psychology, developmental (SS)

Clinical neurology (LSB) Language & linguistics (SS) Psychology, educational (SS)

Communication (SS) Law (SS) Psychology, experimental (SS)
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Table A1: (continued)

WoS Subject WoS Subject WoS Subject

Computer science, artificial intelligence (TECH) Limnology (LSB) Psychology, mathematical (PS)

Computer science, cybernetics (TECH) Linguistics (SS) Psychology, multidisciplinary (SS)

Computer science, hardware & architecture

(TECH)

Logic (TECH) Psychology, psychoanalysis (SS)

Computer science, information systems (TECH) Management (SS) Public, environmental & occupational health

(LSB)

Computer science, interdisciplinary applications

(TECH)

Marine & freshwater biology (LSB) Radiology, nuclear medicine & medical imaging

(LSB)

Computer science, software engineering (TECH) Materials science, biomaterials (TECH) Rehabilitation (LSB)

Computer science, theory & methods (TECH) Materials science, ceramics (TECH) Religion (AH)

Construction & building technology (TECH) Materials science, characterization & testing

(TECH)

Remote sensing (TECH)

Criminology & penology (SS) Materials science, coatings & films (TECH) Reproductive biology (LSB)

Critical care medicine (LSB) Materials science, composites (TECH) Respiratory system (LSB)

Crystallography (PS) Materials science, multidisciplinary (TECH) Rheumatology (LSB)

Demography (SS) Materials science, paper & wood (TECH) Robotics (TECH)

Dentistry, oral surgery & medicine (LSB) Materials science, textiles (TECH) Social issues (SS)

Dermatology (LSB) Mathematical & computational biology (LSB) Social sciences, biomedical (SS)

Developmental biology (LSB) Mathematics (PS) Social sciences, interdisciplinary (SS)

Ecology (LSB) Mathematics, applied (PS) Social sciences, mathematical methods (SS)

Economics (SS) Mathematics, interdisciplinary applications (PS) Social work (SS)

Education & educational research (SS) Mechanics (TECH) Sociology (SS)

Education, scientific disciplines (SS) Medical ethics (LSB) Soil science (LSB)

Education, special (SS) Medical informatics (LSB) Spectroscopy (TECH)

Electrochemistry (PS) Medical laboratory technology (LSB) Sport sciences (LSB)

Emergency medicine (LSB) Medicine, general & internal (LSB) Statistics & probability (PS)

Endocrinology & metabolism (LSB) Medicine, legal (LSB) Substance abuse (LSB)

Energy & fuels (TECH) Medicine, research & experimental (LSB) Surgery (LSB)

Engineering, aerospace (TECH) Metallurgy & metallurgical engineering (TECH) Telecommunications (TECH)

Engineering, biomedical (TECH) Meteorology & atmospheric sciences (PS) Thermodynamics (PS)

Engineering, chemical (TECH) Microbiology (LSB) Toxicology (LSB)

Engineering, civil (TECH) Microscopy (TECH) Transplantation (LSB)

Engineering, electrical & electronic (TECH) Mineralogy (PS) Transportation (TECH)

Engineering, environmental (TECH) Mining & mineral processing (PS) Transportation science & technology (TECH)

Engineering, geological (TECH) Multidisciplinary sciences (TECH) Tropical medicine (LSB)

Engineering, industrial (TECH) Music (AH) Urban studies (SS)

Engineering, manufacturing (TECH) Mycology (LSB) Urology & nephrology (LSB)

Engineering, marine (TECH) Nanoscience & nanotechnology (TECH) Veterinary sciences (LSB)

Engineering, mechanical (TECH) Neuroimaging (LSB) Virology (LSB)

Engineering, multidisciplinary (TECH) Neurosciences (LSB) Water resources (PS)

Engineering, ocean (TECH) Nuclear science & technology (TECH) Women’s studies (SS)

Engineering, petroleum (TECH) Nursing (LSB) Zoology (LSB)
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