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Abstract:Wedescribe twomathematical representations forwhat have come to be
called “semantic maps”, that is, representations of typological universals of lin-
guistic co-expression with the aim of inferring similarity relations between con-
cepts from those universals. The two mathematical representations are a graph
structure and Euclidean space, the latter as inferred through multidimensional
scaling. Graph structure representations come in two types. In both types, mean-
ings are represented as vertices (nodes) and relations betweenmeanings as edges
(links). One representation is a pairwise co-expression graph, which represents
all pairwise co-expression relations as edges in the graph; an example is CLICS.
The other is a minimally connected co-expression graph – the “classic seman-
tic map”. This represents only the edges necessary to maintain connectivity, that
is, the principle that all the meanings expressed by a single form make up a con-
nected subgraph of thewhole graph. The Euclidean space representsmeanings as
points, and relations as Euclidean distance between points, in a specified num-
ber of spatial dimensions. We focus on the proper interpretation of both types of
representations, algorithms for constructing the representations, measuring the
goodness of fit of the representations to the data, and balancing goodness of fit
with informativeness of the representation.

Keywords: semanticmap, co-expression, graph structure, Euclidean space,multi-
dimensional scaling

1 Introduction

In this article I focus on twomathematical representations that have been used for
what have come to be called “semantic maps” in typology. The twomathematical
representations are graph structure and Euclidean space. In this section, I will
provide a more precise characterization of “semantic maps” in typology, in order
to place the mathematical representations and their use in context.
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“Semantic maps” are a means for representing typological universals of
linguistic co-expression across languages, with the aim of inferring similarity
relations between concepts from those universals (for surveys and history, see
Haspelmath 2003; Georgakopoulos and Polis 2018; 2021). As such, “semantic
maps” function as onepart of the process of doing typology: typological classifica-
tion, typological generalization, and (functional-)typological explanation (Croft
2003: 1–2). “Semantic maps” are used for typological generalization. However,
some clarification about the first and third steps in doing typology is necessary
in order to understand how graph structure or Euclidean spatial representations
can be used for typological research.

The type of data that is collected and classified for the purpose of constructing
“semantic maps” is illustrated in (1) (Haspelmath 1997: 46, 42) and (2):

(1) a. Mashamet with someone at the university. [speaker knows who it was]
b. Masha met with someone at the university. [speaker doesn’t knowwho

it was]
c. Visit me sometime. [unspecified future time]

(2) a. She knowsMarvin. [acquainted with]
b. She knows that Marvin is Greek. [factual knowledge]

In both (1) and (2), a single linguistic form is used to express two or more differ-
ent meanings: the indefinite marker some- in (1) and the lexical verb know in (2).
This phenomenon is most generally called co-expression (see for example Hart-
mann et al. 2014; Croft to appear, § 1.4). Both “grammatical” meanings (1-a)–(1-c)
and “lexical” meanings (2-a)–(2-b) can be co-expressed, and generalizations for
both are represented by “semantic maps” – either graph structures or Euclidean
spaces.

In some analyses, such as Haspelmath’s, the meanings expressed in the ex-
amples are intended to be representative of a more general semantic category:
in the case of (1-a)–(1-c), specific known (referent), specific unknown and irrealis
nonspecific respectively. In other studies, the semantics of a specific example are
not generalized. For example, the co–expression of spatial relations elicited by
the pictures in the Bowerman-Pederson picture set (see Levinson et al. 2003 and
Section 3 below) apply only to the specific exemplar of a spatial relation in the
picture (dog in a doghouse, necklace around a woman’s neck, etc.). Some schol-
ars have associated graph structure representations with general semantic cate-
gories and Euclidean spatial representations with exemplar data (e. g., Wälchli
and Cysouw 2012: 679; Georgakopoulos and Polis 2018: 17). But classification of
the data as exemplars or as more general semantic categories is independent of
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the mathematical representation, if not the underlying semantic theory (see Sec-
tion 7).

On the form side, co-expression is generally assumed to be phonologically
identical, such as some- in (1) and know in (2), disregarding allophonic or al-
lomorphic variation. Morphologically related but distinct forms such as English
hand and handle are not considered to be co-expression in this strict sense. It is
of course possible to use a looser definition of formal co-expression.

Most examples of data collection begin with a set of meanings or concepts,
and examine all forms expressing those meaning for co-expression. This is an
onomasiological approach (Georgakopoulos andPolis 2018: 5). Some studies then
proceed to add other meanings expressed by the forms found with the original
set of meanings (e. g., Youn et al. 2016; Georgakopoulos et al. 2021; Georgakopou-
los and Polis 2021). However, this supplemental semasiological approach (Geor-
gakopoulos and Polis 2018: 5) will miss co-expression relations among the added
meanings that are not sharedwith the original meanings, and hence the structure
of the network with the added meanings will be incomplete.

The classification and typological comparison of co-expression data de-
scribed here is generally done with the aim of inferring similarity relations be-
tween the meanings or concepts that are co-expressed (or not co-expressed); I
focus on that goal here. However, co-expression of meanings within or across
languages may arise for reasons other than conceptual similarity.

Within a single language, twomeaningsmay come to have the same form due
to convergence of two phonological forms, as with English to, too, and two, whose
independent historical sources are reflected in contemporary spelling. But for the
vast majority of the world’s languages, there is no direct documentation of a lan-
guage’s history. So anothermethodmust be used to distinguish accidental conver-
gence from semantic similarity. This is where typology comes in. If two meanings
are regularly co-expressed in a broad sample of languages, then the likelihood of
co-expression being due to chance becomes vanishingly small: ‘recurrent similar-
ity of form must reflect similarity in meaning’ (Haiman 1985: 26).

Comparing co-expressionofmeaningacross languagesbringsupother poten-
tial explanations for co-expression across languages than similarity in meaning.
The co-expression of meanings may be due to inheritance of the co-expression
pattern from a common ancestor language. The co-expression of meanings may
also be due to language contact, where speakers of one language copy the co-
expression pattern from speakers of a neighboring language (see, e. g. van der
Auwera 2013: 161).

These two possible historical explanations can be dealt with in the usual way
in typology: by constructing a genetically and geographically stratified sample of
languages (Youn et al. 2016 test their sample for these and other potential biases).
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Aswith homonymy, using a stratified cross-linguistic sample does not a priori rule
out accidental convergence, common ancestry or contact as reasons for particular
co-expressions in the data. It reduces the likelihood of these explanations for the
great majority of the data in the dataset (see Section 5), and allows one to focus
on the patterns representing typological universals.

A different sort of historical explanation is relevant to the typological univer-
sals represented by “semanticmaps” and their explanation in terms of conceptual
similarity. It is hypothesized that co-expression arises when a form expressing a
particular meaning is extended, or recruited, to express a related meaning. It is
also sometimes hypothesized that this semantic extension or recruitment is uni-
directional. For example, it is often assumed that forms for nonspatial meanings
of adpositions are recruited from the forms used for spatial meanings (or, forms
for spatial meanings are extended to non-spatial meanings). The semantic shifts
in grammaticalization are also often assumed to be unidirectional (from “lexical”
to “grammatical”meanings).Wewill return to this diachronic aspect of “semantic
maps” in Section 2.

Once we have ruled out accidental convergence, common ancestry and con-
tact in the usual typological way, there remains the question of what counts as
semantic or conceptual “similarity”. A better term to describe the range of se-
mantic explanations would probably be semantic relatedness. Semantic exten-
sion may be attributed not just to similarity in the usual sense – similarity in cer-
tain semantic properties found in a single semantic domain–but also tometaphor
and metonymy. Some have assumed that “conceptual similarity” should be con-
strued narrowly, to exclude other types of semantic shifts such as metaphor and
metonymy (Cristofaro 2010). I consider this to be too narrow a view (Croft 2010b).
The aim is to uncover typological universals of semantic relatedness of concepts.
A further level of explanation may be able to attribute the universals of semantic
relatedness to different types of semantic shift.

The rest of this article will focus on using graph structure or Euclidean space
representations for typological universals of linguistic co-expression. The use of
these two mathematical representations are not as different as they are made out
to be. Nevertheless, there is an interesting difference between graph structure and
Euclidean space representations for one’s theory of semantics that may influence
one’s choice of representation (see Section 7).
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Figure 1: Semantic map of indefinite pronoun functions.

2 Graph structure representation: Basics

The graph structure representation is the more widely used representation in
the typology of co-expression. An oft-cited example is that of indefinite pronoun
meanings (Haspelmath 1997: 64), given in Figure 1.

Figure 1 is a graph structure: it is made up of vertices, also called nodes, given
by labels in the figure (‘specific known’, ‘specific unknown’, etc.); and edges, the
links between nodes in the figure. In the use of graph structure for representing ty-
pological universals of co-expression, individualmeanings are representedas ver-
tices, and the edges represent certain co-expression relations between twomean-
ings.

Figure 1 represents a generalization over language-specific co-expression
phenomena. Any particular indefinite pronoun in a particular language must
map onto a connected subgraph of the graph. This property is what I called
the Semantic Connectivity Hypothesis (Croft 2001: 96; 2003: 134). The Seman-
tic Connectivity Hypothesis is one typological universal of co-expression that
is represented by the graph in Figure 1. For example, English some- maps onto
specific known, specific unknown, irrealis nonspecific, question and conditional
(Haspelmath 1997: 65; see van der Auwera and Van Alsenoy 2011 for discussion of
the semantics of the irrealis, question and conditional nodes). These five mean-
ings form a connected subgraph. The subgraph is usually represented visually
in publications by drawing a shape that includes the nodes in the subgraph and
labeling this shape by the language-specific form.

At this point, there is some terminological ambiguity in the literature. The
term ‘semantic map’ is used for both the entire graph structure in Figure 1, which
is intended to represent certain typological universals, and a connected subgraph
that a language-specific form such as English some- maps onto. I proposed de-
scribing the typological universal graph in Figure 1 as a ‘conceptual space’, and
the mapping of language-specific forms as a ‘semantic map’ (Croft 2001: 92–95;
2003: 133–137). There is no consensus about terms for the typological universal
graph vs. a language-specific form’s subgraph, as far as I can tell. I will henceforth
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use the terms semantic map and conceptual space as I have distinguished them in
previous publications (and hence drop the scare quotes around “semantic map”).

This is actually not a complete description of Figure 1, because not all co-
expression relations are directly represented. Consider the English examples in
(1-a)–(1-c). Themorpheme some- is used for specific known and specific unknown
meanings and specific unknown and irrealis nonspecific meanings, as indicated
in Figure 1. As a result, there is also a co-expression relation between the specific
known and irrealis nonspecific meanings – both are also expressed by some-. But
there is no edge connecting the specific known node and the irrealis nonspecific
node in Figure 1.

This is not an accident, but before explaining why, it should be noted that
some typologists have used graph structures for lexical co-expression that do
have edges for every pairwise co-expression relation between lexical concepts.
These pairwise co-expression graphs are found, for example, in the Database
of Cross-Linguistic Colexifications (CLICS; List et al. 2013; Rzymski et al. 2020;
Jackson et al. 2019), a very large database of lexical co-expressions.

Why does Figure 1 lack an edge between the specific known and irrealis non-
specific nodes, as well as other nodes? The absence of that edge encodes an im-
plicational universal: if a language form co-expresses specific known and irrealis
nonspecific indefinite pronoun meanings, then it also co-expresses the specific un-
known meaning with these two meanings. In other words, Figure 1 represents that
the specific unknown meaning is “in between” the specific known and irrealis
nonspecific meanings (cf. van der Auwera 2013: 155).

This is amore constrained representation of semantic relations (similarity) as
inferred from co-expression data than what is found in a pairwise co-expression
graph. Figure 1 is intended to represent theminimumnumber of edges required to
maintain semantic connectivity (Georgakopoulos andPolis 2018: 6). I will call this
aminimally connected co-expression graph. One important feature of a minimally
connected co-expression graph is that it encodes information about the semantic
structure of language-specific forms that map onto more than two nodes of the
graph. For example, a minimally connected co-expression graph encodes that a
three-way co-expression involving the specific known indefinite meaning must
also involve specific unknown and irrealis nonspecific meanings, and so on. This
information is not represented in a pairwise co-expression graph.

A final and important point about a co-expression graph is that the geometric
arrangement of the nodes and edges on the page or screen is entirely irrelevant to
the semantic relations represented in the graph (Haspelmath 2003: 233; Croft and
Poole 2008: 6). The depiction of the graph on the page is purely amatter of conve-
nience (avoiding crossing lines for the edges, for example). No inferences about
semantic relations can be made from the positions on the nodes on the page. All
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Figure 2: Two-dimensional multidimensional scaling model of adpositional spatial relations by
unfolding.

thatmatters iswhether twonodes are linked by an edge or not, not the positions of
the nodes on the page. A graph structure representation is not a Euclidean space.

3 Euclidean space representation: Basics
An example of a Euclidean space representation is the two-dimensional spatial
model of adpositional spatial relations in the Bowerman-Pederson picture set
given in Figure 2 (Croft 2010a; data from Levinson et al. 2003, with thanks to
Sérgio Meira).

Figure 2 is a two-dimensional Euclidean space, with points positioned in the
two continuous dimensions. The points displayed in Figure 2 represent themean-
ings. The points are positioned in the two-dimensional Euclidean space such that
distance in any direction represents degree of similarity/relatedness of the mean-
ings, as determined by the typological co-expression data used to construct the
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Euclidean space representation. A Euclidean space representation may have any
number of dimensions, from 1 up to the number of co-expression relations in the
dataset; see Sections 4–5 for the choice of the number of dimensions in a Eu-
clidean space representation.

Figure 2 is a representation of the conceptual space. In a Euclidean space rep-
resentation, language-specific categories – semantic maps, in the narrow sense
given in Section 2 – are bisections of the Euclidean space (Croft and Poole 2008:
9–11). In a two-dimensional Euclidean space such as Figure 2, a bisection of the
space is a straight line. In a three-dimensional Euclidean space, a bisection is a
plane. In a one-dimensional Euclidean space, i. e. a linear representation, a bisec-
tion is a point that divides the linear conceptual space in half.

This representation of a semantic map in an MDS spatial model is sometimes
misunderstood. A language-specific category in a Euclidean space representation
is sometimes represented as a shape enclosing a set of points in the spatial model
(e. g., Majid et al. 2011: 9 [Figure 7]; Hartmann et al. 2014: 472 [Figure 4]).

This practice may be carried over from the graph structure representation.
Encircling the nodes that a language-specific form maps onto is fine in the graph
structure representation. All that matters in the graph structure representation is
that the language-specific category is a connected subgraph of the graph of the
conceptual space. Since the graph structure is not a Euclidean structure, one can
draw a line of any shape around the subgraph in order to show the reader that the
subgraph is a language-specific category.

However, drawing a line of any shape around a set of points in a Euclidean
spatial model constructed by multidimensional scaling is an incorrect represen-
tation of the semantic map of a language-specific category. Only a bisection of the
space is a correct representation of the semantic map. Not recognizing this fact
is possibly the reason for false statements such as that by Malchukov (2010: 177)
that a Euclidean space representation is vacuous. (The shapes that encircle points
in Figure 2 are intended to identify spatial meanings, not language-specific form
categories; see also Levinson et al. 2003: 505–9.)

The fact that semantic maps are bisections of the space in a Euclidean space
representation accounts for certain types of patterns that are found in Euclidean
space representations of typological co-expression data. For example, a one-
dimensional space can only represent a typological hierarchy (chain of implica-
tional universals) where the language-specific categories always extend to one
or the other end of the linear representation. The cutoff point bisects the linear
hierarchy. This is the case with the animacy hierarchy mapped by occurrence of a
distinct plural number form for nouns, which (almost) always includes the upper
end of the hierarchy (Corbett 2000).
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Figure 3: A semantic map of the Dutch adpositional relative clause strategy as a bisection of
a Euclidean two-dimensional space. The two-dimensional space constitutes a representation
of the relative clause accessibility hierarchy as a curved horseshoe shape, which allows the
representation of a semantic map for a form that co-expresses functions in the middle of the
hierarchy as a bisection of the space.

However, some hierarchies allow for categories that map into only a middle
segment of the hierarchy. For example, there may be a relative clause accessi-
bility strategy that applies only to the middle grammatical roles of the accessi-
bility/grammatical relations hierarchy. The relative clause construction in Dutch
with a relative pronoun indicating case (usually by an adposition) is used only for
indirect object, oblique and genitive roles, according to Keenan and Comrie (1977:
76; 1979: 335). It is not used for either subject or direct object roles at the top of the
hierarchy, or for the object of comparison role at the bottom of the hierarchy.

There cannot be a point that bisects a linear spatial model in such a way that
the functions co-expressed by the form are on one side and the functions not ex-
pressed by the form are on the other side for the Dutch relative clause construc-
tion. However, a two-dimensional model can capture this with a curved line or
‘horseshoe’. A straight line can bisect a curved representation so that the middle
points representing functions co-expressed by the form (indirect object, oblique,
genitive) are on one side, and the end points at either end (subject and direct ob-
ject, and object of comparison), that is, the ends of the horseshoe, are on the other
side; see Figure 3.

The horseshoe representation illustrated in Figure 3 is not an uncommonphe-
nomenon in languageuniversals. Examples of horseshoe-shapedpatterns include
the indefinite pronoun space corresponding to Figure 1 (see Croft and Poole 2008:
15 [Figure 4]), the object-property-event space for parts of speech (Rogers 2016: 74
[Figure 6]) and the ‘on’-‘in’ spatial relation continuum in Figure 2 (Croft 2010a: 9
[Figure 4]; the ends of the horseshoe are the ‘on’ points at the top left and the ‘in’
points at the bottom left).

A rarer pattern is when the ends of a linear/hierarchical structure can “join
up”, leading to a circular representation. This is found in the co-expression
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of lexical aspectual types in tense-aspect constructions (Croft 2012: 166 [Fig-
ure 4.4]).

Finally, a two-dimensional spatial model may represent a fully two-dimen-
sional conceptual space with orthogonal (perpendicular) dimensions. For ex-
ample, the spatial model for tense-aspect constructions generated from Dahl’s
(1985) questionnaire data has orthogonal dimensions for time reference (past-
present-future) and aspect (imperfective-perfective; see Croft and Poole 2008: 26,
Figure 8). The spatial model for encoding grammatical roles (case marking and
indexation) has orthogonal dimensions for core vs. oblique participant roles and
causally antecedent vs. subsequent roles (Hartmann et al. 2014; Croft to appear,
§ 6.1.2, Figure 6.1). The spatial model for constructions encoding the functionally
related thetic, mirative and exclamative functions has orthogonal dimensions
corresponding to entity-central vs. event-central functions (Sasse 1987) vs. stages
in the psychological theory of surprise (García Macías 2016).

4 Algorithmic derivation of the typological
universals

Finding the smallest number of edges that capture all the language-specific cate-
gories as connected subgraphs is not simple. Haspelmath (1997) constructed Fig-
ure 1 manually. Croft and Poole (2008: 6) observe that the graph in Figure 1 ac-
tually has an “unnecessary” edge, the edge between ‘irrealis nonspecific’ and
‘conditional’. I observed this by manual re-inspection of the data. But for larger
or more complex datasets, determining the smallest number of edges needed be-
comes impossible to domanually. In fact, this task is similar to the traveling sales-
man problem, which is known to be NP-hard (Croft and Poole 2008: 7).

Regier et al. (2013: 93–94) recognize this problem, and introduce an algorithm
from the epidemiological literature that provides an efficient approximation for
solving the problem of inferring the minimally connected co-expression graph
with the minimum number of edges for a set of data.

The algorithm adds an edge to the graph containing the nodes of the concepts
(or whatever entities are being characterized by similarity) in accordance to their
utility, roughly, the extent to which the edge contributes to the goal of capturing
the language-specific categories in the data as connected subgraphs of the even-
tual conceptual space graph (see Regier et al. 2013: 94–95 for details).

Regier et al. apply the algorithm to the same two datasets discussed above:
indefinite pronouns fromHaspelmath (1997), and spatial relations from Levinson
et al. (2003). They find that the graph from Figure 1 minus the edge from ‘irre-
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alis nonspecific’ to ‘conditional’ is indeed the simplest graph that captures all of
Haspelmath’s data as connected subgraphs.

Regier et al. then apply the algorithm to the much more complex data of spa-
tial relations. The data involve 71 concepts – the Bowerman-Pederson picture set
described in Section 1 – instead of just nine; and adposition categories from nine
languages. The graph structure is displayed as Figure 5 in their article (Regier et al.
2013: 100).

Euclidean space representations are constructed by an algorithm for even the
smallest datasets. MDS spatial representations for typological universals of co-
expression can be generated by at least two different types of algorithms. In the
more common type, dissimilarity (used for example by Levinson et al. 2003 and
Wälchli andCysouw2012: 680–681), one looks at pairs of concepts and scoreshow
frequently the pair of concepts are expressed by the same form (with a number
between 0 and 1). Thus, raw distributional data – for each form, what concepts it
expresses andwhat concepts it does not express –must be converted into a square
matrix comparing each pair of concepts, and a calculation of how many forms in
the data express both concepts.

The other type of algorithm, unfolding, takes the distributional data directly
(Poole 2000; Croft and Poole 2008). That is, one creates a matrix of distributional
data, with the concepts in the rows and the forms in the data in the columns. This
is a rectangular matrix: the number of concepts being analyzed may be different
from the number of forms in the data. Each cell in the matrix scores whether the
concept is expressed by the form or not. Since similarity is represented as small
distance, Poole’s unfolding algorithm scores expression as 1 and nonexpression
as 6; missing data is scored as 9.

The unfolding algorithm is superior to the dissimilarity algorithm if the data is
lopsided, that is, there are many categories expressing either just a few concepts,
or expressing most of the concepts (a very general category). Dissimilarity will
treat the former as extremely dissimilar and the latter as extremely similar. This
compresses the numerical range of values and magnifies random processes due
to noise. Levinson et al.’s spatial adposition data is very lopsided in both ways.
The spatial model produced by the unfolding algorithm has a much more coher-
ent semantic interpretation than the spatial model produced by the dissimilarity
algorithm (see Croft 2010a: 8–10 for more discussion).1

1 Poole, who developed the unfolding algorithm for the analysis of voting patterns in legisla-
tures, has more recently developed a Bayesian algorithm for constructing Euclidean space repre-
sentations of voting patterns (Bakker and Poole 2013). This algorithm could also be adapted for
typological analysis.
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5 Goodness of fit in graph structure and Euclidean
space representations of typological universals
of co-expression

It is often said that the only exceptionless typological universal is that all typologi-
cal universals have exceptions. FromGreenberg (1966), who qualified his implica-
tional universals with phrases such as ‘almost always’ and ‘with overwhelmingly
greater than chance frequency’, to the present, typologists have acknowledged
that the data supporting universals is complex, messy and noisy. Some typolo-
gists try to explore in depth the “exceptions” to their proposed universals, in order
to find a diachronic or other explanation for the anomalies (e. g., Stassen 1997;
2009). In some cases, such searches are unsuccessful, not least because of the
incompleteness or vagueness of the data. Others have followed other empirical
sciences by developing statistical tests to confirm or disconfirm typological uni-
versals induced from cross-linguistic data, such as Maslova’s (2003) significance
tests for implicational universals.

Users of minimally connected co-expression graphs have generally not
adopted this approach. Every instance of co-expression in the cross-linguistic
data is given an edge in the graph structure. The result leads to a graph structure
that conforms to the Semantic Map Connectivity Hypothesis and the minimal
connection criterion without exception. But the graph structure that results may
be a rather weak model of semantic similarity/relatedness, despite imposition
of the similarity requirement. It may also be that the rare or otherwise less sig-
nificant co-expression patterns are actually not reflecting semantic relatedness.
Instead, they may reflect accidental convergence, common ancestry, language
contact, and possibly other language processes. This is a criticism of the graph
structure model for semantic similarity by Cristofaro (2010) and others. After all,
as noted in Section 1, the typological method does not eliminate these alternative
explanations; it only reduces their likelihood. And likelihood is statistical.2

All quantitative models of data balance informativeness of the model – what
broad patterns it reveals – and accuracy – howmuch of the data is predicted cor-

2 Van der Auwera avoids the problem of alternative explanations than semantic relatedness by
using only data of attested semantic shift processes (van der Auwera and Plungian 1998; van der
Auwera et al. 2009), which are represented as directed edges (links) between meanings in the
graph structure. (He also categorizes edges by the type of semantic shift; van der Auwera 2013:
161.) However, this greatly limits the data that can be used. As a result, it most likely underes-
timates the possible paths of semantic shift (see the added paths in the 2009 publication), and
does not provide a cross-linguistically accurate measure of frequency.
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rectly by the model. This is the consequence of the signal vs. noise issue raised in
Section 1. Linguistic behavior is extremely complex. Many different factors play a
role in how speakers express concepts in linguistic form, and in how linguists col-
lect and analyze data for their theories. Some of these factors may be stochastic,
and may compete with each other. Random errors in data collection and analysis
also occur. Thus, a model that has a perfect fit to the datamay not actually be that
informative (Levinson et al. 2003: 499, fn. 7; Croft and Poole 2008: 11–12).

In other words, goodness of fit must always be addressed in constructing ei-
ther graph structure or Euclidean space representations of typological universals
of co-expression. Goodness of fit allows us to get an idea of the tradeoff between
how much of the cross-linguistic data our representational model captures, and
how useful the model is for inferring conceptual similarity/relations, the phe-
nomenon we are most interested in explaining with the co-expression data.

For example, MDS represents similarity data as Euclidean distance. Concepts
may be similar to each other in different ways, or for different (semantic) reasons.
These different ways can be captured by different dimensions in a spatial model.
MDS does this by capturing all of the variance in the data in the number of dimen-
sions used in a particular model.

If one limits the MDS model to one, two or three dimensions, or even more
dimensions, one has constrained howmany different co-expression patterns can
be captured. In a low-dimensional representation, there will not be a perfect fit of
the model to the data: that is, some points will fall on the “wrong side” of the cut-
ting line separating concepts expressed by the form from concepts not expressed
by the form. One could add another dimension to the spatial model in order to
make themodel fit the data better; but that makes themodel “looser”, adding an-
other explanatory dimension. One is guaranteed a perfect fit by adding as many
dimensions as there are linguistic categories. But such a model is completely un-
informative, capturing no generalizations at all.

Thus, one must provide a measure of goodness of fit, and compare the good-
ness of fit of related models. This is rarely done in linguistic applications of mul-
tidimensional scaling, let alone graph structure representations. In MDS, the re-
lated models to be compared are models in one, two, three, or more dimensions.
For example, Table 1 provides two goodness of fit statistics for MDS models by
unfolding in one, two and three dimensions for the spatial adposition data from
Levinson et al. 2003 (Croft 2010a: 9).

The percent correct classification is the percentage of points on the “right
side” of all the cutting lines (semantic maps) in the data. (Poole’s unfolding al-
gorithm maximizes correct classification; Croft and Poole 2008: 18.) The aggre-
gate proportional reduction of error is a measure of how much the model is an
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Table 1: Fitness statistics for the spatial adposition co-expression data in Levinson et al. (2003)
for MDSmodels by unfolding (see Figure 2 and Croft 2010a).

Number of dimensions % Correct Classification APRE*

1 94.1 .300
2 95.8 .501
3 97.1 .661

*aggregate proportional reduction of error (see text)

improvement in accuracy over a null model (in which the cutting lines either in-
clude all points or exclude all points; the APREs for this data are relatively low be-
cause the data is so lopsided). Adding dimensions to the spatial model improves
correct classification and APRE, but adding the third dimension improves fit to
the data less than adding the second dimension does, particularly for the APRE.
For this reason, the two-dimensional model is chosen as providing the best bal-
ance between informativeness and accuracy. But it assumes that there is some
inaccuracy, essentially, “noise”, in its effort to capture a signal apparent in the
two-dimensional spatial representation.

One can also create goodness of fit statistics for graph structure representa-
tions. Even a minimally connected co-expression graphmay have a large number
of edges. For complex datasets with many different concepts such as the Levin-
son et al. data, a minimally connected graph with a 100% fit to the data is quite
difficult to interpret. Regier et al.’s minimally connected graph for adposition co-
expression (their Figure 5) is very densely connected, with many crossing lines in
the two-dimensional representation necessary on a printed page.

One can add a goodness of fit statistic to aminimally connected co-expression
graph based on the utility function. One can then prune the least informative
edges, that is, the edges with the lowest utility score(s). The program used by
Regier et al. outputs a list of edges and their statistics, including the utility score
of the edge. The edges are added by their utility score ranking; so the last edges
added have a utility score of only 1. Table 2 gives the number of edges added
by utility score for the Levinson et al. spatial relation data (with thanks to Terry
Regier for providing the utility score data).

It can be seen that there is a great leap in the number of edges added for the
edges with the lowest utility score: 37 of the 115 edges have a utility score of only 1.
One could prune one third of the edges without a great loss of utility. The result-
ing graph would be more easily interpretable – though, admittedly, I have not
constructed this graph so I do not know how interpretable it is in comparison to
the two-dimensional MDS spatial model of the same data. More generally, mak-
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Table 2: Number of edges added to the graph for the conceptual space of adpositional spatial
relations, by their utility score.

Utility score (10 = highest) Number of edges of this utility score added to the graph

10 2
9 11
8 3
7 3
6 6
5 13
4 15
3 10
2 14
1 37

ing the graph structuremodelmore informative by using fitness statistics to prune
the least informative edges, comparable to reducing the dimensionality of anMDS
spatial model, might make more complex graph structure representations more
interpretable.

Georgakopoulos and Polis (2021) independently developed the idea of using
fitness statistics to prune low-utility edges. They also weight the edges that are
produced by the algorithm for the minimally connected graph – the edges that
are minimally necessary to satisfy connectivity, minus the edges pruned due to
low utility score – visually by thickness.3

Weighted edges, visualized by edge thickness, are also used in the pairwise
co-expression graphs such as those found in Cysouw (2007: 232–234), Youn et al.
(2016) and in CLICS (List et al. 2013; Jackson et al. 2019; Georgakopoulos et al.
2021). Edgeweight/thickness is use to capture relative likelihood of co-expression
in languages,which in turn is hypothesized to reflect degree of semantic similarity
or relatedness. List et al. (2013: 349) also suggest balancing goodness of fit to in-
formativeness of the graph structure representation by pruning the lowest weight
edges in a pairwise co-expression graph.4

3 The utility score is not always the same as the number of forms that co-express the two mean-
ings linked by the edge. The utility score is recalculated when the highest-utility edge(s) is/are
added to the minimally-connected graph being constructed, and that score may change and
hence diverge from the number of forms co-expressing the two functions. (Thanks to Terry Regier
for clarifying this point.)
4 However, if lower-utility edges are pruned from a minimally-connected graph, then some
nodes – that is, some meanings – will not be connected to the graph; or in a weighted-edge rep-
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Pruning of edges would help to address the issue of idiosyncratic co-expres-
sion patterns not likely to be due to semantic similarity or relatedness. However,
relative weighting of edges is indicative of likelihood of co-expression and seman-
tic relatedness most clearly in a genetically and geographically stratified sample,
such as the one used in Youn et al. (2016). CLICS is not based on such a sample, so
relative weight of edges in a CLICS graph will reflect sampling bias as well as like-
lihood of co-expression. Finally, simple Euclidean distance in a Euclidean space
representation captures more directly the likelihood of co-expression/degree of
semantic relatedness of meanings or concepts.

6 Other mathematical models related to
multidimensional scaling

Multidimensional scaling is one member of a family of models for multivariate
analysis. Other models in this family that have been used in linguistics or lin-
guistic typology are principal component analysis, factor analysis and correspon-
dence analysis. These other models differ from multidimensional scaling in cer-
tain ways.

Multidimensional scaling is an unsupervised distance model. An unsuper-
vised model is one where the categories or groupings (the clusters observed in
Figure 2, for example) are not specified in advance. In this respect, MDS differs
from some cluster analysis models where the number of clusters must be speci-
fied in advance.

A distance model is one in which Euclidean spatial distance represents sim-
ilarity directly. In this respect, MDS differs from principal component analysis,
factor analysis and correspondence analysis (Croft and Poole 2008: 13–14). The
latter methods all involve eigenanalysis.5 Eigenanalysis takes the matrix of data
and converts it to another matrix of the same dimensionality as the original, such
that (a) each dimension is uncorrelated with every other dimension and (b) the
first dimension accounts for themost variance in the data, the second for the next

resentation, they will only be connected with very low-weighted edges. In contrast, a Euclidean
space model always places all meanings in the spatial representation of similarity. That is, all
meanings have a defined degree of similarity to all other meanings, that is, their Euclidean dis-
tance in the space, no matter what is the goodness of fit of the model.
5 Cysouw (2010) and Wälchli and Cysouw (2012) describe their representation of co-expression
universals as “MDS”, and indeed the R package they used calls it “MDS”. However, the R package
outputs an eigenanalysis (Wälchli andCysouw2012: 683–689); the output is not adistancemodel.
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most variance, and so on. Typically, two dimensions of an eigenanalysis are dis-
played at a time, such as the first vs. the second dimensions, or the second vs. the
third dimensions, due to the constraints of two-dimensional pages or screens.

An MDS spatial model, say a two-dimensional spatial model, represents all
of the variance in the data in the reduced number of dimensions. A display of two
dimensions of an eigenanalysis represents only a subset of the variance, namely
the variance captured in the two dimensions displayed. Hence only an MDS spa-
tial model is a true Euclidean spatial representation of the variation in the data.
A two-dimensional display of an eigenanalysis is only a visual representation of
the variance in the two principal components displayed – usually the first two
principal components, which capture the largest amount of the variance.

Hence in anMDS spatialmodel, all distances are interpretable. The analysis is
therefore invariant under translation and rotation. Thismeans that one is allowed
to interpret an MDS spatial model using horseshoes or circles in the space; or if a
two-dimensional interpretation is best, such as tense vs. aspect in the analysis of
Dahl’s questionnaire data, the two dimensions do not have to correspond to the x
and y axes of the display.

In contrast, each dimension of an eigenanalysis represents only the propor-
tion of variance captured by the factor represented in that dimension in the dis-
play of twodimensions (Croft andPoole 2008: 14).Hence in an eigenanalysis, each
dimension must be interpreted separately and independently:

It is customary to summarize the row and column coordinates in a single plot. However, it is
important to remember that in such plots, you can only interpret the distances between row
points, and the distances between column points, but not the distances between row points
and column points.
(http://www.statsoft.com/Textbook/Correspondence-Analysis/, accessed 7 June 2018)

This is another point that is sometimes misunderstood.

7 Conclusions

This article has emphasized the similarity between the graph structure repre-
sentation and the Euclidean space representation of typological universals of
co-expression. Both the graph structure and the Euclidean space representations
are useful and legitimate visualizations of similarity for a complex and variable
dataset. Both can be used to analyze either exemplars or more general semantic
categories that are co-expressed in the cross-linguistic data. Both representational
models can now handle large, complex datasets using algorithms that can auto-

http://www.statsoft.com/Textbook/Correspondence-Analysis/
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matically generate the representation. Both models have goodness of fit statistics
that can be used to come up with a tighter set of co-expression universals from
which contentful semantic explanations can be inferred.

Graph structure andEuclidean space representations differ in their utility and
interpretation. The graph structure representation is more useful when there is a
small number of nodes (concepts) being compared. The result is easily visualized,
and Regier et al. (2013) provide a quantitative method that reliably constructs the
minimally connected co-expression graph for the data. For more complex data
sets, with a larger number of concepts, the Euclidean space representation de-
rived with MDS by unfolding is likely to provide a better visualization of the gen-
eralizations in the cross-linguistic data.

One interesting difference between the semantic map model and the MDS
model is that the graph structure semantic map model represents a discrete un-
derlying conceptual space,while the Euclidean spatialmodel represents a contin-
uous underlying conceptual space (Croft andPoole 2008: 20–22). These twomath-
ematical models suggest different approaches to semantic analysis. The graph
structure model is more amenable to a discrete conceptual space, where concepts
are defined by sets of discrete semantic components, features or properties, of
the sort suggested by Haspelmath for the conceptual structure of the indefinite
pronoun space (Haspelmath 1997: 119–122). It is perhaps this assumption about
discreteness that has led users of graph structure representations to look for dis-
crete regions of the network via clustering or community-finding algorithms (e. g.,
List et al. 2013: 250; Jackson et al. 2019; Georgakopoulos and Polis 2021).

A continuous underlying conceptual space representation is most suited for
usage-based or exemplar theories of language (Bybee 2010; Croft 2010c; Wälchli
and Cysouw 2012: 674–676), where every instance of use or every semantic situa-
tion type is distinct butmapped onto a continuous space of semantic variation, or
in phonology, where every sound production is distinct but mapped onto a con-
tinuous phonetic space. A graph structure model with a finite set of nodes would
have to posit a very large number of such nodes in order to approximate the near-
continuous conceptual space proposed by usage-based/exemplar theories of lan-
guage.

Finally, representations of typological universals of co-expression cannot
be simply equated with explanations in terms of the structure of the conceptual
space. The data collection methods and the mathematical representations are
tools to reach an explanation. Assuming good data from a well-stratified typo-
logical sample, the mathematical representations – derived algorithmically, and
using fitness statistics to produce the best balance between informativeness and
goodness of fit – will produce the most important semantic clusters or dimen-
sions governing co-expression. Those semantic clusters or dimensions can then
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be used to construct a semantically coherent conceptual space, and anomalies of
co-expression in the semantically constructed conceptual space can be examined
and accounted for by diachronic semantic and other explanations.

Acknowledgment: I would like to thank Stéphane Polis, Athanasios Georgako-
poulos, Terry Regier, Johan van der Auwera and an anonymous reviewer for their
comments on an earlier version of this article. All remaining errors are my own.

Appendix. Online resources

The unfolding algorithm for MDS analysis of linguistic data was implemented by
JasonTimm, and is available at: https://github.com/jaytimm/MDS_for_Linguists.

The algorithm by Regier et al. (2013) for automatic generation of graph struc-
ture semantic map analysis is available at: http://lclab.berkeley.edu/regier/
semantic-maps/.

CLICS is available at: https://clics.clld.org.
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