
Zeitschrift für Rechtssoziologie 2024; 44(1): 174–212

Nofar Sheffi*
We Accept: Bit-by-bit Constitution
https://doi.org/10.1515/zfrs-2024-1009

Abstract: In “We Accept: The Constitution of Airbnb”, published in 2020, I drew
on Gunther Teubner’s systems theoretical approach, including to digitalisation and
societal constitutionalism, to rethink Airbnb as an auto-constitutionalising domain.
This dynamic process, the paper proceeded to suggest, instantiates a structural
change, what can be described, in systems theoretical terms, as a “co-evolution”
of multiple social systems through structural couplings. It renders observable an
“emergence” of a general model of functioning – terms of use and engagement –
epitomised by a reconceptualisation of the “social contract” as a network of “stand-
ard form contracts” or “contracts of adhesion”, and of an increasingly dominant
mode of subjectivation: the standard formation or auto-constitution of subjects as
adherents. In this new contribution, I continue this processing of social systems
theory and Teubner’s work, this time through a deconstruction and reconstruction
of Internet communication. Through this recursive illustration of social systems
theory and Teubner’s work, the paper develops a social systems theoretical account
of “process”, “constitution”, and “structural change”.

Zusammenfassung: In „We Accept: The Constitution of Airbnb“, veröffentlicht
im Jahr 2020, stützte ich mich auf Gunther Teubners systemtheoretischen Ansatz,
unter anderem zu Digitalisierung und gesellschaftlichen Konstitutionalismus, um
Airbnb als eine sich selbst konstitutionalisierende Domäne neu zu denken. Dieser
dynamische Prozess der Selbst-Konstitutionalisierung, so schlug der Artikel weiter
vor, initiiert eine Strukturänderung, die systemtheoretisch als „Koevolution“ meh-
rerer sozialer Systeme durch strukturelle Kopplungen beschrieben werden kann.
Er macht die „Emergenz“ eines allgemeinen Funktionsmodells – Nutzungs- und
Verhaltensbedingungen – beobachtbar, das durch eine Neukonzeptualisierung
des „Gesellschaftsvertrags“ als ein Netzwerk aus Standardverträgen (adhesion
contracts) verkörpert wird, und einer zunehmend dominanten Art der Subjekti-
vierung: Standardisierung durch Selbstkonstitution von Subjekten als adherents.
In diesem neuen Beitrag setze ich meine Auseinandersetzung mit der Theorie sozi-
aler Systeme und Teubners Arbeiten fort, diesmal mit einer Dekonstruktion und
Rekonstruktion der Internetkommunikation. Über diese rekursive Illustrierung

2024

*Korrespondenzautor: Nofar Sheffi, Faculty of Law and Justice, University of New South Wales,
Address: Faculty of Law and Justice, UNSW Sydney, NSW 2052, Australia, Tel.: +61 (2) 9385 2227,
E-Mail: n.sheffi@unsw.edu.au

 Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Crea-
tive Commons Attribution 4.0 International License.

https://doi.org/10.1515/zfrs-2024-1009
mailto:n.sheffi@unsw.edu.au

� We Accept: Bit-by-bit Constitution   175

der Theorie sozialer Systeme und Teubners Arbeiten entwickelt der Artikel eine
systemtheoretische Fassung von „Prozess“, „Konstitutionalisierung“ und „Struk-
turänderung“.

Keywords: social systems theory; societal constitutionalism; social contract; Terms
of Service; Internet communication; digitalisation.

Technically speaking, communication devices do not communicate with each other,
which may or may not come as a surprise. To begin with, communication devices
do not communicate. Systems of communication do (Teubner 2006: 333, building on
Luhmann 1995: 176–209; 2012: 57–58). Devices are used for communication. They are,
precisely, devices of communication. What’s more, communication is never with.
Systems communicate but not with each other, and that is because “communication
is possible only as a self-referential process” (Luhmann 1995: 143); it entails mutual
translation into a system-specific binary language and emerges once a system reacts
to an irritating prompt by initiating a translation process, the aim of which is under-
standing content (Luhmann 1995: 73–74; 2012: 137).1 Lastly, as this contribution will
show, communication devices are powered and empowered to interpret signs and
to output signs, but “transmission” of information from one communication device
to another is impossible (Luhmann 2012: 116). The operation of communication
devices consists of serving as devices of communication (Luhmann 2012: 59–60).
A communication device reacts only to signs that it is configured to interpret as
citations of a binary code that the device is constructed to be able to execute, and it
reacts only by executing that binary code, that is, by performing an either/or oper-
ation that forms part of its configured constitution.

For example, the communication device we call a “digital computer”2 can be
prompted to execute only demands that are issued in “machine language”, which
is the set of “machine instructions” that a processor (that is, an electronic circuitry)

1 Following Niklas Luhmann, this paper conceptualises communication as a synthesis of three
selections: information (a selection from a repertoire of possible utterances), utterance (a selection
of a mode of expression, a behaviour, from a repertoire of intentional acts), and understanding (a
distinction between utterance and information) (Luhmann 2012: 113; 1995: ch. 4).
2 This paper uses “digital device” and “digital computer” to refer to a wide array of machines that
employ the same core hardware technology, for example, personal computers (“PCs”), personal
mobile devices (“PMDs”) such as tablets and smartphones, servers (computers accessed via a net-
work), supercomputers, and embedded computers (“Internet of Things”) (Patterson & Hennessy 2021:
5–7). As argued by Anna Beckers and Gunther Teubner, from a systems theoretical perspective, com-
puter systems serve as devices of communication because interactions between persons and comput-
ers produce events that are understood as utterances that contain certain information (2021: 27–30).

176   Nofar Sheffi

is hardwired to be able to convert into electrical signals (“control signals”).3 As this
paper will show, because machine language is built into the hardware architec-
ture of a digital device, a device’s machine language is distinct and idiosyncratic.
Digital devices – even of the same model, that is, devices that are constructed in
the same way and appear identical – adhere only to instructions that were issued
in a language that digital devices can convert into their distinct machine language.
In other words, there is, in effect, no one machine language, a common language
that digital devices share; there are as many machine languages as there are digital
devices. The messages sent and received by processes that run on digital devices
are not and cannot be expressed in machine language or even in a language that
mirrors it. To prompt a device to send a message to another computer, that device
must be able to interpret the message and the instructions to send it, and, for this to
be possible, the message and the instructions need to be translated into a language
that mirrors the machine language of the addressor. To get a device to receive a
message from another computer, that device must be able to interpret the message
and the instructions to receive it, and, for this to be possible, the message and the
instructions need to be converted into a language that mirrors the machine lan-
guage of the addressee.

And it is not only with other digital devices that computers cannot directly
interact. Digital computers do not share a language and thus cannot directly inter-
act with any other kind of communication devices, including the semantic artefacts
we call “persons” (Teubner 2006: 334; Luhmann 2012, 1995: chs. 6–7).4 In effect, what
appears to be a direct interaction between a device and an operator – an exchange
of “inputs” and “outputs” in a shared language – entails a multiplicity of self-ref-
erential processes of “conversion”, to draw on Piper’s (2021: 402–06) linking of the
different usages of the term.5 Persons that operate computers do not express their
requests in a language that their device can interpret; both their requests and the
data that is provided as input are being automatically translated into the self-ref-

3 See note 61.
4 This contribution follows systems theory in treating both digital devices and persons as com-
munication devices, albeit of a different kind, but leaves aside the question of what distinguishes
persons as devices of communication that is explored in Beckers and Teubner (2021: 27–30). On
social systems theory’s notions of the person as a semantic artefact of communication, see note 63.
5 In information technology, Piper (2021: 403) explains, “conversion” is used to denote the trans-
lation of signs/texts into a different medium. Like translation, conversion “is the means of moving
between semiotic and material systems, of representing something in a new way rather than sim-
ply reproducing it in the same way”, and, like the process of moving between religions, implies
personal transformation. “Conversion, the act of turning around, also involves the act of leaving
behind. It highlights all the losses that occur and uncertainties that are introduced through the
practice of transformation.”

� We Accept: Bit-by-bit Constitution   177

erential languages of all participating systems and mechanically interpreted by all
participating computers. This process – or, more precisely, set of processes – gener-
ates an “output” that needs to be rendered in a form that the operator can interpret,
a process that itself requires a multiplicity of automatic processes of translation and
mechanical processes of interpretation.

If, as this paper will reveal, direct contact between communication devices,
digital and human, is not possible, what is “Internet communication”, how does
it work, and how are devices used for communication? How are we as operators
of digital computers able to exchange messages online, visit domains, and nav-
igate from page to page and site to site? What is a Web browser, and how does
Web-browsing work? What is the World Wide Web? What are Web sites? What are
domains and how are they formed, transformed, and constitutionalised? And how
are communication devices, both digital computers and Internet users, configured
in the process?

Protocol Followers
Switched on in 1948, the first digital computers were used to perform complex cal-
culations, rather than transmit data to and receive data from (operators of) other
devices. They were able to interact – but only with their operators – by performing
manipulations on “input data” in response to citations of machine language and by
generating “output data” (Abbate 1999: 1). Transfer of data from one digital device
to another was possible only by using external storage media, like punch cards or
magnetic tapes. To move data from one digital computer to another, in other words,
operators had to save the data on an external medium, carry that medium from one
computer to another, and save the data in the destination machine’s internal storage
medium (“non-volatile memory”) (Abbate 1999: 1; Augarten 1984: 133–34).

It was only in the late 1960s that the first computer networks were formed.
Composed of digital computers that were manufactured by the same vendor, each
of these networks operated on behalf of a single entity and used proprietary net-
working protocols. To enable data transfer, each “dumb” device was plugged into a
single, “intelligent” communication controller, which was entrusted with the task
of coordinating all network traffic (Hall 2000: 1). Each time a device wanted to send
a message to a fellow network member, it had to contact the central authority and
request its mediation services. Upon receiving a request from a network member,
the central authority would convert the message into a language that mirrored the
idiosyncratic language of the addressee and deliver the translation to the addressee.
Digital computers that were not connected to a network could not interact with

178   Nofar Sheffi

any other devices. Digital devices that were connected to a network were able to
interact only with digital computers that were attached to the same communication
controller as them, using the central authority’s mediation services.

In the early 1970s, efforts were launched to develop a system that would enable
any digital device to send data to and receive messages from any other digital device
(Hall 2000: 2; Fall & Stevens 2011: 2–3; Galloway 2004: 5). These efforts could have led
to the establishment of a single, global network of devices, that is, to the constitution
of a universal system for communication between devices, but they did not. In the
first place, the architecture of the new communications medium was negotiated not
between digital devices, but between (representatives of) the dominant networks
operating at the time (and researchers working under their auspices).6 For an agree-
ment to be reached, its terms must have been acceptable to all networks included
in the negotiation.7 The adoption of a universal language would have required the
existing networks to give up their own protocols and dominion, that is, to relinquish
their sovereignty and autonomy, to which those existing networks, already estab-
lished and powerful, had no interest in agreeing (Abbate 1999: 132–33). Moreover,
concerned for their privacy and security, many existing networks were pushing for
a design that would prevent networks from knowing what was going on in other
networks, and hosts from knowing “anything about the nature of or the existence
of any networks other than the ones to which the [device] was directly connected”
(Cerf 2000: vii). Had all digital devices spoken a single, universal language, it may
have been easier to disclose information to devices attached to other networks, but
it would have been much more complicated for networks to have, keep, and share
secrets.8 To preserve and protect the dominion of existing networks, the new “uni-
versal” network was thus constituted not as a network of communication devices,
but as a network of networks: a communication system for communication systems.

The founding networks could have agreed to establish a central authority and
to confer on it the task of providing translation services (Abbate 1999: 128). This
“design solution”, however, was deemed both impractical and incompatible with
the political platform for the fulfilment of which the internetwork was intended
to serve as a platform.9 On a practical level, if the networks had agreed to create
a centralised translation mechanism, the growth potential of the constituted inter-

6 On the negotiation process, see Abbate (1999: 123–27). The first Internet incorporated the
Advanced Research Projects Agency Network (“ARPANET”), the Atlantic Packet Satellite Network
(“SATNET”), and a ground mobile Packet Radio Network (“PRNET”). Xerox PARC’s 3 MB/s Ethernet
joined the internetwork soon after its establishment (Cerf 2000: vii).
7 On the process through which the terms of the eventual agreement were “accepted”, see note 13.
8 On the constitutive role of secrecy, see Simmel (1906).
9 My play on the multiple meanings of “platforms” draws on Gillespie (2010: 349–50).

� We Accept: Bit-by-bit Constitution   179

network would have been limited. The more that networks would have joined the
internetwork, the more complex the task of the central translation service would
have become, not only rendering the arrangement unworkable but also thwarting
the effort to constitute a universal system of communication (Abbate 1999: 128).
At the time, centralised systems of communication were also seen as both more prone
to internal failures and more vulnerable to attacks from the outside, as malfunction
or destruction of a central node destroys communication between nodes, causing the
whole system to break down (Baran 1962). The internet was designed as a distributed
network also to serve a political platform and as a political platform. Distributed
networks were considered not only more robust than centralised and decentralised
networks, but also more sound. At the height of the Cold War era, distributed net-
works were seen as less vulnerable (than centralised and decentralised networks)
to calculated attacks emanating from anti-liberal, anti-democratic forces (Galloway
2004: 4–6, 29–30). Rather than subjecting a collection of dumb devices to “a central
politburo”, distributed networks were claimed to enable self-deterministic, autono-
mous agents to transfer data privately, freely, and directly, “without having to talk to
a central host first” (Hall 2000: 4–6, 86). They were said to facilitate the formation of
an open association of equals antithetical to the “closed society” of the Soviet Union
(Edwards 1996: 7–15). Paradoxically, perhaps, distributed networks were also seen as
platforms for political change. Bound up not only with the imaginary and rhetoric of
the American Declaration of Independence10 and of the American expansion west-
ward (Yen 2002: 1207–1263),11 but also with the utopic ideals of the California-based
counterculture movement of the 1960s, radically distributed internetworking claimed
to represent and enable an alternative mode of governance, to form an open, univer-
sal, and global system of communication that would decentralise governance and dis-
mantle barriers to entry and to transfer, to create an unbounded world where anyone
can belong and share (Hall 2000: 4–6, 86). Still today, the young are encouraged to
head West – to the United States of America, to Silicon Valley, Redmond, and San
Francisco – in pursuit of gold, opportunities, and “unicorns”. Still today, in the U.  S.
context, the East is portrayed as the domain of law and order, the seat of incumbents,
and the West as a wild, unruly frontier, the territory of boundary-pushing pioneers
and boundary-transgressing outlaws. Still today, conflicts between state jurisdictions
and technology companies are depicted as clashes between old and new, conven-
tional and disruptive, centralising and decentralising, incumbent and revolutionary,
conservative and progressive, or inhospitable and hospitable forces.

10 The most emblematic expression of the 1990s vision of the Internet is John Perry Barlow’s
e-mail, known as The Declaration of the Independence of Cyberspace, modelled after the American
Declaration of Independence. The e-mail was published as Barlow (2001).
11 An illustrative example is Carveth and Metz (1996: 72–90).

180   Nofar Sheffi

Instead of establishing a distributed or centralised network of devices or a cen-
tralised internetwork, the founding networks developed an auxiliary language of
exchange, a “lingua franca for computers” (Galloway 2004: 42), which would be
used to transfer data from any device to any device, including between devices that
are attached to the same network (RFC 1122: s. 1.1.2). The grammar of the adopted
“Esperanto for machines” (Wu 2010: 196) is said to represent general agreement,12
expressed through voluntary adherence to suites of technical standards called “pro-
tocols”,13 which are codified in a series of technical memoranda called “Requests
for Comments” (“RFCs”).14 The term “Internet” (with a capital “I”) is used to refer
specifically to the internetwork constituted through conformity to the terms of use;
the collection of protocols relating to Internet communication is referred to as the
“Internet Protocol suite” or the “TCP/IP suite”; and communication devices that, so
to speak, follow protocol are referred to as “Internet hosts”.15

But “protocol” – the term devised by Alexander Galloway to refer to this “prin-
ciple of organization” and “management system” (2004: 3, 7–8) – does not really
offer itself to adherents as an auxiliary language or as a language at all, and that is
because it purports to necessitate no translation or interpretation (Galloway 2004:
164–67, 2006: 325–29). In other words, rather than as a language to which and from

12 For example, RFC 1122, s. 1 and RFC 1123, s. 1. Presented as an expression of consensus, as many
have noted, the first Internet protocols were devised by a small number of academics and govern-
ment employees, working mainly in the United States, for or under the auspices of the U. S. Depart-
ment of Defense and other military authorities. They were developed by “a small entrenched group
of techno-elite peers”, consisting largely of electrical engineers and computer specialists from a
small number of countries. “Many of them are university professors. Most all of them either work
in industry or have some connection to it” (Galloway 2004: 122–23). See also Abbate (1999).
13 The Internet was rendered operational in 1977, interconnecting the ARPANET, PRNET, and SAT-
NET. As Abbate (1999: 131–38) suggests, however, those who were not actively involved in internet-
working experiments had no immediate motivation to implement the Internet protocols in place
of their existing protocols. For example, ARPANET did not initially require implementation of the
suite and, indeed, many of the organisations connected to it chose to continue using their existing
protocols, which met their needs. Implementing TCP/IP was costly and time-consuming; “to make
matters worse, the specification kept changing as the Internet team adopted new ideas and as
experimental use revealed shortcomings in the design”. ARPANET users all switched to using the
Internet protocols only following the 1981 issuance of an ultimatum by the U. S. Defense Communi-
cations Agency, which had assumed control over ARPANET in 1975.
14 For an exposition of the standardisation process, see Galloway (2004: 131–38) and Hall (2000:
399–406).
15 RFC 1122, s. 1.1.1: “A host computer, or simply ‘host’, is the ultimate consumer of communication
services. A host generally executes application programs on behalf of user(s), employing network
and/or Internet communication services in support of this function. … An Internet communication
system consists of interconnected packet networks supporting communication among host com-
puters using the Internet protocols.”

� We Accept: Bit-by-bit Constitution   181

which information must be translated, protocol is seen as a formal framework that
is indifferent to the semantic meaning of transferred information and makes pos-
sible the transmission (within “wrappers” that prevent access to messages) of any
content from any source to any destination (Galloway 2004: 52).

Like Airbnb (Sheffi 2020: 489–97), that is to suggest, protocol claims to facilitate
direct transfer between users, to enable travel (albeit of information rather than
persons) from any address to any address, to platform the constitution of a global
community to which everyone can belong, to help “create a world where anyone
can belong anywhere”.16 The use of a “common protocol” for internet communica-
tion, as observed by Janet Abbate, “would create a particular type of experience for
Internet users” (1999: 128). Had networks continued to use different protocols, the
boundaries between networks would have been “emphasised”, disclosing the being
of the Internet as a system for communication between autonomous networks,
rather than communication devices (ibid).17 Had a sense of seamlessness not been
fabricated, computer operators would have realised that a device’s connection to
the Internet is, in the words of RFC 1122, “only conceptual”.

Like Airbnb’s terms of service and use (Sheffi 2020), what protocol works to
“create” is not a boundaryless “world where anyone can belong anywhere”, but
a sense of belonging to a global community of hosts. Like Airbnb, what protocol
aims to manufacture is not a radically distributed network of hosts, but an appear-
ance of global boundarylessness. Like Airbnb (Sheffi 2020), what protocol encodes
and enacts is not unconditional hospitality, but hospitality subject to terms and
conditions, the constitution of a domain which can be visited and within which
conditional hospitality can be offered as a service. Like Airbnb (Sheffi 2020), what
protocol standardly ultimately forms are adherents that accept and perform terms
of service and use, that follow protocol.

Akin to a building code, protocol construes the Internet as a multilayer archi-
tecture and specifies rules and technical standards that must be followed for imple-
mentations (in the form of software) to be deemed compliant (Fall and Stevens 2011:
8; for example, RFC 793: s. 1.3). While alternative conceptualisations of the Internet
architecture exist,18 protocol itself distinguishes four nested layers that represent

16 The reference here is to Airbnb’s mission of “creating a world where anyone can belong any-
where”, discussed in Sheffi (2020: 489).
17 As admitted in an oral history interview by Vinton Cerf, one of the key players: “We wanted to
have a common protocol and a common address base so that you couldn’t tell, to first order, that
you were actually talking through all these different kinds of nets. That was the principal target of
the INTERNET protocols” (1990: 23–24).
18 Notably, the Open Systems Interconnection (“OSI”) model, defined by the International Organi-
zation for Standardization, distinguishes seven abstraction layers: the physical layer, the data-link

182   Nofar Sheffi

different aspects of Internet communication: the “link layer”, the “Internet layer”,
the “transport layer”, and the “application layer” (RFC 1122: s. 1.1.3). The link layer is
the bottom-most layer. Concerned with the hardware that physically connects the
sending and receiving endpoints (for example, wires, jacks, and telephone wiring),
link-layer protocols define methods for moving information across phone lines,
fibre-optic cables, and so forth. Encapsulated within the link layer is the Internet
layer. Internet-layer protocols are responsible for providing reliable and secura-
ble connection service. As will be explained below, they institute an addressing
scheme, procedures for the fragmentation and reassembly of long messages, and
routing algorithms. The core Internet-layer protocol is called the Internet Protocol
(“IP”). Nested within the Internet layer is the transport layer. Designed to ensure
the reliable transmission of data across the network, transport-layer protocols
provide senders and addressees with error-correction and flow-control services.
The Transmission Control Protocol (“TCP”) and the User Datagram Protocol (“UDP”)
are the core transport-layer protocols. The top layer is the application layer, and it
is encapsulated within the transport layer. Application-layer protocols deal with
the details of specific applications that may be used in Internet communication,
and provide applications with access to the data being passed in accordance with
the transport-layer protocols.19 Most protocols use a client-server model: a “client”
sends a request to a “server” running on another system; the server processes the
request and services it, oftentimes by sending data to the client.20 For example, the
Domain Name System (“DNS”), introduced below, is used by “DNS clients” to request
IP addresses from “DNS servers”. The Hypertext Transfer Protocol (“HTTP”), also
presented below, is used by “Web clients” to ask for instructions on how to render
“Web pages” from “Web servers”.

The transfer process instituted by the IP and the TCP proceeds in three stages:
connection establishment, data transmission, and connection termination. Before
any data can be transmitted, a connection between a sender and a receiver must
be set up. The procedure involves an exchange of three messages, a process called
a “three-way handshake”. The server sends the client a request for synchronisation
(a message called a “SYN”). The client acknowledges the server’s request (with a
message called an “ACK”), initiating, in parallel, its own SYN request. Connection is
established once the server acknowledges receipt of the client’s request for synchro-

layer, the network layer, the transport layer, the session layer, the presentation layer, and the appli-
cation layer. On the OSI model, see Hall (2000: 7–11).
19 For a more detailed presentation of the protocological architecture, see Galloway (2004: 40–41),
Hall (2000: ch. 1), and Fall and Stevens (2011: 8–16).
20 UDP servers, for example, do not return data to UDP clients, but rather monitor network activ-
ity (Hall 2000: 26). On the history of service and the server metaphor, see Krajewski (2018).

� We Accept: Bit-by-bit Constitution   183

nisation (with its own ACK message) (RFC 793: s. 3.3). Once a reliable connection is
set up, the data transfer phase commences. If the message to be sent (a “datagram”)
is determined to be too long for transmission, it is “fragmented” into several shorter
datagrams, which are then treated as distinct entities.21 Each datagram is “encapsu-
lated” inside a technically defined wrapper called a “packet”, which functions as an
“envelope”, preventing access to the transferred data (referred to as the “payload”)
(RFC 793: s. 1.1). The delivery service is provided solely on the basis of the infor-
mation indicated in a packet’s “header”, including the IP addresses of both the
addressee and the sender. Once the encapsulation process is completed, a different
route is selected for each packet (a process called “routing”). The various packets
are sent on their way separately, with specialised computers called “routers”
passing the packets from one to another until the destination is reached (a process
called “hopping”). The routers sending a packet to its next hop are indifferent to
the content of the packeted datagram. They merely receive the packet and pass it
off to the specified “next-hop router”. Once all the packets arrive at the “destina-
tion address”, the fragments are reconstructed into the original datagram, so that
the original message is re-created.22 The connection between the two endpoints
is terminated through a pair of “two-way handshakes”: each endpoint transmits
a message called a “FIN”, which the other endpoint acknowledges with an ACK
message. Once both sides send a FIN message and receive an ACK message, the
connection ends (RFC 793: s. 3.5).23

Internet Hosts
One of the primary tasks of the IP is to institute and maintain an addressing mecha-
nism.24 In accordance with the scheme, each Internet host (each protocol-following
digital computer used for Internet communication) is assigned a unique identifier

21 “The internet protocol treats each internet datagram as an independent entity unrelated to any
other internet datagram. There are no connections or logical circuits (virtual or otherwise)” (RFC
791, s. 1.4).
22 For an outline of the process, see RFC 791, s. 2.3. The process is based on a technology called
“packet-switching”, which was developed by Paul Baran at the Rand Corporation and first used, in
1969, by the Advanced Research Projects Agency (“ARPA”) at the U. S. Department of Defense. On
packet-switching, see Abbate (1999: ch. 1), Baran (1964), and Galloway (2004: 4–5).
23 For a more detailed exposition of the transfer process, see Fall and Stevens (2011: 12–13), Gallo-
way (2004: ch. 1), and Hall (2000: ch. 1).
24 In addition to addressing, the IP is responsible for determining the path a packet must take,
based on the receiving host’s IP address, for assembling packets into datagrams, and for fragment-
ing and reconstructing datagrams.

184   Nofar Sheffi

called an “Internet Protocol address” (“IP address”), which renders the device iden-
tifiable and locatable and, thus, addressable.25 Only devices that have an address
can address messages to others and be the addressees of messages, that is, serve as
Internet hosts.

In accordance with Internet Protocol version 4 (“IPv4”), an IP address is a
string of 32 binary (base-two) digits (“bits”), for example, “11101000000000010000
000001010111”. This 32-bit address consists of two sub-addresses: an identifier of
the network to which the specific host is connected and an identifier of the par-
ticular host to that network. Another string of 32 bits, called an “IP-mask”, helps
networks determine which portion of the 32-bit IP address signifies the network
and which portion relates to the host. For example, an IP-mask of “1111111111111111
1111110000000000” would indicate that the first 22 bits of “11101000000000010000
000001010111” signify the network portion of the address, and that the last 10 bits
identify the host on that network. The 32-bit binary IP-mask would also disclose the
maximal scale of the network to which the addressee is attached, that is, that the
relevant network was allotted 210 (1024) IP addresses, of which the initial 22 bits are
“1110100000000001000000”.

While digital computers use the binary system to, so to speak, address, persons
use a “dotted-decimal” notation (for example, 232.1.0.87), which is a translation of
the “machine-readable” 32-bit sequence into the decimal (base-ten) number system.
The “human-friendly” notation consists of four decimal numbers from 0 to 255, sep-
arated by periods. Each decimal number represents one of the four strings of 8 bits
(“bytes” or “octets”) of which a 32-bit address is composed. For example, “232.1.0.87”
is the dotted-decimal notation of “11101000000000010000000001010111”: “232” is
the decimal expression of “11101000”, “1” is the decimal value of “00000001”, “0”
represents “00000000”, and “87” is the decimal expression of “01010111”. A mask,
annotated as a “slash prefix” (a “/” character followed by an integer in the range of
13 to 27), trails the dotted-decimal notation, helping to identify the network portion
of the 32-bit address. For example, on 22 July 2020, Airbnb Inc. was allocated the “IP
block” (or “IP range”) “103.107.42.0/24”, that is, the 256 (28) 32-bit IP addresses that
begin with “011001110110101100101010” (AS137437 n.d.).

The theoretical maximum of 4,294,967,296 (232) available IP addresses – from
“00000000000000000000000000000000” (“0.0.0.0”) to “1111111111111111111111111111
1111” (“255.255.255.255”) – is referred to as the “address space”.

The seeming semantic meaninglessness of both the “machine-readable”
sequence and the “human-friendly” notation serves to generate a sense of the

25 In the words of Luhmann, “self-reference on the level of basal processes is possible only if at
least two processing units that operate with information are present and if they can relate to each
other and thereby to themselves” (1995: 138).

� We Accept: Bit-by-bit Constitution   185

address space as a radically distributed network of nodes.26 Nonetheless, as the
above implies, IP addresses have never been randomly allocated or assigned,27 and
addressing authority has never been radically distributed. If address space control
had indeed been radically distributed, every Internet host would have been able to
decide how it wants to be addressed, which has never been the case (Mueller 2009:
ch. 2). Distributive techniques of address interpretation constantly work to classify
and stratify the address space, and the addressing scheme has been “reformed”
multiple times, since its introduction, to enable the centralisation, aggregation, and
agglomeration of authority.

While alternative methods of addressing could have been devised, the address-
ing scheme is structured so that only a predetermined number of IP addresses is
available for assignment, constituting the address space as a “finite resource” that
“can be used up if it is not conserved properly” (Mueller 2009: 19). Indeed, many of
the reforms introduced through the years have been framed as urgent responses to
the management and scaling problems arising out of the growth of the Internet, as
well as the “[e]ventual exhaustion” (RFC 1519: s. 1) of the address space – “a scarce
shared resource that must be managed for the good of the community” (RFC 1518:
s. 1).28

When the addressing scheme was first deployed, to provide a brief overview of
the major “reforms”, every assigned IP address was interpreted as consisting of two
sections: an 8-bit “network number” and a 24-bit “host number”.29 This method of
allocation and assignment assumed an equality of scale and need. The address space
was effectively partitioned into 256 (28) blocks, allowing a maximum of 16777216 (224)
host addresses for each network. Networks may have varied in scale, but their ulti-
mate growth was subject to a common limit, implying an equal growth potential.
Allocation procedures were based entirely on the first-come, first-served principle.
With the “realisation” that networks vary in scale and needs, a new method of par-
titioning was devised to allow for the allocation of address blocks of different sizes,

26 “The Internet does not have a hierarchical topology, rather the interpretation of addresses is
hierarchical. In this two-level model, each host sees its network as a single entity; that is, the net-
work may be treated as a ‘black box’ to which a set of hosts is connected” (RFC 950, s. 1).
27 “[T]he terms ‘allocate’ and ‘assign’ have specific meaning in the Internet address registry
system; ‘allocate’ refers to the delegation of a block of address space to an organization that is
expected to perform further sub-delegations, and ‘assign’ is used for sites that directly use (i.e.,
number individual hosts) the block of addresses received” (RFC 4632, s. 3.1).
28 “The IP address space is a scarce shared resource that must be managed for the good of the
community. The managers of this resource are acting as its custodians. They have a responsibility
to the community to manage it for the common good” (RFC 1518, s. 1).
29 For a more detailed exposition of the Internet addressing architecture and its history, see Fall
and Stevens (2011: ch. 2), Hall (2000: 407–16), and Mueller (2009: 32–38).

186   Nofar Sheffi

the implementation of administrative rationing rules, and the imposition of admin-
istrative fees (Mueller 2009, pp. 36–37). The new scheme partitioned the address
space into five classes named A, B, C, D, and E, representing five different trade-offs
between the number of available network numbers of a given size and the number
of hosts that can be assigned to the given network (Fall & Stevens 2011: 36). Alas, with
the advent of the Internet, the so-called “classful approach” to Internet address-
ing was also deemed inadequate. To allow for additional flexibility in allocation, a
third level was soon introduced into the hierarchy. Local networks were allowed
to further partition the host portion of their base address allocation into a “subnet
number” and a host number, and to delegate control and responsibility over these
“subnets” to smaller networks (for example, universities or companies).30 Despite
these efforts (but unsurprisingly), the scarcity problem persisted. By 1994, over half
of all class B addresses had been allocated. With the exponential growth of the Inter-
net, it was predicted that all class B addresses would be consumed by 1995 and that
the entire address space would be exhausted by the early 2000s. In 1993, the “class-
ful” structure of IP addresses was eliminated. A new “semantics”, called “Classless
Inter-Domain Routing” (“CIDR”), was implemented, introducing the concept of an
“IP-mask” (also known as a “subnet mask” or “CIDR mask”), which, as suggested
above, makes it possible to group together numerically contiguous addresses and
to allocate address blocks in a wider variety of sizes.31

None of these, so to speak, “reforms” increased the maximum number of IP
addresses available for allotment, which remained at 4,294,967,296 (232), but, in
1998, “Internet Protocol version 6” or “IPv6” (RFC 2460) declared the creation of a
new 128-bit address space, a terra nullius to which all Internet hosts are eventually
expected to migrate. Like IPv4, IPv6 makes available only a finite number of availa-
ble addresses (340,282,366,920,938,463,463,374,607,431,768,211,456 or 2128), expressed
as a series of four hexadecimal digits separated by colons, with each hexadecimal
digit (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, or f) expressing a group of 4 bits. For example,
“5f05:2000:80ad:5800:58:800:2023:1d71” is the hexadecimal expression of 010111110
00001010010000000000000100000001010110101011000000000000000000001011000
000010000000000000100000001000110001110101110001 (Fall & Stevens 2011: 32). The
new “empty” space has been gradually settled since the mid-2000s. On 17 January
2018, 18.41 % of computers used to request services from Google identified them-

30 Subnetting was introduced in August 1985 and is outlined in RFC 950. On subnetting, see Fall
and Stevens (2011: 36–42) and Hall (2000: 408–10).
31 CIDR had been introduced in RFC 1518 and RFC 1519 and was clarified and modified in RFC
4632 (which obsoleted RFC 1519). Alongside the new semantics, CIDR instituted “route aggregation”,
which is a method for reducing routing complexity, simplifying routing decisions, and shortening
packet-delivery times (Fall & Stevens 2011: 48–50; Hall 2000: 40–41; Mueller 2009: 37–38).

� We Accept: Bit-by-bit Constitution   187

selves using a 128-bit address, whereas, on 4 April 2024, 41.45 % of computers used
to request services from Google had already “settled” the new address space (Google
IPV6 n.d.).32

As can be seen, control over chunks of the address space is conferred, not
claimed. Until 1998, authority over assignment functions (referred to as “Internet
Assigned Numbers Authority” or “IANA”) was assumed, claimed, and asserted by
the U. S. Department of Defense and “delegated” under contracts to Jon Postel at the
Information Sciences Institute of the University of Southern California.33 In 1998,
the U. S. government published a nonbinding statement of policy (known as the
“White Paper”), announcing its intention to relinquish authority over IANA func-
tions by transferring them to a “globally representative” not-for-profit corporation,
incorporated and headquartered in the United States (United States Department
of Commerce 1998).34 The same year, addressing authority was “delegated” under
a U. S. Department of Commerce contract to the Internet Corporation for Assigned
Names and Numbers (“ICANN”), a not-for-profit corporation incorporated in the
State of California. While ICANN’s contract with the Department of Commerce
expired in 2006, the “transition” process was not concluded until 2016 and is, today,
framed as entailing the transfer not of ownership or control but of “stewardship”.
Today, IANA authority is said to derive from ICANN’s status as representative of the
“community of stakeholders that has flawlessly coordinated the Internet’s domain
name and addressing systems since their inception [and] will continue to do so”.35

What’s more, IP addresses are distributed in a hierarchical system. IANA (today,
a department of ICANN) allocates large chunks of addresses and delegates IANA
authority not directly to organisations but to a limited number of top-level Internet
Service Providers (“ISPs”) and to five Regional Internet Registries (“RIRs”): APNIC
(Asia/Pacific), ARIN (Canada, the United States, and many Caribbean and North
Atlantic islands), RIPE NCC (Europe, the Middle East, and Central Asia), LACNIC

32 Hosts that are assigned a 32-bit address cannot interact directly with hosts that use a 128-bit
address and vice versa. Exchange of messages between inhabitants of different address spaces is
made possible and mediated using special protocol translators and other mediation techniques
(ICANN 2011, p. 10).
33 Postel’s operation was funded by the U. S. Defense Advanced Research Projects Agency
(“DARPA”) (Mueller 2009: 98).
34 See also Goldsmith and Wu (2006: ch. 3) and Mueller (2009: ch. 8).
35 “The transition isn’t the U. S. Government handing over the Internet to any one country, com-
pany or group. The truth is that nobody, including the U. S. Government, has a ‘control of the Inter-
net’ to hand over. The community of stakeholders that has flawlessly coordinated the Internet’s
domain name and addressing systems since their inception will continue to do so” (The IANA Stew-
ardship Transition: What You Need to Know n.d.).

188   Nofar Sheffi

(Latin America and portions of the Caribbean), and AFRINIC (Africa and portions of
the Indian Ocean). In turn, the RIRs allocate smaller blocks of addresses to regional
ISPs. Top-level ISPs and regional ISPs assign smaller blocks of IP addresses to mid-
level carriers that provide lower-speed connection services directly to end-users
(Hall 2000: 414).

Significantly, under the current scheme, dominion over chunks of the address
space (that is, networks) is delegated to and held by ISPs, instead of organisations. ISPs
maintain control of the chunks of the address space that were allocated to them. In
other words, ISPs do not assign the addresses that form the address blocks over which
they hold IANA authority and do not delegate IANA authority (Mueller 2009: 37–38;
Hall 2000: 4–5). Rather than a right to an address, Internet Service Providers grant a
right of use,36 framing Internet access as a service that is provided pursuant to a bilat-
eral agreement and the addressed (Internet hosts as well as their operators) as clients.

Clients and Servers
“IP addresses are enough to identify a host, but they are not very convenient for
humans to remember or manipulate (especially the long addresses used with IPv6)”
(Fall and Stevens 2011: 19). Imagine needing to memorise or look up and type in
32-bit IP addresses, especially given the seeming meaninglessness and randomness
of their assignment. Imagine having to remember the 128-bit IP addresses of the
Web sites you visit most frequently (Mueller 2009: 39–40). Another difficulty with
IP addresses stems from their instability. Users may change ISPs; databases that are
used to provide Web sites may be moved from one server to another. Large-scale
changes may also take place. Not only has the Internet addressing scheme been
“reformed”, multiple times, since its introduction, but also the “topology” of net-
works and subnetworks tends to change relatively frequently as they grow, shrink,
or are being reconfigured. Any “change in the identifier of a computer connected to
a network could wreak havoc on connectivity if thousands of internal and external
users have stored the old address in their routers or browsers or email address
books” (Mueller 2009: 40). This means that, for the Internet to be usable, a change
of address needs to “be implemented seamlessly without disrupting users, without
even requiring their participation” (Mueller 2009: 40).

36 Because IP addresses remain under the control of ISPs, to give an example of the implications,
IP addresses are not portable across ISPs. If a client wants to switch ISPs, the client cannot take
their address with them, which makes the process of changing ISPs costly and labour intensive
(Mueller 2009: 22–23, 38).

� We Accept: Bit-by-bit Constitution   189

To help computer operators rather than computers, the DNS allows for the
use of mnemonic and stable alphanumeric names that serve as pointers for the
retrieval of “resource records” (“RRs”) from databases that are used to provide ser-
vices via a Web site (RFC 1034: s. 3.6). Rather than entering IP addresses, users can
refer to Internet hosts on which such databases are stored using a semantically
meaningful “domain name”, which is 1 to 63 octets (series of 8 bits) in length (RFC
1034: ss. 3.1, 3.5). Domain names, in other words, are not assigned to “sites”. Nor are
they, technically speaking, “human-friendly” notations of “machine readable” IP
addresses. Rather, each domain name is associated with a database that resides on
an addressed and hence addressable Internet host. Processes (rather than Internet
hosts or software applications) that provide services by transmitting RRs to other
devices in response to queries are called “servers”, while processes that request RRs
from servers on behalf of Internet users are referred to as “clients” (Fall and Stevens
2011, pp. 20–21). For example, “www.airbnb.com” is, technically speaking, not the
name of a “Web site”. It is the name of a database, a set of resource records that is
stored on an addressed Internet host, on which server processes run. When you
press the “enter” key after typing “www.airbnb.com” into your Web browser, you
trigger a client process that runs on your digital device. Acting on your behalf, the
client requests data from a server that runs on a device that can be found in the IP
address associated with the domain name (“www.airbnb.com”), rather than being
transported to some other site.

Computer operators do not type domain names into the address bar of their
Web browsers. What they usually enter is a type of “Uniform Resource Identifier”
(“URI”) called a “Uniform Resource Locator” (“URL” or “Web address”). A URL is a
hierarchical sequence that consists of three elements: a protocol name (“HTTP”), a
domain name (“www.airbnb.com”), and a file path, separated by “/” (for example,
“/help/article/971/how-do-i-know-if-an-email-or-website-is-really-from-airbnb”). For
example, the URL “http://www.airbnb.com/help/article/971/how-do-i-know-if-an-
email-or-website-is-really-from-airbnb” indicates the name of the resource record
stored in the database associated with the domain name (“how-do-i-know-if-an-
email-or-website-is-really-from-airbnb”), and the path (“/help/article/971/”) that the
server process running on the computer hosting that database would have to follow
to locate this resource.

Internet users, in other words, are not granted access to databases stored on
Internet hosts on which server processes run. Rather, as will be explained in more
detail below, upon receiving a navigation request, a client process that runs on the
device operated by the user establishes a connection with a server process that runs
on the device hosting the relevant database, requesting guidance on how to render
the requested Web content (for example, a particular Web page). The requested
rendering directions are transmitted to the client process by the server process.

http://www.airbnb.com
http://www.airbnb.com
http://www.airbnb.com
http://www.airbnb.com
http://www.airbnb.com/help/article/971/how-do-i-know-if-an-email-or-website-is-really-from-airbnb
http://www.airbnb.com/help/article/971/how-do-i-know-if-an-email-or-website-is-really-from-airbnb

190   Nofar Sheffi

The client follows the instructions, generating a “hypertext”: a representation of the
Web page to which the Internet user “navigates”.37

The set of all domain names is referred to as the “domain name space” and is
structured hierarchically as a “tree”.38 The domain name of a node represents its
location in the name hierarchy (RFC 1034: s. 2.1). From the perspective of Internet
hosts, it consists of a sequence of labels, where each label is a length octet (a byte or
8-bit string) followed by an octet string. However, from the perspective of Internet
users, it is the list of the labels on the path from the node to the root of the tree, sep-
arated by periods (“.”). The “labels can contain only alphabetical characters (A–Z),
numeric characters (0–9), and the minus sign (–), and are printed or read left to
right, from the most specific (lowest, farthest from the root) to the least specific
(highest, closest to the root)” (RFC 1034: s. 3.1). The unnamed starting node, the root
of the tree, does not have a pronounceable name that can be used to refer to it, but
it does have a name, which is represented as a null (that is, zero length) string: “ ”.
Because all domain names end at the root, a length byte of zero terminates the
domain name of all other nodes. In other words, all domain names include the
name of the root at the end. The root is the “parent” of multiple “top-level domains”
(“TLDs”) or “generic top-level domains” (“gTLDs”), including “com”, “net”, “org”,
“edu”, and “tv”, but also over 250 country-code top-level domains (“ccTLDs”), includ-
ing “us”, “eu”, “de”, and “kr”.39 A null label at the end of each top-level domain
signifies that it is a “child” of “ ”, that is, of the unnamed root.40 The root’s chil-
dren are themselves “parents”. For example, the “subdomain” that bears the name
“airbnb.com” is a child of “com”, and “org” is the parent of “icann.org”. The name
“airbnb.com” indicates that the parent of the subdomain is “com”, and that “com”
is the child of “ ”. Many subdomains are “parents”, including “www.airbnb.com”.
For example, “es.airbnb.com” is the child of “airbnb.com”, while “airbnb.com.co”

37 A “hypertext” is a text that contains one or more “hyperlinks”. “Hyperlinks are links to other
[Web] resources that are generally exposed to the user by the user agent so that the user can cause
the user agent to navigate to those resources, e.g., to visit them in a browser or download them”
(HTML Standard: s. 4.6.1).
38 Prior to the introduction of the DNS in 1984, the domain name space was construed as a flat
structure in the form of a two-column table mapping. All domain names were listed in a single
text file called “hosts.txt” containing a simple two-column table: one column contained all allo-
cated domain names and the other contained the IP addresses associated with each of these names.
Internet users (mostly computer scientists) would download the file to their computers periodi-
cally, consulting it whenever needed (Fall & Stevens 2011: 516; Galloway 2004: 47–48; Mueller 2009:
40–41). See also notes 33 and 41 and accompanying text.
39 A “parent” is the “domain in which the Child is registered” (RFC 7344: s. 1.1).
40 A “child” is the “entity on record that has the delegation of the domain from the Parent” (RFC
7344: s. 1.1).

http://www.airbnb.com

� We Accept: Bit-by-bit Constitution   191

is the child of “com.co”. The domain name “www.airbnb.com.pe” indicates that the
parent of the subdomain is “com.pe”, that “com.pe” is the child of “pe”, and that
“pe” is the child of “ ”.

The DNS is maintained by a “distributed and hierarchical” database system (RFC
1032). A key feature of this database is that it is not stored in a single location or on
a single computer. Nor is the database managed by a central authority. Rather, dif-
ferent parts of the domain name database are stored on different Internet hosts and
are maintained by different “organisations”.41 To elaborate, the tree structure of the
domain name space allows for the partitioning of the database used to maintain the
domain naming system into more manageable subsets, as well as for the delegation
of DNS responsibility down the levels of a hierarchy. A subset of the database over
which responsibility was delegated is called a “zone”; the holder of “authority” over
and responsibility for a zone is called an “organisation”; and the process whereby
authority is devolved so that a child can become a parent and thereby an authority
is called “delegation” (RFC 1034: s. 2.4). Each organisation is required to maintain its
own database of “authoritative” data, which includes data about the top node and
the echelons directly below it, data that describes delegated subzones (that is, cuts
around the bottom of the zone), and the contact information of the devices on which
the DNS server programs employed by their children run.42 “Because all of the data
is expressed in the form of RRs”, in other words, “a zone can be completely described
in terms of a set of RRs” (RFC 1034: s. 4.2.1), that is, as “the complete database for a
particular ‘pruned’ subtree of the domain space” (RFC 1035: s. 2.1).

When a process is instructed to request a service from another process, it must
know the 32- or 128-bit IP address of that other device, not the name associated with
the database that contains the indicated RR. To assist processes, the DNS treats the
name space database as a directory that comprises name-to-address mappings and
defines a query/response protocol for translating a domain name into an IP address,
which also uses the client-server model. The process of looking up the IP address
that corresponds to a particular domain name using the DNS is known as “reso-
lution”. In accordance with protocol, authorities are required to employ a “name
server” to which other authorities and Internet hosts working for Internet users

41 As mentioned in note 38, before the introduction of the DNS, the name space database was
contained in a simple text file, which was managed by a single authority. The distribution of DNS
authority was framed as a response to the scaling problems arising out of the growth and commer-
cialisation of the Internet. On the history of the naming scheme, see Fall and Stevens (2011: 516),
Galloway (2004: 47–48), and Mueller (2009: 40–41).
42 A node is only responsible for providing data about itself and its children. Nodes are not
expected or required to be able to provide information about, for example, their parents, “grand-
children”, or “great-grandchildren”.

http://www.airbnb.com.pe

192   Nofar Sheffi

can message in order “to provoke a response” (RFC 1034: s. 3.7).43 Devices acting for
Internet users employ client processes called “resolvers” to retrieve information
associated with a particular domain name. Because the domain name database is
distributed among multiple devices, the resolver must first locate the authoritative
name server. The resolver starts by contacting the one name resolver known to it
and submitting a request for resolution. If this name server is employed by the rel-
evant authority, it provides the resolver with the IP address of the Internet host on
which the data associated with the name resides. If the name server does not have
the requested authoritative data, it refers the resolver to another name server that
is “closer” to the desired information. In case of a referral, the resolver contacts the
name server to which it was referred. If this turns out to be the authoritative name
server, the IP address that is associated with the relevant domain name is sent to
the resolver. If the name server is not authorised to provide the requested infor-
mation, it refers the resolver to another name server. The process continues until
the resolver locates the authoritative name server and retrieves the 32- or 128-bit
IP address of the Internet host on which the data associated with the domain name
specified by the user is stored (RFC 1034: ss. 3.7, 4; RFC 1035: s. 6).44

Just as end-users become “Members” of the “Airbnb Community” and, thereby,
bearers of rights and obligations upon adherence to terms of service and use
(Sheffi 2020: 520), legal persons constituted as service providers become recognised
as owners of domains and employers of DNS servers upon acceptance of terms
of service and use. To become an authority, a legal person has the DNS server or
servers that it employs named and registers those domain names. To become an
employer of a DNS name server, a legal person performing as a service provider
must not only adhere to the terms set by the relevant parent domains, but also
follow protocol, that is, accept and perform protocol’s terms of service and use.45

While the address space is conceptualised as the set of all potential IP addresses,
the domain name space is conceived of as the collection of all registered domain
names, which means that each act of naming, unlike each act of addressing, serves
to extend the name space. Accordingly, the domain name space has been conceptu-
alised not as an exhaustible resource that must be preserved, but as an unbounded,

43 “Name servers are the repositories of information that make up the domain database. The data-
base is divided up into sections called zones, which are distributed among the name servers. While
name servers can have several optional functions and sources of data, the essential task of a name
server is to answer queries using data in its zones” (RFC 1034: s. 4.1).
44 For an overview of the process, see Fall and Stevens (2011: 518–65).
45 “When some organization wants to control its own domain, the first step is to identify the
proper parent zone, and get the parent zone’s owners to agree to the delegation of control” (RFC
1034: s. 4.2.2).

� We Accept: Bit-by-bit Constitution   193

constantly expanding space. The process of registering new domains has been con-
strued as a race to register rights to “new” semantically meaningful names, unused
areas outside the boundaries of the domain name space that can become part of
the name space. Like the “extra spaces” that Airbnb purportedly enables us to add
into the market, domain names are conceived of as potential resources, objects of
property that can be utilised to provide a profitable service.46 At the same time
as it claims to create a world where anyone can belong, the DNS encourages us to
become servers whose business is hospitality and for whom hospitality is a busi-
ness: to acquire domains and offer hospitality, for personal gain, subject to condi-
tions and limitations, terms of service and use.

Internet Explorers
To press the enter key (“↵”) after typing “http://www.airbnb.com” into the address
bar of a Web browser or to follow a “hyperlink”47 to the Airbnb “homepage” is to
be teleported to Airbnb, a recognisable site with a distinct and distinctive identity.
Almost immediately, a hospitable Web page opens itself up, welcoming the browser
to a domain named Airbnb.

A domain Name, however, is neither a “place” nor a “space”, to play on Michel
de Certeau’s distinction (1984: 117–18).48 As ICANN explains, just as “the purchase
of a piece of land does not automatically result in a house being built on it”, regis-
tration of a right to a domain name grants the licensed holder only the right to use
the domain name during the restoration period (ICANN 2012: 7). A domain name is
akin to an inaccessible empty lot, which means that visitors cannot be welcomed
and serviced unless infrastructure and mechanisms are established. To offer hos-
pitality, to continue the analogy, it is also not enough to build a structure such as a
house. To again build on de Certeau, a house may be a place, but it is not a hospitable
space. As Jacques Derrida observes, “in order to constitute the space of a habitable
house and a home, you also need an opening, a door and windows, you have to
give up a passage to the outside world [l’etranger]. There is no house or interior
without a door or windows” (Derrida & Dufourmantelle 2000: 61). Hospitality, in
other words, requires an interface, a surface that encloses a domain but also opens

46 On the political economy of the DNS, see Mueller (2009).
47 For a definition of “hyperlink”, see note 37.
48 A “place” is an instantaneous configuration of positions, the abstract, theoretical order “in
accord with which elements are distributed in relationships of coexistence”; whereas a “space” is a
practised, experienced place (de Certeau 1984: 117–18).

http://www.airbnb.com

194   Nofar Sheffi

this domain up to an outside, a portal that serves as an opening and that creates
openings, opportunities for interactions with comers. This interface transforms the
place into a domain that belongs but also is visitable (for example, a house into a hab-
itable space, a home). It serves as a threshold, allowing for hospitality to be offered
subject to threshold terms and conditions (Derrida & Dufourmantelle 2000. 55).

The place that needs to be “built” and operated for hospitality to be made possi-
ble is called a “Web site”, and the user interface (“UI”) that transforms this abstract,
empty place into a practised space that welcomes and furnishes services to visitors
is provided by a software application called a “Web browser”.

Technically speaking, however, it is not into a domain or a site that visitors
are welcomed. Airbnb users, for example, never really “access” the inhospitable
domain or the hospitable site. As Derrida suggests, the very interface that renders a
site hospitable by serving as a portal, that opens an “inside” to an “outside”, forms a
protective surface or barrier that can be used to control and prevent access: a gate,
a door, or a window (Derrida & Dufourmantelle 2000: 55–73). Just like the door that
the law created especially for Josef K., the Web page generated each time a computer
operator uses their Web browser is a portal, one that is opened especially for that
operator, at that very moment. Just like the door that the law created especially for
Josef K., the portal created by the user interface is a gateway, one that the user will
never be able to cross. Just like the door that the law created especially for Josef K.,
the interface generated each time a Web page is displayed to a computer operator
is merely the effect of communication and an opening for mediated self-referential
communications.49

A web browser, in other words, is precisely an interface. From the perspective
of end-users, it is an interface that enables computer operators to visit Web sites
and to request and receive services from their providers: Please allow me to view
the site’s homepage. Please search for listings that meet these specified criteria.
Please display this listing. Please send a booking request to this host. Please accept
the booking request made by this guest. Please make a payment to this host. Please
send this message to this user. Please post this review to this listing. Technically
speaking, however, a Web browser is an interface that enables coded processes
called “clients” to request and receive from processes called “servers” guidance
as to how to display a specified “Web resource” or “Web content” to the device
operator. Requests for service, in other words, are not submitted by computer oper-
ators themselves. Nor are requests for service sent by Web browsers. Services are
requested by multiple prompted processes that run on a particular digital device.
Similarly, services are not provided by legal persons – the corporate entities that

49 For a systems theoretical reading of Kafka’s fable, see Teubner (2013b: 405–22).

� We Accept: Bit-by-bit Constitution   195

act as the service providers – or by their organs. Services are provided by processes
that run on special digital devices employed for this task. When a computer opera-
tor takes any action using a Web browser, processes that run on the operated com-
munication device format a request for services, locate the relevant server process,
establish connection with it, and submit the query to it. Upon receiving a request
for service, processes that run on the digital device working for the Web site pro-
vider send a set of rendering instructions to the processes running on the visitor’s
digital device. Processes that run on the device operated by the visitor follow the
provided directions, make adjustments with the aim of adapting the representation
to the features of the particular device, and generate the requested Web content (for
example, a new Web page) by displaying it to the computer operator.50

To request and receive service, a process must adhere to the application-layer
HTTP.51 Like most other application-layer protocols, HTTP is a request/response pro-
tocol. Processes that initiate HTTP connections are called “clients”, and processes
that accept HTTP connections in order to service requests from clients are called
“servers” (RFC 2616: s. 1.3; RFC 7540: s. 2.2). Whenever a device operator takes any
action using the interface provided by their Web browser, a process acting as a DNS
client discovers the IP address of the Internet host on which the database associated
with the specified domain name resides. The same or another prompted process
formats an “HTTP request message” in accordance with the HTTP protocol and
sends the message down to the lower-level protocols. A TCP connection is estab-
lished with a process that runs on the addressee. The data is fragmented, encapsu-
lated, sent down to the link-layer protocols, and routed across the network at the
direction of the addressed Internet host on which the server process runs. Once
all the packages arrive at the destination, the message is reassembled and trans-
mitted to the HTTP server. The HTTP request message is processed by the server
and an “HTTP response message” is formatted. The server then sends the message
down to the lower-level protocols. The data is fragmented, encapsulated, sent down
to the link-layer protocols, and routed across the network at the direction of the
Internet host on which the client process runs. Once all the packages are received,
they are sent to the higher-level protocols. The response message is reassembled
and transferred to the HTTP client. As will be explained below, the client follows

50 User agents are “encouraged to offer settings that override this default to improve the experi-
ence for the user, e.g. changing the color contrast, using different focus styles, or otherwise making
the experience more accessible and usable to the user” (HTML Standard: s. 2.1.8).
51 The addition of “http://” before a URL instructs the client process to follow the HTTP protocol.
The protocol is set out in multiple RFCs, notably RFC 2616 (“HTTP/1.1”) and RFC 7540 (“HTTP/2”).
Hypertext Transfer Protocol Version 3 (“HTTP/3”), which uses QUIC rather than TCP for the under-
lying transport protocol, was published as a Proposed Standard in RFC 9114.

http://http

196   Nofar Sheffi

the directions provided by the server, rendering the Web content that its operator
requested to “access”.52

HTTP response messages are composed in the markup language Hypertext
Markup Language (“HTML”) and also contain embedded directions written in style
sheet languages such as Cascading Style Sheets (“CSS”) and scripting languages such
as JavaScript (“JS”), as well as links to external style sheets and scripts (HTML Stand-
ard: s. 1.3). They contain no tables, no graphics, and no pictures. Using text only,
they provide instructions on how to present Web resources or Web content for
end-users.53 HTML is a mark-up language that is used to describe the structure of a
Web page, giving “authors the means to: [p]ublish online documents with headings,
text, tables, lists, photos, etc.”; “[r]etrieve online information via hypertext links, at
the click of a button”; “[d]esign forms for conducting transactions with remote ser-
vices, for use in searching for information, making reservations, ordering products,
etc.”; and “[i]nclude spread-sheets, video clips, sound clips, and other applications
directly in their documents” (HTML 4.01 Specification: s. 2.2).54 HTML further allows
for the incorporation of links to “style sheets” and “scripts” or for the embedding of
style sheets and scripts directly into HTML documents. The style sheet language CSS
provides styling features, which can be used to specify the design and presentation
of a Web page, for example, to define fonts, set text and background colours, and
add decorative features (W3C 2021). The scripting language JS enables the creation
of dynamically updating content, the animation of images, and the control of mul-
timedia (HTML 4.01 Specification: s. 18).

Like Airbnb, the World Wide Web claims to enable and promote universal
accesses: “to facilitate use of the Web by all people, regardless of their language, script,
writing system, and cultural conventions” (Dürst et al. 2005).55 Like Airbnb, however,
the World Wide Web supports radical diversity by setting and executing terms of

52 For an outline of the process, see RFC 2616 and RFC 7540.
53 In accordance with the HTML specification, “[u]ser agents are not required to present HTML
documents in any particular way” (HTML Standard, s. 15). The specification rather provides “a set
of suggestions for rendering HTML documents that, if followed, are likely to lead to a user experi-
ence that closely resembles the experience intended by the documents’ authors” (HTML Standard:
s. 15).
54 On the relationship between HTML 4.01 Specification and HTML Standard, see HTML Standard,
s. 13. HTML allows Web designers to encapsulate certain content by “tags” and instruct the Web
browser how to display the encapsulated content to the user. For example, the tag “<p>” designates
the beginning of a paragraph, and the tag “</p>” marks its end. Each heading is enclosed by a “<h>”
tag and a “</h>” tag. The tag “<i>” instructs the software application to render all text from that
point onwards in italics, while the tag “</i>” lets it knows when to stop italicising.
55 HTML was devised to serve as “a universally understood language, a kind of publishing mother
tongue that all computers may potentially understand” (HTML 4.01 Specification: s. 2.2).

� We Accept: Bit-by-bit Constitution   197

use that constantly work to standardise and obscure difference. Web resources are
rendered by protocol-adherent processes that “implement” instructions expressed
in a single, universal language, HTML, with the goal of standardisation and organi-
sation and the aim of generating “a user experience that closely resembles the expe-
rience intended by [HTML] … documents’ authors” (HTML Standard, s. 15).56 While
clients are “encouraged” to offer settings that override “suggested default rendering”
in order to “improve the experience for the user” or make it “more accessible and
usable to the user” (HTML Standard: s. 2.1.8), both implementation of the default sug-
gestions and deviations from the suggested default rendering work to obscure rather
than highlight divisions and the situatedness of user experiences, that is, to fabricate
a “fantasy of global seamlessness” – to draw on Patricia Williams (1997: 1–16) – rather
than to create a world where anyone can belong.

Every Web resource to which clients can request access is identifiable using a
URI. A URL, for example, is a type of URI that is used to identify Web pages. As dis-
cussed above, a URI typically consists of three elements: the naming scheme of the
mechanism used to access the resource (for example, “http://”), the domain name
of the database containing the resource (for example, “www.airbnb.com”), and
the name of the resource itself, given as a path (HTML 4.01 Specification: s. 2.1.1);
the “www.” part of the domain name tells your Web browser that you are looking
for the Web interface for that domain name. The collection of identifiable Web
resources that can be retrieved by client processes is known as the “World Wide
Web” (“WWW” or the “Web”) (HTML 4.01 Specification: s. 2.1).

Internet users, however, do not view the Web as a collection of Web resources.
By allowing for the use of design language systems,57 HTML enables the visual
linking of Web pages and the formation of “Web sites” as distinct, stable, consistent,
and coherent spatial identities,58 generating a sense of the World Wide Web as an
assemblage of radically diverse sites that can be visited.59 Each rendering of a Web
page both forms and transforms the user experience and user’s experience of the

56 “[P]rotocols like HTML were specifically designed to allow for radical deviation in screen
resolution, browser type, and so on. And HTML (along with protocol as a whole) acts as a strict
standardizing mechanism that homogenizes these deviations under the umbrella of a unilateral
standard” (Galloway 2004: 141).
57 On the concept of “design language” and the use of design language systems by Airbnb, see, for
example, Saarinen (n.d.) and Hughes and Han (n.d.).
58 As highlighted by Butler, identities are not established at once, once and for all, but are con-
tinuously formed through iterative processes of materialisation that generate an impression of
stability, fixity, and distinctiveness (2011 [1993]: xviii, xix).
59 Sites are commonly identified by a domain name or by a portion common to a set of domain
names. For example, the site name “Airbnb” is used to refer to the collection of Web resources
stored in the variety of databases associated with some or all of the over six hundred domain

http://http
http://www.airbnb.com
http://www

198   Nofar Sheffi

Web site of which the page forms part, as well as the user experience and user’s
experience of the World Wide Web. Each generation of a Web page installs and
orients views and perspectives, forming and promoting a platform.60

Much like pictorial representations drawn in linear perspective (Panofsky 1991:
27–28), Web browsers present themselves as windows, portals through which Inter-
net users can explore a pre-existing, external world that opens up to the user. Offering
themselves as books, they invite users to pick any page as their starting point, to jump
from any page to any page, to browse through pages that are generated especially
for them, upon request. Like the Members of the Airbnb Community, Internet users
are installed with a sense of mastery, unrestrained choice, and entitlement, incited to
embark on self-directed journeys across a wide web of welcoming domains: to choose
any site as their point of embarkment, visit any site they wish, and navigate from any
site to any site, at any point, instantaneously. Like the Members of the Airbnb Com-
munity, they are encouraged to travel, explore, and discover, but also to make places
their own. They are iteratively configured as Internet explorers.

Communication Devices
The Internet, as has been revealed, is not, technically speaking, a network or a com-
munity of Internet users or “netizens”. Nor is the Internet a network or community
of Internet hosts. The Internet is also not an association of networks. Nor is the
Internet a collection of protocols. The Internet is not a space composed of potential
IP addresses. Nor is the Internet the set of all registered domain names. The Internet
is further not composed of deposits of resources, databases associated with domain
names, that can be used to provide a service and generate surplus value. Nor is the
Internet a collection of Web resources such as Web pages that can be retrieved or a
collection of Web sites that can be visited. Rather, like any other system of communi-
cation, the Internet is iteratively formed through coded processes that are initiated
and carried out by devices: both digital computers and their operators.

names registered in the name of Airbnb, Inc., including “Airbnb.co.uk”, “airbnb.com.ee”, “airb-
nbblog.com”, and “airbnbhelp.com” (Domain Names Owned by AirBnB Inc 2020).
60 The iterability of service provision allows for the introduction of changes to design, layout,
presentation, and text, affecting user experience. Most changes to the user experience of a site
are subtle (discernible or unnoticeable), and are introduced in stages as “tweaks”, but changes
can be part of a noticeable redesign and revealed as part of a brand campaign. For example, in
2014, alongside a brand campaign called “Belong Anywhere”, the “entire Airbnb experience” was
redesigned to “better reflect” what Airbnb “really” is and is “really” about: a “shared vision of
belonging” (Chesky 2014).

� We Accept: Bit-by-bit Constitution   199

As RFC 793 explains, “all communication is viewed as inter-process communica-
tion” (RFC 793: s. 2.1). “[F]rom the communication network’s point of view”, Internet
hosts “are the sources and destinations of packets” but are not the “active agents
that produce and consume messages” (RFC 793: s. 2.1). Messages are produced and
consumed by “the active elements in host computers”, which are processes, with
the “fairly common definition of a process” being “a program in execution” (RFC
793: s. 2.1).

The protocol-adherent programs (that is, implementations, codes, software,
applications, and, colloquially, algorithms) that coders (that is, programmers) write
are not, however, the instructions that target devices execute. Contrary to common
notions of programs, with Lawrence Lessig’s canonical work being a paradigmatic
illustrative example (1999: 236–37, 2006: 341–43), the programs that coders write
are, technically speaking, neither “self-executing” nor “executable”, as highlighted
by Wendy Chun (2011: 22–29). Expressed in “high-level” programming languages, as
will be explained below, these software applications make absolutely no sense to
the digital devices on which they are intended to run. As target machines cannot
make sense of these programs, instructions that are issued in the programming lan-
guages in which coders write cannot prompt digital devices to act. Digital comput-
ers respond only to the pulses or frequencies of electricity that drive the different
components inside a “processor”, treating these as signals that require response.

How then are devices interpellated to adhere? If the programs devised by
coders today are incomprehensible to the digital computer and thus cannot trigger
action, what prompts execution? How is execution enabled and of what does the
apparatus consist?

Loosely speaking, the operation of a digital device involves the triggering of
a serial issuance of electrical signals (“control signals”) that drive a processor to
perform a set of mechanical either/or operations.61 A processor might have more
or less resources at its disposable. A processor might have a stronger or weaker – a
bigger or smaller, faster or slower – memory. A processor might be able to rely on

61 In the past, an integrated circuit (“chip”) contained only one processor, and the terms “Central
Processing Unit” (“CPU”), “processor”, “microprocessor”, and “core” were used interchangeably to
refer specifically to that hardware component (Patterson & Hennessy 2021: 19). Today, however,
chips not only consist of multiple processors that can execute instructions in parallel (Patterson &
Hennessy 2021: 8, 43), but also are accompanied by at least one Graphics Processing Unit (“GPU”),
which is a type of accelerator (in more simple terms, processor) that assists CPUs by performing
more specialised tasks (Patterson & Hennessy 2021: 548–49). To avoid implying that execution is
performed exclusively by one processor, distinguishing between processor types, and delving into
the implications of parallel hardware, this contribution will use “processor” instead of technical
terminology and indefinite articles when speaking generally about the operations of processing
units.

200   Nofar Sheffi

bigger or smaller storage. A processor might be able to perform slower or faster.
Performance by a processor might consume more or less resources. Regardless, a
processor can be prompted to perform only those roles that it is configured to be
able to perform in response to control signals.

Like social systems, digital communication systems use binary coding
(Luhmann 2012: 132–35), meaning that they process by recursively executing a con-
stitutive binary distinction. In broad strokes, “0” and “1” denote neither numerical
values nor quantities. “0” and “1” also do not refer to states such as “open” and
“close” or “on” and “off”. Rather, as will be explained in this section, computers are
constructed to interpret “0” and “1” as instructions relating to the state of a mechan-
ical device called a “logic gate”. A logic gate implements basic logic functions such as
AND and OR by preventing or allowing the flow of electrical current (Petzold 2023:
65). Each processor contains not one logic gate but millions of them, and the state
of each of these logic gates affects voltage levels. “0” triggers an electrical signal
to block the flow of electrical current through the relevant circuit; “1” triggers a
control signal to allow electrical current to flow through that circuit. Any change to
the state of any gate affects the flow of current through the circuit and thus voltage
levels. That is basically it, what the computer can do: lowering or increasing voltage
by controlling the state of a logic gate, that is, by doing either/or (Petzold 2023: ch. 8;
Patterson & Hennessy 2021: app. B).

Technically speaking, however, processors are configured to follow not com-
mands that are expressed using abstract symbols like “0” and “1”, but a limited
number of “machine instructions” that are kept in the computer as sets of high and
low electronic signals (Patterson & Hennessy 2021: 86). The set of machine instruc-
tions that a digital device is constructed to be able to respond to is called “machine
language”. As hinted in the opening of this paper, because machine instructions
are rendered in hardware (rather than software), machine language is consid-
ered device-specific and is commonly referred to as “idiosyncratic” (Abelson &
Sussman, with Sussman 1996: 768; Petzold 2023: 319). It is the very configuration of
the machine, its constitution, its form. Computers of the same model may appear
identical, that is, they may be standardly formed, but they do not share a language.
Each computer converts software instructions into electrical signals and responds
to electrical signals using the unique machine language that it is hardwired to be
able to use, that is, using the configured language that forms part of its distinct
constitution.

As processors are constructed to use machine language and can use machine
language only, what they respond to is electrical signals that are mechanically
prompted, rather than abstract commands that are expressed using abstract lan-
guage. To bridge this “gap” between hardware (configured machine instructions)
and software (the abstract language used to refer to these machine instructions),

� We Accept: Bit-by-bit Constitution   201

processors are constructed to be able to, so to speak, “interpret” unique sequences
of “0” and “1” as citations of machine instructions, a process that is conducted by a
component of the processor called the “Control Unit” (“CU”) (Patterson & Hennessy
2021: 273–84; 269). The set of software instructions that a computer is configured to
be able to interpret can be called “binary machine language” because it is designed
to mirror machine language.62 Each element of this binary language, that is, each
of the unique sequences of bits of which the language consists, corresponds to a
particular element of machine language.

As computers are configured to respond only to citations of machine lan-
guage, the building blocks or atoms of any code must be citational representa-
tions of machine instructions (Patterson & Hennessy 2021: 79). Put differently, as
will now be explained, programming may be seen both as a process of breaking
down a complex task into subtasks that correspond to machine instructions and
as a process of building abstractions with procedures and data. The former repre-
sents a top-down view of programming, whereas the latter expresses a bottom-up
view of it. To return to the point, all computer programs are, in effect, configura-
tions of citations of binary machine instructions, which are themselves citations of
machine instructions. Just like persons (to be distinguished from psychic systems),63
digital devices are conferred interpretive authority, the power to make sense of
demands that are expressed in abstract language, to translate citations into a lan-
guage that makes sense, to give meaning to citations of embodied binary codes. Just
like persons, digital devices carry out the execution process by making judgement,
by determining what is expected of them by way of performance.64 Just like persons,
they are interpellated to take charge of the execution process, to assume “respon-

62 While the two terms are often conflated in the technical literature, in this contribution, I dis-
tinguish between “machine language” and “binary machine language”, using the former to refer
to the set of electrical operations that the machine is hardwired to be able to perform and the
latter to denote the binary language that computer designers and scientists use to represent these
operations.
63 Social systems theory distinguishes between “persons” and “individuals” (Teubner 2006: 333–
36; Luhmann 2012: 57; 1995: chs. 6–7): persons are conceived of as semantic constructs that serve
as communication devices. What appears to be a use of one social language by a person to convey
meaning, in effect, entails simultaneous self-referential processes of meaning-generation internal
to the various social language systems in effect being used. Individuals (mind-bodies) are concep-
tualised as psychic systems (rather than social systems) that belong to the environment of social
system. Because language is necessarily social, psychic systems cannot themselves communicate,
but this does not mean that psychic systems do not affect the reproduction and transformation of
social systems. Psychic systems make a difference, but only indirectly, by “irritating” communica-
tions of social systems.
64 On citationality as a formative and transformative communicative practice, see Butler (1993:
71–72, 171–72), building on Derrida (1988: 18), and also Butler (1997: 48–52).

202   Nofar Sheffi

sibility for the constraints of power”, and to become “the principle of [their] own
subjection” (Foucault 1995: 202–03).

While processors perform electrical operations and respond only to instruc-
tions that are expressed as control signals, programmers do not think in terms of
hardware. Rather, programmers think in computational terms, which is precisely
why we came to call digital devices “computers”. What enables the employment
of digital devices as computers is that each of the elements of a binary machine
language is also assigned a computational meaning. In other words, while proces-
sors interpret binary machine language instructions as signs that correspond to
machine instructions as to the control of voltage levels, programmers understand
these very binary machine language instructions as signs that refer to basic com-
putational operations. These include data handling operations such as read, write,
move, load, and store data; arithmetic operations such as addition and subtraction;
logical operations such as NOT, AND, OR and Exclusive-OR (XOR); and control-flow
operations (decision-making during the running time of a program) such as branch,
jump, and loop (Patterson & Hennessy 2021: ch. 2).

It is not only that programmers do not think in terms of the electrical oper-
ations with which machine instructions are associated. Programmers today also
do not think in terms of those basic computational operations that the elements
of binary machine languages simultaneously represent. Software applications are
today rarely written in binary language and are virtually never written in a binary
machine language, that is, in a binary language that mirrors the hardware of a
particular device. The reasons cited by computer scientists are diverse. Program-
ming in binary language is considered a tedious, time-consuming, and error-prone
process (Petzold 2023: 425; Patterson & Hennessy 2021: 14). It also requires familiar-
ity with the underlying structure and particular features of the device on which the
program is expected to run (Bryant & O’Hallaron 2016: 200; Petzold 2023: 425–28).
Furthermore, with the growth in the number of digital devices, the development
of general-purpose computers, and the commercialisation of the computer, it has
become inefficient and impractical to write programs that are hardware depend-
ent. The number of computer models is ever-growing and new “generations” of
processors are constantly introduced (Petzold 2023: 428). Requiring coders to
constantly learn new binary languages and to keep up with changes to existing
languages would have had significant implications for digital technology. What’s
more, computing today strives to devise not software applications that individual
devices can execute, but programs of, so to speak, “general applications” or pro-
grams that can run on populations or classes of devices (Abelson & Sussman, with
Sussman 1996: 489; Petzold 2023: 428–30). Computing also claims to offer computa-
tional solutions to almost all problems that humans as individuals or populations or
that organisations and institutions face, including problems that are deemed “big”

� We Accept: Bit-by-bit Constitution   203

and “complex” and are said to require computational “thinking” at a high level of
abstraction (Abelson & Sussman, with Sussman 1996: xxii–xxiii, 294–95).65

Virtually all computer programs devised today are written in hardware-inde-
pendent languages that are “erected on a machine-language substrate, [and] hide
concerns about the representation of data as collections of bits and the representa-
tion of programs as sequences of primitive instructions” (Abelson & Sussman, with
Sussman 1996: 489).66 These programming languages make it possible to express
commands in general language by describing “primitive expressions” that repre-
sent the simplest entities with which the particular language is concerned, that is,
“primitive procedures” and “primitive data”, and providing methods for combining
and abstracting procedures and data, that is, for thinking at an even higher level
of abstraction (Abelson & Sussman, with Sussman 1996: 6). While certain primitive
expressions in higher-level languages may correspond to binary machine language
instructions, they are often defined by abstracting binary machine language (opera-
tions and data). To give a simple and simplified example, binary machine languages
generally assign the meaning of “addition” to a particular machine instruction,
but do not include a primitive instruction that expresses that idea of “exponenti-
ation” (Patterson & Hennessy 2021: ch. 3). When programming in binary machine
language, coders would need to use addition to define a more abstract function
that computes exponentials. Higher-level programming languages, however, can
include a primitive procedure called “exponentiate”, which would be conceived
of as corresponding to a compound procedure in binary machine language that
performs exponentiation by means of repeated addition. Coders would be able to
define even more abstract procedure using this primitive operation, which would
save them the need to use repeated addition (Abelson & Sussman, with Sussman
1996: 17–18, 57–62).67

65 While it is admitted that certain problems cannot be described in computational terms, the
theory of computation also concedes that three problems that can be described computationally
nonetheless cannot be solved through computation (Sipser 2012: 3). Demonstrated over a decade
before the first digital computer was turned on, the insolvability of those problems reveals not
only the limits of computational thinking (Sipser 2012: 195), but also the paradox of self-reference,
the very foundational paradox observed by social systems theory (Teubner 2019: 319–20, citing
Luhmann 2012: 219). In 1931, Kurt Gödel showed that the completeness and consistency of formal
systems cannot be proved (Gödel 1931), and, in 1936, both Alonzo Church (1936) and Alan Turing
(1937) demonstrated the insolvability of the decidability problem (“Entscheidungsproblem”).
66 The term “primitive” is used to denote the most basic units of a programming language.
67 Remember, exponentials can also be computed using successive squaring or multiplication, and
both squaring and multiplication are themselves compound procedures that represent repeated
addition.

204   Nofar Sheffi

While all programming languages provide methods for abstraction in the way
illustrated above, programming languages are commonly distinguished accord-
ing to their own level of abstraction. Binary machine languages are considered
the “lowest level” programming languages because their elements mirror those
of machine language. All other programming languages are considered of “higher
level” than binary machine languages but may be labelled as “higher” or “lower”
level depending on the context. Today, most programming is done in programming
languages that are generally considered to be “high level” rather than in binary
machine languages or in languages such as assembly languages that are generally
considered “low level” (Petzold 2023: 428).

As explained above, those “high-level programs” are neither self-executing nor
automatically executable. To be executable, a high-level program must be trans-
lated into the binary machine language of the particular device on which it needs
to run. This task is not performed by the same programmers that wrote the high-
level program. In fact, the task is not performed by programmers at all. Rather
than manually, translation is generally done automatically, using a special type of
computer programs known collectively as “translators”. Three types of translators
are used to translate from higher-level into lower-level languages: “compilers”,
“assemblers”, and “interpreters”.68 A compiler accepts as input entire programs
(referred to as “source codes” or “source programs”), written in a certain high-level
language (referred to as the “source language”), and translates these programs com-
pletely into a lower-level language such as assembly language or binary machine
language. The outputs generated by compilers are called “object codes”. Specifically,
translations into a model-specific binary language of instructions that correspond
to machine instructions are called “executables”, even though, as will be explained
below, these translations are, technically speaking, not executable. Once a program
is compiled, the generated translation can be stored on the device for future exe-
cution, meaning that the object code can be executed repeatedly, without further
translation (Abelson & Sussman, with Sussman 1996: 770–882). An assembler, which
can be considered a type of compiler, translates into binary machine language from
assembly language: a low-level programming language of which elements are mne-
monics that correspond to binary machine instructions such as MOV, ADD, JMP, and
HLT (Petzold 2023: 425–28; Patterson & Hennessy 2021: 130–32; Abelson & Sussman,
with Sussman 1996: 704–08). Finally, an interpreter not only translates source pro-
grams written in a particular source language, but also arranges for their execution

68 Other types of translators are used to translate between high-level languages, between low-level
languages, from machine code to assembly language, from machine language into one or another
higher-level language, etc. On the advantages and disadvantages of compilation versus interpreta-
tion, see Abelson and Sussman, with Sussman (1996: 769, 827–29) and Petzold (2023: ch. 27).

� We Accept: Bit-by-bit Constitution   205

by the processor. It is written in the binary machine language of the device on which
it runs, and its execution involves going over the inputted program line-by-line,
alternately converting lines into a binary language that mirrors machine language
without generating an object code, and passing the commands to the processor one
by one (Abelson & Sussman, with Sussman 1996: 768–69; Bryant & O’Hallaron 2016:
42–43).

Like all other translations (Teubner 2000, drawing upon Derrida 2007), the
outputs generated by compilers, assemblers, and interpreters cannot be considered
“proper” translations (Chun 2011: 21–25). In technical terms, different program-
ming languages allow for different operations, which means that compilation is
not a straightforward process. Each statement in a high-level language needs to be
broken down into multiple instructions in the lower-level language. In many cases,
this can be achieved in a variety of ways, but, because translation is a mechanical
process, these are not considered, as the execution process mechanically follows
the program instructions. The higher the level the source language is, the more
general are the statements that need to be translated and the more numerous are
the choices that must be made in the process of translation. What’s more, compilers
include instructions on how to adapt programs to the specific characteristics of the
executing device, which means that translation in the form of compilation involves
the making of adjustments (Petzold 2023: 430). Many compilers also incorporate
optimisation techniques, which are devised to allow for the optimal utilisation of
a machine’s specific capacities and to minimise resource consumption (Abelson &
Sussman, with Sussman 1996: 827).

Proper or not, it is also not even these automatically generated translations that
digital devices execute. The object codes generated by compilers and assemblers,
including executables, are not executable, and that is because they are expressed
using languages that correspond to machine language, rather than being in machine
language. Machine language is rendered in hardware, forming part of a device’s
constitution. The device is configured to process using it. And because of this, it is
only the device of which constitution machine language forms part that can use it.
The final stage of any execution process, that is to explain, requires an assumption
of responsibility by a target device, constitutional conversion, and a transformation
of a communication device into the principle of its own subjection.69 Like all other
communication devices, digital computers are powered and empowered to process
using their own “brain”, “brawn”, and “memory”, to borrow the terminology
employed by Patterson & Hennessy (2021: 19). Like all other communication devices,

69 As explained by Petzold, operation codes are known as “machine codes” precisely “because
they are used directly by the machine – the circuitry that constitutes the central processing unit”
(2023: 319).

206   Nofar Sheffi

digital computers are prompted to process information by exercising interpretive
power. At the final stage of the communicative process, the device is interpellated
to determine what is required of it by way of performance. It must translate the
binary machine instructions into machine instructions, that is, into a series of elec-
trical signals (Patterson & Hennessy 2021: 90–91; Petzold 2023: 364). These electrical
signals are then transmitted to the relevant mechanical components that drive the
operation of the device, triggering performance: the carrying out of either/or oper-
ations, the execution of binary codes, the making of a difference.70

Constitutional Processors
In a previous article, “We Accept: The Constitution of Airbnb”, I investigated the
transformation of Airbnb as a platform for a more general reflection on the con-
stitution of “domains” and subjects, as well for observing a structural change: an
evolution of our social systems’, so to speak, “terms and conditions” (Sheffi 2020).

That article proceeded in four moves: it began by proposing a novel conceptual-
isation of digital platforms as “domains”, linking the use of the term in information
technology and in legal, social, and political theory. Prompted by Gunther Teubner’s
“irritations” (including in 2004; 2012: 55-56, 106-107; 2013a; 2017), the article con-
tinued by rethinking the transformation of one such domain, Airbnb, in terms of
auto-constitutionalisation. This process, the article suggested, also renders observa-
ble a “structural change”, what appears as an emergence of a “generalizable model
of functioning”, to draw on Michelle Foucault (1995: 205), and, in systems theoret-
ical terms, can be described as the “co-evolution” of our social discourses/systems
through “structural couplings” (Teubner 1993: ch. 4, 2002; Luhmann 2012: ch. 3).
These emergent terms of use and engagement are legitimated through iterative cita-
tion of a reformulation of the social contract idea: the social contract is no longer
conceived of as a multilateral agreement between community members on the con-
stitution of a sovereign on which powers of defined scope are conferred. Rather,
the social contract is framed as a network of bilateral contracts between a service
provider and individual clients, Terms of Service agreements that are drafted by
the service providers and are not open for negotiation, what is known doctrinally
as “standard form contracts” or “contracts of adhesion”. The article concluded by
tracing the links between the auto-constitution of social systems, domains, and the
subject, describing the rise to dominance of a new mode of subjectivation.

70 As defined by Luhmann, “Information is a difference that changes the state of a system, thus
generating another difference” (2012: 113).

� We Accept: Bit-by-bit Constitution   207

Through the operation of digital devices and the use of the Internet, to unpack
the last of those four moves, subjects are iteratively constituted as “clients”; the
organisation that assumes and exercises dominion assumes the role of a “service
provider”; and its agents are employed as “servers”. The relationships between
clients and the service provider are encoded as bilateral, and so are the relation-
ships between them and other clients. Because the contracts being cited are under-
stood as bilateral, clients, servers, and service providers are iteratively framed
as “third parties” (but not “third party beneficiaries”) – clients as third parties to
the bilateral relationships between corporate entities and other clients and to the
bilateral relationships between other clients, servers as third parties to agreements
between a service provider and a client and to agreements between the service
provider and other servers, and service providers as third parties to the bilateral
relationships between clients. Through iterative acceptance and performance of
these encoded terms of service and use, subjects are standardly formed as uninter-
ested yet self-interested, uninformed, uninquisitive, and unquestioning adherents.

Three questions that the previous article left open are how domains are con-
stituted and constitutionalised, how subjectivities as discursive artefacts are stand-
ardly formed, and how structural change takes effect and becomes observable, and
it is these three questions that have concerned the current contribution. In answer-
ing the three questions, this article has drawn on the insight that both social systems
and digital technology recursively generate content by executing constitutive sys-
tem-specific binary codes, which has also been highlighted by Luhmann (2012: 119)
as well as by Vismann and Krajewski (2008: 91). It has built up an account of digital
processes as a method for illustrating systems theory and for elaborating a general
systems theoretical account of “process”, “constitution”, and “structural change”.

To avoid transposing institutional and statist notions of process, as systems
theory urges us to do, the contribution has “broken” the Internet, to turn the phrase
(Break the Internet n.d.), countering common notions of what the Internet is, before
proceeding to present a description of how Internet communication works. To
avoid treating the Internet as a black box and focusing on the meaning and pres-
entation of the “content” that digital communication makes available (texts, audio
files, video files, images, etc.), as systems theory further urges us to do, the contri-
bution has deconstructed and reconstructed Internet communication, illustrating
the internal processes through which social systems as communication systems
“constitute themselves with the aid of the distinction between medium and form”
(Luhmann 2012: 113–20).71

71 Also calling for a shift in focus from content (media as experienced by end-users) to the process
of transfer, Vismann and Krajewski demonstrate that media are not “mere tools” for the transmis-
sion of content, but rather “the conditions of possibility for communication” (2008: 101–102).

208   Nofar Sheffi

As has been shown, the Internet, the World Wide Web, and Web sites such
as Airbnb are, to again borrow from Foucault, “transactional realities” (réalités de
transaction): domains of reference born “from the interplay of relations of power
and everything which constantly eludes them, at the interface … of governors and
governed” (2008: 297). These domains are not places in which persons interact. They
are also not collections of communication devices or communities of which persons
are members. Rather, these domains are iteratively constituted and constitution-
alised through prompted communicative processes of binary-code execution that
make use of communication devices. Each operation of a digital computer through
use of an interface does not entail a transmission of information from one Internet
user to another in a language that is shared, or a transfer of data from one digital
device to another in a common language (Luhmann 1995: 139, 2012: 116). Each oper-
ation of the device via an interface prompts multiple, automatic, and mechanical
processes that run on multiple devices (digital computers and persons), generating
communication.

The constitutional processes through which domains are iteratively formed,
transformed, and auto-constitutionalised, the very processes through which sub-
jects are standardly formed and transformed, the very processes through which
discourses evolve and structural change comes to be observable, take place itera-
tively, bit by bit, through serial executions of system-specific binary codes that form
part of our constitution as configured communication devices.

Bibliography

Standards
Internet Engineering Task Force [IETF] (1981) Internet Protocol, STD 5, RFC 791. Status: Internet

Standard. Available from: https://www.rfc-editor.org/info/rfc791 [Accessed 16 July 2023].
IETF (1981) Transmission Control Protocol, RFC 793. Status: Internet Standard. Obsoleted. Available from:

https://www.rfc-editor.org/info/rfc793 [Accessed 16 July 2023].
IETF (1985) Internet Standard Subnetting Procedure, STD 5, RFC 950. Status: Internet Standard. Available

from: https://www.rfc-editor.org/info/rfc950 [Accessed 16 July 2023].
IETF (1987) Domain Administrators Guide, RFC 1032. Status: Unknown. Available from: https://www.

rfc-editor.org/info/rfc1032 [Accessed 16 July 2023].
IETF (1987) Domain Names – Concepts and Facilities, STD 13, RFC 1034. Status: Internet Standard.

Available from: https://www.rfc-editor.org/info/rfc1034 [Accessed 16 July 2023].
IETF (1987) Domain Names – Implementation and Specification, STD 13, RFC 1035. Status: Internet

Standard. Available from: https://www.rfc-editor.org/info/rfc1035 [Accessed 16 July 2023].
IETF (1989) Requirements for Internet Hosts – Communication Layers, STD 3, RFC 1122. Status: Internet

Standard. Available from: https://www.rfc-editor.org/info/rfc1122 [Accessed 16 July 2023].

https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc950
https://www.rfc-editor.org/info/rfc1032
https://www.rfc-editor.org/info/rfc1032
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1122

� We Accept: Bit-by-bit Constitution   209

IETF (1989) Requirements for Internet Hosts – Application and Support, STD 3, RFC 1123. Status: Internet
Standard. Available from: https://www.rfc-editor.org/info/rfc1123 [Accessed 16 July 2023].

IETF (1993) An Architecture for IP Address Allocation with CIDR, RFC 1518. Status: Historic. Available from:
https://www.rfc-editor.org/info/rfc1518 [Accessed 16 July 2023].

IETF (1993) Classless Inter-Domain Routing (CIDR): An Address Assignment and Aggregation Strategy, RFC
1519. Status: Proposed Standard. Obsoleted. Available from: https://www.rfc-editor.org/info/
rfc1519 [Accessed 16 July 2023].

IETF (1998) Internet Protocol, Version 6 (IPv6) Specification, RFC 2460. Status: Draft Standard. Obsoleted.
Available from: https://www.rfc-editor.org/info/rfc2460 [Accessed 16 July 2023].

IETF (1999) Hypertext Transfer Protocol – HTTP/1.1, RFC 2616. Status: Draft Standard. Obsoleted. Available
from: https://www.rfc-editor.org/info/rfc2616 [Accessed 16 July 2023].

IETF (2006) Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan,
BCP 122, RFC 4632. Status: Best Current Practice. Available from: https://www.rfc-editor.org/info/
rfc4632 [Accessed 16 July 2023].

IETF (2014) Automating DNSSEC Delegation Trust Maintenance, RFC 7344. Status: Proposed Standard.
Available from: hhttps://www.rfc-editor.org/info/rfc7344 [Accessed 16 July 2023].

IETF (2015) Hypertext Transfer Protocol Version 2 (HTTP/2), RFC 7540. Status: Proposed Standard.
Obsoleted. Available from: https://www.rfc-editor.org/info/rfc7540 [Accessed 16 July 2023].

IETF (2017) Internet Protocol, Version 6 (IPv6) Specification, STD 86, RFC 8200. Status: Internet Standard.
Available from: https://www.rfc-editor.org/info/rfc8200 [Accessed 16 July 2023].

IETF (2022) HTTP/3, RFC 9114. Status: Proposed Standard. Available from: https://www.rfc-editor.org/
info/rfc9114 [Accessed 16 July 2023].

World Wide Web Consortium [W3C] (1999) HTML 4.01 Specification. Superseded Recommendation.
Available from: https://www.w3.org/TR/html401/ [Accessed 16 July 2023].

Web Hypertext Application Technology Working Group [WHATWG] (n.d.), HTML Standard. Available
from: https://html.spec.whatwg.org/multipage/ [Accessed 16 July 2023].

Literature
AS137437 (n.d.) Available from: https://ipinfo.io/AS137437 [Accessed 16 July 2023].
Abbate, Janet (1999) Inventing the Internet. Cambridge, Mass: MIT Press.
Abelson, Hal & Sussman, Gerald Jay with Sussman, Julie (1996) Structure and Interpretation of Computer

Programs. 2nd ed., Cambridge, Mass: MIT Press.
Augarten, Stan (1984) Bit by Bit: An Illustrated History of Computers. New York: Ticknor & Fields.
Baran, Paul (1962) On Distributed Communications: I. Introduction to Distributed Communications

Networks. Santa Monica, CA: RAND Corporation.
Barlow, John Perry (2001) A Declaration of the Independence of Cyberspace, pp. 27–30 in Peter Ludlow

(ed.), Crypto Anarchy, Cyberstates, and Pirate Utopias. Cambridge, Mass: MIT Press.
Beckers, Anna & Teubner, Gunther (2021) Three Liability Regimes for Artificial Intelligence: Algorithmic

Actants, Hybrids, Crowds. Oxford: Hart Publishing.
ICANN (2011) Beginner’s Guide to Internet Protocol (IP) Addresses. Available from: https://www.icann.

org/resources/files/ip-addresses-beginners-guide-2011-03-04-en [Accessed 6 September 2023].
ICANN (2012) Beginner’s Guide to Domain Names. No longer available online.
Break the Internet (n.d.) Available from: https://www.merriam-webster.com/wordplay/break-the-

internet [Accessed 6 September 2023].

https://www.rfc-editor.org/info/rfc1123
https://www.rfc-editor.org/info/rfc1518
https://www.rfc-editor.org/info/rfc1519
https://www.rfc-editor.org/info/rfc1519
http://www.rfc-editor.org/info/rfc2460
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc4632
https://www.rfc-editor.org/info/rfc4632
https://www.rfc-editor.org/info/rfc7344
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.w3.org/TR/html401
https://html.spec.whatwg.org/multipage
https://ipinfo.io/AS137437
https://www.icann.org/resources/files/ip-addresses-beginners-guide-2011-03-04-en
https://www.icann.org/resources/files/ip-addresses-beginners-guide-2011-03-04-en
https://www.merriam-webster.com/wordplay/break-the-internet
https://www.merriam-webster.com/wordplay/break-the-internet

210   Nofar Sheffi

Bryant, Randal E. & O’Hallaron, David R. (2016) Computer Systems: A Programmer’s Perspective. 3rd ed.,
Boston: Pearson.

Butler, Judith (2011 [1993]) Bodies That Matter: On the Discursive Limits of “Sex”. London: Routledge.
Butler, Judith (1997) Excitable Speech: A Politics of the Performative. New York: Routledge.
Carveth, Rod & Metz, J. (1996) Frederick Jackson Turner and the Democratization of the Electronic

Frontier. The American Sociologist 27(1): 72–90.
Cerf, Vinton G. (1990) Oral history interview with Vinton G. Cerf. Charles Babbage Institute. Available

from: https://hdl.handle.net/11299/107214 [Accessed 16 July 2023].
Cerf, Vinton G. (2000) Forward, pp. vii–ix in Eric A. Hall, Internet Core Protocols: The Definitive Guide.

Sebastopol, CA: O’Reilly.
Chesky, Brian (2014) Belong Anywhere. Available from: http://blog.atairbnb.com/belong-anywhere/

[Accessed 27 November 2020].
de Certeau, Michel (1984) The Practice of Everyday Life. Berkley: University of California Press.
Chun, Wendy Hui Kyong (2011) Programmed Visions: Software and Memory. Cambridge, Mass: MIT

Press.
Church, Alonzo (1936) An Unsolvable Problem of Elementary Number Theory. American Journal of

Mathematics 58(2): 345–363.
Derrida, Jacques (1988) Signature Event Context, pp. 1–23 in Jacques Derrida, Limited Inc. Evanston, IL:

Northwestern University Press.
Derrida, Jacques & Dufourmantelle, Anne (2000) Of Hospitality. Stanford: Stanford University Press.
Derrida, Jacques (2007) Des Tours de Babel, pp. 191–225 in Psyche: Inventions of the Other, Volume I.

Stanford: Stanford University Press.
Domain Names Owned by AirBnB Inc (2020). Available from: https://robbiesblog.com/domain-names-

owned-by-airbnb-inc/7744 [Accessed 16 July 2023].
Dürst, Martin J., Yergeau, François, Ishida, Richard, Wolf, Misha & Texin, Tex (2005) Character Model

for the World Wide Web 1.0: Fundamentals. Available from: https://www.w3.org/TR/charmod/
[Accessed 16 July 2023].

Edwards, Paul N. (1996) The Closed World: Computers and the Politics of Discourse in Cold War America.
Cambridge, Mass: MIT Press.

Fall, Kevin R. & Stevens, W. Richard (2011) TCP/IP Illustrated, Volume 1: The Protocols. 2nd ed., Upper
Saddle River, NJ: Addison-Wesley.

Foucault, Michel (1995) Discipline and Punish: The Birth of the Prison. 2nd Vintage Books ed., New
York: Vintage Books.

Foucault, Michel (2008) The Birth of Biopolitics: Lectures at the College de France, 1978–1979. Basingstoke:
Palgrave Macmillan.

Galloway, Alexander R. (2004) Protocol: How Control Exists after Decentralization. Cambridge, Mass: MIT
Press.

Galloway, Alexander (2006) Language Wants to Be Overlooked: Software and Ideology. Journal of
Visual Culture 5(3): 315–331.

Gillespie, Tarleton (2010) The Politics of ‘Platforms’. New Media & Society 12(3): 347–364.
Gödel, Kurt (1931) Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme I. Monatshefte für Mathematik Physik 38: 173–198.
Goldsmith, Jack L. & Wu, Tim (2006) Who Controls the Internet? Illusions of a Borderless World. New York:

Oxford University Press.
Google IPV6 (n.d.). Available from: https://www.google.com/intl/en/ipv6/statistics.html [Accessed

4 April 2024].
Hall, Eric A. (2000) Internet Core Protocols: The Definitive Guide. Sebastopol, CA: O’Reilly.

https://hdl.handle.net/11299/107214
http://blog.atairbnb.com/belong-anywhere
https://robbiesblog.com/domain-names-owned-by-airbnb-inc/7744
https://robbiesblog.com/domain-names-owned-by-airbnb-inc/7744
https://www.w3.org/TR/charmod
https://www.google.com/intl/en/ipv6/statistics.html

� We Accept: Bit-by-bit Constitution   211

Hughes, Hayley & Han, Yujin (n.d.) Systems Thinking, Unlocked: Building an Inclusive Design
Language System. Available from: https://airbnb.design/systems-thinking-unlocked/ [Accessed
16 July 2023].

Krajewski, Markus (2018) The Server: A Media History from the Present to the Baroque. New Haven: Yale
University Press.

Lessig, Lawrence (1999) Code and Other Laws of Cyberspace. New York: Basic Books.
Lessig, Lawrence (2006) Code: Version 2.0. New York: Basic Books.
Luhmann, Niklas (1995) Social Systems. Stanford: Stanford University Press.
Luhmann, Niklas (2012) Theory of Society, Volume 1. Stanford: Stanford University Press.
Mueller, Milton L. (2009) Ruling the Root: Internet Governance and the Taming of Cyberspace. Cambridge,

Mass: MIT Press.
Panofsky, Erwin (1991) Perspective as Symbolic Form. New York: Zone Books.
Patterson, David A. & Hennessy, John L. (2021) Computer Organization and Design: The Hardware/

Software Interface. MIPS Edition. 6th ed., Kidlington: Morgan Kaufmann.
Petzold, Charles (2023) Code: The Hidden Language of Computer Hardware and Software. 2nd ed.,

Redmond, WA: Pearson Education.
Piper, Andrew (2021) Digitization, pp. 402–406 in Ann Blair et al (eds.), Information: A Historical

Companion. Princeton: Princeton University Press.
Saarinen, Karri (n.d.) Building a Visual Language Behind the Scenes of Our New Design System.

Available from: https://airbnb.design/building-a-visual-language/ [Accessed 16 July 2023].
Sheffi, Nofar (2020) We Accept: The Constitution of Airbnb. Transnational Legal Theory 11(4): 484–520.
Simmel, Georg (1906) The Sociology of Secrecy and of Secret Societies. American Journal of Sociology

11(4): 441–498.
Sipser, Michael (2012) Introduction to the Theory of Computation. 3rd ed., Boston, MA: Cengage

Learning.
Teubner, Gunther (1993) Law as an Autopoietic System. Oxford: Blackwell.
Teubner, Gunther (2000) Contracting Worlds: The Many Autonomies of Private Law. Social & Legal

Studies 9(3): 399–417.
Teubner, Gunther (2002) Idiosyncratic Production Regimes: Co-evolution of Economic and Legal

Institutions in the Varieties of Capitalism, pp. 161–182 in John Ziman (ed.), The Evolution of Cultural
Entities: Proceedings of the British Academy. Oxford: Oxford University Press.

Teubner, Gunther (2004) Societal Constitutionalism: Alternatives to State-centred Constitutional
Theory? 3–28 in C. Joerges, I.-J. Sand & G. Teubner (eds.), Transnational Governance and Constitu
tionalism. Oxford: Hart.

Teubner, Gunther (2006) The Anonymous Matrix: Human Rights Violations by ‘Private’ Transnational
Actors. Modern Law Review 69(3): 327–346.

Teubner, Gunther (2012) Constitutional Fragments: Societal Constitutionalism and Globalization. Oxford:
Oxford University Press.

Teubner, Gunther (2013a) The Project of Constitutional Sociology: Irritating Nation State Constitu-
tionalism. Transnational Legal Theory 4(1): 44–58.

Teubner, Gunther (2013b) The Law before Its Law: Franz Kafka on the (Im)possibility of Law’s Self-Re-
flection. German Law Journal 14(2): 405–422.

Teubner, Gunther (2017) Horizontal Effects of Constitutional Rights in the Internet: A Legal Case on the
Digital Constitution. Italian Law Journal 3(1): 193–206.

Teubner, Gunther (2019) Exogenous Self-Binding: How Social Subsystems Externalise Their
Foundational Paradoxes in the Process of Constitutionalisation, pp. 317–338 in Gunther

https://airbnb.design/systems-thinking-unlocked
https://airbnb.design/building-a-visual-language

212   Nofar Sheffi

Teubner, Critical Theory and Legal Autopoiesis: The Case for Societal Constitutionalism. Manchester:
Manchester University Press.

The IANA Stewardship Transition: What You Need to Know (n.d.). Available from: https://www.icann.
org/iana-transition-fact-sheet [Accessed 16 July 2023].

Turing, Alan M. (1937) On Computable Numbers, with an Application to the Entscheidungsproblem,
Proceedings of the London Mathematical Society s2-42(1): 230–265.

United States Department of Commerce (1998) Management of Internet Names and Addresses
(980212036-8146-02). Available from: https://www.icann.org/resources/unthemed-pages/
white-paper-2012-02-25-en [Accessed 6 September 2023].

Vismann, Cornelia & Krajewski, Markus (2008) Computer Juridisms. Grey Room 29(12): 90–109.
W3C (2021) CSS Snapshot 2021. Available from: https://www.w3.org/TR/css-2021/ [Accessed 16 July

2023].
Williams, Patricia J. (1997) Seeing a Colour-blind Future: The Paradox of Race. New York: Farrar, Strauss &

Giroux.
Wu, Tim (2010) The Master Switch: The Rise and Fall of Information Empires. New York: Atlantic Books.
Yen, Alfred, C. (2002) Western Frontier or Feudal Society? Metaphors and Perceptions of Cyberspace.

Berkeley Technology Law Journal 17(4): 1207–1263.

https://www.icann.org/iana-transition-fact-sheet
https://www.icann.org/iana-transition-fact-sheet
https://www.icann.org/resources/unthemed-pages/white-paper-2012-02-25-en
https://www.icann.org/resources/unthemed-pages/white-paper-2012-02-25-en
https://www.w3.org/TR/css-2021

	_Hlk161294670
	_GoBack
	_Hlk91918808
	_Hlk91926254
	_Ref482295026
	_Ref483907219
	_Ref105081526
	_Ref101205648
	_Hlk140486580
	_Ref486326693
	_Ref118541110
	_Ref486326839

