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Abstract: The physicochemical property of surfactants that
is widely used to study their behavior is the critical micellar
concentration (CMC). The value of this property is specific to
each surfactant as it depends on a number of external fac-
tors and the chemical composition of the surfactant. This
research focused on using two new machine learning ap-
proaches, Random Forest (RF) and Support Vector Machine
(SVM), to predict the logarithmic CMC value of 10 ionic sur-
factants. The same database from the previous study (a total
of 258 experimental cases) was used with the same input
variables — those defining the mixture of the organic solvent-
water: T, molecular weight, molar fraction and log P; and the
chemical composition of the surfactant: number of atoms of
each element of the surfactant — to develop the predictive
models. The best RF and SVM models were then compared
with the best ANN model developed in the previous study.
According to the results, the normalized models were those
that presented the lowest RMSE values in the validation
phase. Finally, the two approaches proposed in this research
are suitable tools, together with the ANN, for the prediction
of CMC and as possible alternative methods to replace
expensive experimental laboratory measurements.
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1 Introduction

Surfactants are amphiphilic organic compounds that have
hydrophobic groups on the tail and hydrophilic groups on
the head." These compounds are capable of reducing the
surface tension between two immiscible phases, especially
aqueous and oily substances” As a consequence of the
double affinity of these compounds, their stability is not
maintained in either polar solvents or organic solvents.
Therefore, for both affinities to work correctly, the polar
solvent must surround the hydrophilic part of the com-
pound, while the organic solvent must be in contact with its
hydrophobic part. These conditions only occur between two
immiscible phases.”

Ionic surfactants are a class of surfactants that includes
anionic and cationic. Anionic surfactants ionize in water by
acquiring a negative charge that allows them to bind to
positively charged particles.>* This type of surfactants is the
most widely used compared to cationic and other types due
to its ease of production and low cost of manufacture.
Additionally, they are effective in removing clay, dirt, and
soil stains.* Examples of these surfactants include sodium
dodecysulfate (SDS) or sodium-N-lauroylsarcosinate (SDDS).
Regarding cationic surfactants, they contain a positively
charged head group.’ They are mainly used as antistatic
agents for hair conditioners.* However, they are rarely used
in detergents as they tend to absorb in a high rate into
soil without being released, limiting their effectiveness.*®
Examples of these cationic surfactants include cetylpyr-
idinium chrolide (CPyCl) or tetradecyltrimethyl ammonium
bromide (TTAB).

At a certain concentration of surfactant, known as the
critical micelle concentration (CMC), micelles are formed.”
In other words, when the surface boundary in an aqueous
solution is saturated, surfactants promote a molecular
organization (micelles) to stabilize the system. Micelles
consist of aggregates whose interior is hydrophobic while
the exterior is hydrophilic.® Each surfactant, at specific
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temperature and electrolyte concentration, has a charac-
teristic CMC value.’ According to Perinelli et al.’® CMC is
influenced by the hydrophobicity of the amphiphilic,
hydrophobic tail length, as well as by the properties of the
solutions. Due theses particularities, the size and shape of
the micelles can be adjusted by modifying the concentration
and structure of the surfactant, the temperature, the prop-
erties of the solvent, and other factors.’

Micellization kinetics plays a significant role in several
technological applications."! Indeed, there are notable
changes in different physical and chemical properties of the
solution such as viscosity, surface tension and reactivity,
occur when the CMC is reached.' Therefore, the CMC can be
measured and analysing using different experimental
methods including the surface tension method, the conduc-
tivity method, and fluorescence spectrophotometry.” How-
ever, these methods have several drawbacks as high
expensive cost and time-consuming.”® In this sense, the use
of mathematical methods and predictive models can be
excellent alternatives in this field, since these approaches
have proven to be good tools for optimize research in this
area. In addition, these methods reduce the costs and the
time required for experimental measurements.”

Machine learning (ML) is an artificial intelligence tool
that employs algorithms to enable computers to learn com-
plex relationships, both linear and non-linear, within large
and diverse datasets to generate predictive models.">** ML
has been described as a significant promise to address
complex data patterns due to its strong fitting capabilities.”
Furthermore, empirical modelling can be a good alternative
to traditional experimental measurements in laboratories,”
so numerous studies can be found in the literature have
employed machine learning methods to model the proper-
ties of surfactant properties.’**%"’

Recently, our research group analyzed the efficiency of
machine learning methodologies for artificial neural
network (ANN) models to predict CMC values of surfactants
in solvent organics-in-water systems.® Our findings
demonstrate that these predictive models are an excellent
alternative to the traditional experimental approach.
Furthermore, these tools allow for a deeper understanding
of surfactant properties, such as critical micelle concentra-
tion, since by simulating the different conditions to predict
their modelling, more complex relationships can be uncov-
ered that are not evident when studied through traditional
experimental techniques. Despite that, further research is
needed that addresses these studies using different ML
methodologies to compare the results. Accordingly, there are
other algorithms such as Random Forest (RF) — developed
from a combination of multiple decision trees and the where
the final prediction is determined by majority vote (for
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classification) or by the average of the results of each indi-
vidual tree (for regression) — and Support Vector Machine
(SVM) — model that aims to find an optimal hyperplane that
maximizes the separation between two classes (for classifi-
cation) or the hyperplane that maximizes the epsilon dis-
tance (for regression) — that are widely known."”* In fact,
these two algorithms offer several advantages over other
machine learning models such an ANNs. For example, RF
models avoid overfitting, while SVM models are able to
adequately handle binary, categorical and numerical tar-
gets, are flexible, are robust with small datasets and provide
a unique solution.”

Therefore, this research aims to develop two additional
ML tools, Random Forest (RF) and Support Vector Machine
(SVM) algorithms, to model the logarithmic value of the
CMCs for the 10 ionic surfactants mentioned in our previous
research.'® This study focuses on analysing the performance
of these two machine learning-based approximation ap-
proaches and compares them with the best ANN model
developed in the previous study. Finally, it is discussed
whether these alternatives are also appropriate tools to
solve this type of problem.

2 Materials and methods
2.1 Experimental dataset

The database used in this research was extracted from our
previous study.'® It consist of total of 258 experimental cases,
with 12 input variables and one additional output variable to
predict. The input variables are: molar fraction of organic
solvent in water (dimensionless), molecular weight of
organic solvent (in g mol™?), octanol-water partition coeffi-
cient of solvent defined as log P or log Ky, (dimensionless),
number of C, H, Br, CI, N, Na, O and S atoms, and solvent
temperature in water when measuring CMC defined as T (in
K). The output variable is the logarithm value of CMC (in
mol Lt or M).

According to Soria-Lépez et al.”® the organic solvents
dissolved in water used to measure the CMC were four
alcohols (ethanol, ethylene glycol, isopropanol and meth-
anol) and acetone. The temperature range of the mixture
of organic solvent in water oscillated between 298.15K
and 323.15 K. The database includes experimental data of
all the input variables mentioned above, as well as the
logarithmic value of CMC for a total of 10 ionic surfactants,
4 of which are anionic and 6 cationic. The anionic ones are
sodium deoxycholate (SDC), sodium dodecylbenzenesulph-
onate (SDBS), sodium dodecylsulfate (SDS) and sodium
N-lauroylsarcosinate (SDDS), while the cationic ones are
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benzyldodecyldimethyl ammonium bromide (BDAB), cetyl-
pyridinium chrolide (CPyCl), cetyltrimethylammonium
bromide (CTAB), docecylpyridinium chloride (DPC), dode-
cyltrimethyl ammonium bromide (DTAB) and tetradecyl-
trimethyl ammonium bromide (TTAB).

2.2 Data division

The previous step to the implementation of the algorithms to
create different predictive models of the CMC values is the
data division. According to Ishola et al® the predictive
models developed using machine learning have to be vali-
dated. This validation is used for the selection of an optimal
internal validation model and for the evaluation of its
generalized predictive performance or external valida-
tion.?>?* In this research, the internal validation consists of a
training group (T) and a validation group (V), while the test
group (Z), in this case, is the external validation. Taking this
into account, the database was divided into three large
groups randomly. The first group, training (T), constitutes
70 % of the database to develop different models. The second
group, validation (V), corresponds to 20 % of the database,
and is used to find the best model from all the models
developed in the training group. Finally, the third group,
testing (Z), represents 10 % of the database and has the
function of evaluating the model’s performance with data
that has not been used in the training group.

2.3 Machine learning models

As has been previously mentioned, two machine learning
based algorithms were used to predict the CMC values of
ionic surfactants: Random Forest (RF) and Support Vector
Machine (SVM).

2.3.1 Random forest

The Random Forest (RF) is a class of ensemble learning
algorithm first announced by Breiman' in 2001.* This
algorithm has been widely used to deal with classification
and regression problems.”® This algorithm uses bootstrap
aggregation, commonly known as bagging, to produce deci-
sion trees.”’

According to Iranzad and Liu,”® two important tech-
niques are integrated in RF: bagging and random node
splitting. Bagging consists of repeatedly choosing a random
sample with replacement from the training data and fitting
trees to these samples. This leads to trees that grow from
different samples and are quite distinct from one another.
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Regarding to random node splitting, this technique allows
for the consideration of only a random subset of features in
each node split of the tree. This leads to uncorrelated trees by
preventing features that are very strong predictors of
response from being selected by many trees.”® Accordingly,
this algorithm overcome certain limitations of decision trees
such as overfitting problems and their inability to store non-
linear and non-balanced data.”**° The final prediction of the
RF observation is executed by majority voting in classifica-
tion problems or by averaging the results of all trees in
regression problems®' (Figure 1).

In this research, all RF models generated employed the
following three hyper-parameters combinations: number of
trees (from 1 to 200 in 199 steps, using a linear scale),
maximum depth (from 1 to 200, using a linear scale) and pre-
pruning (true and false). It is also worth mentioning that two
RF models were normalized to a certain range to avoid any
of the variables having a greater influence on other vari-
ables causing a disproportionate effect on model training. In
this study, two normalization methods were applied in
linear scale to both input and output variables: range
transformation (denoted by the subscript R) which normal-
izes the data on a scale between -1 and 1, and Z-trans-
formation (denoted by the subscript Z). The normalization
process was first applied to the training and validation data
and then to the test data. All results were then de-normalized
for comparison with other models. Therefore, in this
research, three approaches were developed for the RF
models (RF, RFr and RF).

2.3.2 Support vector machine

Support Vector Machine (SVM) is supervised machine
learning algorithm first introduced by Cortes and Vapnik®’
in 1995.2° This algorithm is based on the principle of struc-
tural risk minimization which can lead to an improvement
of the generalization capability and a decrease in the upper
limit of the generalization error.* In addition, according to
Gaye, Zhang, and Wulamu,*® SVM work well with high-
dimensional data. This algorithm is a binary classifier in
which the main aim is to find an optimal hyperplane that
shows a maximum margin between the feature vectors of all
the data of the different classes (Figure 2).3**

This algorithm is used for both linear and nonlinear
regression and classification problems.*® SVM uses the
kernel technique to solve in the case of nonlinear prob-
lems.*” According to Boualem et al.*® kernel functions are
used to translate the input data into a higher dimensional
feature space. The most studied kernel functions are the
linear, the polynomial of degree d and the radial basis
function (RBF).*®
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Figure 2: Support vector machine as a binary classifier. Inspired in
Andrade Cruz et al.*°

In this study, all SVM models were generated using the
following four hyper-parameters combinations: SVM type,
kernel type, gamma and C. The guide of Hsu et al.,*® was used
as a reference study to select the values of the gamma and C
hyper-parameters. In addition, LibSVM, an SVM library
proposed by Chang and Lin*® was used.* The SVM models
were generated using SVM type (epsilon-SVR and nu-SVR,
both work on regression problems), kernel type (radial
basis function, RBF), gamma (values between 951077 and
256 in 28 steps, in linear or logarithm scale) and C (values
between 9.8-10™ and 1,048,576 in 30 steps, in linear or log-
arithm scale). The two normalization methods mentioned
above were also applied in some SVM models on both in
linear and logarithmic scales, described with the subscript L
in this case, to both input and output variables: range
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Figure 1: Set of individual trees that are part of
the random forest for regression tasks.
Inspired in Andrade Cruz et al.>

transformation (between —1 and 1), and Z-transformation.
The normalized results were then de-normalized in the same
way as already mentioned in the RF models (RFy and RF).
Therefore, six approaches were developed for the SVM
models (SVM, SVM;, SVUMg, SVMg1, SVM; and SVMy_;).

2.4 Metrics

The evaluation of the modelling fit and the prediction per-
formance of the different algorithms were measured using the
following three statistical parameters: root mean squared
error (RMSE) (Eq. (1)), mean absolute percentage error (MAPE)
(Eq. (2)) and the linear squared correlation coefficient ®) (Eq.
(3)). All these parameters were calculated for all phases.
RMSE measures the error between two data. Its values
range from 0 to « and closer the value is to 0, the less error
there is between two data. MAPE measures the percentage of
absolute error. Its values range is also from 0 to «, being 0 %
error when MAPE is equal to 0. Finally, the range of R* values
is from —o to 1, with R* = 1 representing a perfect fit.**
Therefore, at lower values of RMSE and MAPE and higher
values of R% the predictive model shows a better fit.**

M

v

©)]
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where y and x represent the actual and predicted values,
respectively. Furthermore, y is the mean of data y and n is
the total number of the data.

2.5 Computational resource and software

The different RF and SVM models were developed using the
RapidMiner Studio Educational 10.2.000 version (RapidMiner
GmbH.). The computational equipment used were an Intel®
Core™ 19-10900 K at 3.70 GHz with 64 GB RAM with Windows
11 Pro. The obtained data (258 experimental cases) were
collected using Microsoft Excel 2013 (Microsoft). Figures 1 and
2 were made with Microsoft PowerPoint 2016 (Microsoft). The
graphical representations (Figures 3, 5 and 7) and the scatter
plots (Figure 4 and 6) were made with SigmaPlot 14.0 (Systat
Software Inc.).

3 Results and discussion

In this section, the performance of the RF and SVM models in
predicting the CMC values of several ionic surfactants is
statistically described. Then, these models are compared
with the best ANN model developed in the previous study to
verify whether these two machine learning-based algo-
rithms used in this research are suitable for CMC modelling.

The statistical parameters RMSE, MAPE and R? are used
to evaluate the model fit and prediction performance. Their
values provide statistical information about the behavior of
the models. Finally, the RMSE values are taken into account
for the selection of the best model for each algorithm studied
in this research.

3.1 Random forest models

In the case of RF models, three different predictive models
have been developed using the RF algorithm. Figure 3 pre-
sents the values of statistical parameters of RMSE, while
Table 1 shows the values of the statistical parameters for
MAPE and R* for each of the predictive models for the
training, validation and testing phases.

According to the results, minimal differences were
observed in the values of the three statistical parameters
across all phases for the three RF models developed. For the
RMSE values, the range oscillates between 0.069 M and
0.095 M (Figure 3). In contrast, the MAPE values ranged from
4.6 % to 6.5 %, while the R? values varied between 0.954 and
0.980 (Table 1).
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Figure 3: Graphical representation of the RMSE values for training,
validation and testing for the RF models. RMSE is root mean square error
(M).

Table 1: Values of the statistical parameters MAPE and R? obtained by
each of the three RF models developed for all phases (training, validation
and testing). MAPE is mean absolute percentage error (%) and R? is the
linear squared correlation coefficient.

Training Validation Testing
Model MAPE R? MAPE R? MAPE R?
RF 55 0.967 5.9 0.977 55 0.954
RFg 6.1 0.966 6.2 0.980 5.6 0.964
RF, 5.4 0.979 6.5 0.979 46 0.970

Regarding the statistical performance of the models for
the training phase, the RF; model demonstrated the lowest
RMSE value (0.073 M) corresponding to a MAPE value of 5.4 %.
On the other hand, the RF; model showed the highest RMSE
and MAPE value (0.091 M and 6.1 %). In the validation phase,
the RFg model achieved the lowest RMSE value (0.085 M),
followed by the RF model (0.089 M) and the RF; model
(0.095 M), corresponding to MAPE values of 6.2 %, 5.9% and
6.5 %, respectively (Figure 3 and Table 1, respectively). The R*
values were similar in the three models during both training
and validation phases (Table 1). Finally, during testing phases,
the RF; model showed the best performance, with the lowest
RMSE and MAPE values (0.069 M and 4.6 %, respectively) and
highest R* value (0.970) for the testing phase. The other two
models were worse in terms of the three statistical parame-
ters (Figure 3 and Table 1).

According to the previously described, it can be
concluded that the three models performed adequately with
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internal data (training and validation) and showed excellent
generalized predictive performances with external data
(testing), indicating that these predictive models did not
present overfitting problems.

The best RF model was selected to further study its
performance in CMC modelling of ionic surfactants. The
selection criterion used for selection was the lowest RMSE
value during the validation phase. Based on this criterion,
the normalized model in the range -1 to 1 (RFy) was selected,
since it showed the lowest RMSE (0.085 M), although it did
not show the lowest RMSE value for the testing phase.
Therefore, the RFg model was selected for further perfor-
mance analysis.

Figure 4 illustrates the dispersion of the real CMC values
versus those predicted by the RFr model for the three phases.
The dispersion of the CMC values for the internal data
(training and validation cases) is shown in Figure 4A. Ac-
cording to this figure, it can be observed that, in general, the
points are close to the red dashed line with the slope of 1. This
indicates that the most cases exhibited low fitting errors,
ie., minimal dispersion between the real and predicted
values. However, there are some cases that are noticeably
far from the straight line, showing significant dispersion
errors between real and predicted values. In relation to
these special cases, it is worth mentioning three training
cases with the highest fitting errors: (-0.50, -1.07),
(-0.77, -1.28) and (-0.23, —0.61).

Regarding the first case (-0.50, —1.07), the model pre-
dicted a value of —1.07 M, while the actual value was —0.50 M,
(model overestimation). This case showed the highest abso-
lute error (0.572 M), since it is the point that is farthest from
the slope line 1, and a significant absolute percentage error
value (115.2 %). The second case (-0.77, —1.28) also presented
an overestimation of the model (-1.28 M vs —0.77M). In
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addition, it showed the second highest value of absolute
error (0.511 M) and the third highest value of percentage
error value (66.2 %). Finally, the third case (-0.23, —0.61), the
model predicted a log CMC value of —0.61 M versus actual
value (-0.23 M) leading a model overestimation of the model.
Furthermore, this case showed an absolute error of 0.377 M
and the highest value of absolute percentage error (160.7 %).
In fact, if these three training cases are removed, the values
of the three statistical parameters are significantly improved
(RMSE = 0.070 M, MAPE = 4.6 %, and R? = 0.980).

Figure 4B illustrates the dispersion of CMC values for the
external data in testing phase. According to this figure, it is
observed that most of the cases are close to the slope line 1
(red dashed). However, two test cases with the highest error
values are highlighted. In this sense, the first case
(-1.36, -1.52), in which the model predicted a value of -1.52 M
versus —1.36 M resulting in a model overestimation of 11.7 %,
had the highest absolute error value (0.159 M). On the other
hand, the second case (-0.84, —0.73) presented the highest
absolute percentage error value (12.9 %) and the second
highest absolute error value (0.108 M).

3.2 Support vector machine models

Regarding SVM models, six different predictive models have
been developed using SVM algorithm. Figure 5 presents the
values of statistical parameters of RMSE. On the other hand,
statistical parameters for MAPE and R® are represented
(Table 2).

Considerable differences were observed in the values
of the statistical parameters RMSE (Figure 5) and MAPE
(Table 2) for all phases between the SVM models developed
using a linear scale and those using a logarithmic scale. In
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Figure 4: Scatter plots presenting actual and predicted values of log CMC real (x-axis) and log CMC predicted (y-axis) for the RFy model in the training and
validation phases (A) and testing phase (B). The red dashed line corresponds to the line with slope one.
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Figure 5: Graphical representation of the RMSE values for training,
validation and testing for the SVM models. RMSE is root mean square
error (M).

Table 2: Values of the statistical parameters MAPE and R? obtained by
each of the six SVM models developed for all phases (training, validation
and testing). MAPE is mean absolute percentage error (%) and R? is the
linear squared correlation coefficient.

Training Validation Testing
Model MAPE R? MAPE R? MAPE R?
SVM 0.2 0.999 5.1 0.983 3.8 0.970
SVM, 04  0.999 3.1 0.991 34 0.969
SVMg 9.5 0.913 8.7 0.933 7.9 0.922
SVMg.t 0.6 0.998 2.9 0.993 2.1 0.991
SVM; 8.7 0.916 8.8 0.932 7.0 0.920
SVMz.. 0.6 0.998 2.6 0.994 2.6 0.985

this sense, the SVMy and SVM; models showed the highest
values of these two statistical parameters compared to the
other SVM models.

Regarding the RMSE values, their range oscillated
between 0.011 M and 0.147 M, and between 0.2 % and 9.5 % in
the case of MAPE (Figure 5 and Table 2 respectively). In
addition, significant variations were observed for R? values
between different SVM models (between 0.913 and 0.999).

In terms of the statistical performance of the models for
the training phase, the SVMy model presented the highest
RMSE and MAPE values (0.147 M and 9.5 %, respectively), and
the lowest R? value (0.913), while the SVM model presented the
lowest RMSE and MAPE values (0.011 M and 0.2 %). The fits of
the other SVM models (SVM;, SVMz;, and SVMg ) were very
close to those of the SVM model (Figure 5 and Table 2,
respectively). During the validation phase, the SVMz; model
demonstrated the lowest RMSE value (0.044 M) followed

A. Soria-Lépez et al.: Ionic surfactants critical micelle concentration modelling

DE GRUYTER

closely by the SVMy_; model (0.049 M). Moreover, the R*values
for these twoo models were very similar (Table 2). In contrast,
the SVM; model exhibited the highest value (0.147 M) and
a MAPE of 8.8%, followed by the SVMgp model (with
RMSE = 0.144 M and MAPE = 8.7 %). Finally, the SVMg 1, model
showed the lowest RMSE and MAPE values (0.040 M and 2.1 %,
respectively) for the testing phase. The SVMz;, model was not
far behind the SVMg.;, model in terms of the three statistical
parameters. In contrast, the SVMy and SVM; models showed
the poorest performance. These results are illustrated in
Figure 5 and Table 2.

According to these results, SVM models using a logarith-
mic scale achieved better results with the internal data
compared to SVM models using a linear scale. Moreover, these
predictive models showed the best generalized predictive
performances with the external data, indicating that they are
more suitable for modelling the logarithmic CMC values.

As mentioned in the previous section, the best SVM
model was chosen to further evaluate its performance.
Considering the criterion previously described, the model
(SVM_.1), with a RMSE value of 0.044 M, was selected for the
validation phase, although it was not the one with the lowest
value for the test phase (Table 2 and Figure 5).

Figure 6 shows the deviation of the actual CMC values
from those predicted by the SVMz; model for the three
phases. Figure 6A shows for the training and validation
cases. According to this figure, the case (-1.31, -1.49) is
noteworthy, as it contains high fitting errors and is in a
position away from the red dashed line with respect to the
other cases. In fact, this case has the highest absolute error
(0.172 M). Furthermore, in this point, the model predicted a
value of —1.49 M versus —-1.31 M (real value), leading to an
overestimation of the model (absolute percentage error
of 13.1 %).

Figure 6B shows that most of the test cases are close to
the slope line 1. However, one case (-1.36, —1.55) is worth
mentioning, which is very attractive to the human eye and is
located in the middle zone of the graph. For this test case, the
model predicted a value of -1.55M versus —1.36 M (over-
estimation of model). The absolute error and the absolute
percentage error were the highest of the all the test cases
(0.194 M and 14.3 %, respectively). In fact, when this point is
removed, the RMSE and MAPE values drop to 0.034 M and
0.020 M, and R? increases to 0.993.

3.3 Comparison with the ANN model
obtained from the previous study

According to the previous sections, the best models in this
research are: RFy for the RF algorithm and SVMyz, for the
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Figure 6: Scatter plots presenting actual and predicted values of log CMC real (x-axis) and log CMC predicted (y-axis) for the SVMz. model in the training
and validation phases (A) and testing phase (B). The red dashed line corresponds to the line with slope one.

SVM algorithm. In this section, a comparison of these models
is carried out with the best ANN model shown in the previ-
ous study'® (Figure 7).

According to the results, it is stated that the best models
for the three algorithms (RF, SVM and ANN) are the
normalized ones. This corroborates that normalization
usually provides excellent fits because this method prevents
any variable from having a greater effect on others during
model training. In fact, the previous study by Soria-Lopez
et al.'”® demonstrated that all the normalized ANN models
were the ones that showed the best fits with respect to the
non-normalized ANN models, with the lowest RMSE values
for the validation phase. However, the models developed in
this research did not follow that pattern. Regarding the RF
and SVM models, no clear differences, no defined pattern,
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Figure7: Graphical representation of the RMSE values (in M) for training,

validation and testing for the three better models. RMSE is root mean
square error (M).

were observed between the non-normalized and normalized
ones. The three RF models developed were similar in terms
of fits both for the validation phase and for the rest of the
phases, with the RF; model showing the lowest RMSE value in
the validation phase (Figure 3). As for the SVM models, the
following pattern was analysed: linear scale models showed
the worst fits for all statistical parameters compared to those
developed from a logarithmic scale for all phases. Among the
SVM models developed using a logarithmic scale, the SVMZ-L
model showed the lowest RMSE value in the validation
(Figure 5).

On the other hand, it can be observed that the RFg model
showed the worst fits for all phases in the RSME (Figure 7),
MAPE and R? values (Table 3). On the other hand, ANN,
model presented a lower RMSE value for the validation
phase (0.040 M), followed very closely by the SVMy; model
(0.044 M). Moreover, the MAPE and R? values were practi-
cally similar. During the training phase, the SVMz; model
presented slightly better fits than the ANN; model.
Furthermore, this model showed better fits for the external

Table 3: Values of the statistical parameters MAPE and R? obtained by
each of the best RF and SVM models for all phases (training, validation and
testing). Furthermore, the values of the statistical parameters of the best
ANN model obtained in the previous study were also included. MAPE is
the mean absolute percentage error (%) and R? is the linear squared
correlation coefficient.

Training Validation Testing
Model MAPE R? MAPE R? MAPE R?
RFr 6.1 0.966 6.2  0.980 56  0.964
SVMy. 06  0.998 26 0.99% 26 0985
ANN; 1.5 0.997 27 0995 35 0970
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data (testing phase) with RMSE and MAPE values of 0.051 M
and 2.6 % versus 0.069 M and 3.5 % for ANN; model (Table 3).

According to these results, it can be concluded that ma-
chine learning-based models are suitable for modelling the
logarithmic CMC values of ionic surfactants. This research
demonstrates that other machine learning approaches, such
as the Random Forest and the Support Vector Machine, are
promising tools to replace traditional laboratory measure-
ments. These algorithms were successfully applied in this
research. In this sense, RF and SVM together with ANN are
three approaches that work adequately for this type of
problems.

Other studies can be found in the literature that have
used machine learning-based models to model the loga-
rithmic CMC values. A complete comparison of the best
models obtained in our study with other previous models in
the literature is important to know the scope of our models.
However, this comparison is difficult due to differences in
data sets, hyper-parameter usage, and surfactant types
used to predict in the models found in the literature. The
study by Boukelkal et al.** showed that nonlinear machine
learning-based methods (ANN, RFR, and SVR) provided
better fits for the prediction of CMC of different surfactant
classes. Among those models, the SVR model for the global
phase was the best with an RMSE value of 0.205 M and an R*
of 0.974 for a total of 593 experimental cases.** Our best
SVM model (RMSE = 0.031 M and R* = 0.996) for a total of 258
experimental cases presented better statistical values
(Figure 7 and Table 3). Another study by Rahal, Hadidi, and
Hamadache® used regression and ANN methods to predict
the CMCs of 50 anionic surfactants. The results showed that
the ANN model with a 4-3-1 architecture presented the best
results with an R” of around 0.940 for the training phase.*
Our best ANN for this phase showed a higher R* value
(0.997) (Table 3). Finally, Chen and colleagues'® used tree-
based ensemble algorithms including RF to predict the
CMCs of 779 experimental cases of different surfactant
classes. The results showed that the RF model exhibited an
RMSE, MAPE, and R®* of 0.200M, 23.93%, and 0.972,
respectively, for the training phase, while 0.325 M, 10.32 %,
and 0.927, respectively, for the testing phase.'* In our study,
the RF model showed better fits (Figure 7 and Table 3).

Based on these results, it can be stated that our models
outperform all previously published models in all statistical
metrics available for comparison, as they exhibit a lower
root mean square error and a higher correlation coefficient.
However, further research is still needed on these machine
learning approaches in this area. New parameter combina-
tions, data splitting, new normalization methods, among
others, need to be studied to assess whether the models can
be further improved.

DE GRUYTER

4 Conclusions

The study of CMC is of great interest for industrial and aca-
demic applications within the field of surfactant. The use of
predictive models using machine learning algorithms is a
suitable tool and a possible alternative to expensive experi-
mental measurements in the laboratory. In this research, two
machine learning-based approaches, namely RF and SVM,
were applied to model the logarithmic CMC values of 10 ionic
surfactants using the same input variables as in the previous
study.”® The best RF and SVM models were normalized
according to the criterion for the selection of the best model.
Then, these models were compared with the best ANN model
developed in the previous study. The ANN; model showed the
best fit for the validation phase (RMSE = 0.040 M and with a
MAPE = 2.7 %), while the SVM;_; model showed better fits for
the external data (RMSE = 0.051 M and with a MAPE = 2.6 %).
Generally, the three predictive models developed presented
adequate fits. Therefore, the implementation of the RF and SVM
algorithms developed in this study and the ANN algorithm
developed in the previous study for CMC prediction are effec-
tive tools and good substitutes for experimental laboratory
measurements. Finally, further studies of these approaches in
CMC prediction using new methods (other hyper-parameter
combinations, new data splits, and more experimental cases,
etc.) are needed to further improve these results.
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