Abstract
We have studied the surface dilatational properties of aqueous foaming dispersions containing mixtures of silica nanoparticles (Ludox CL) and sulfobetaine (LHSB) in Tahe formation water. The effects of temperature and pH on the surface dilatational modulus and time shift were studied by oscillating drop module (ODM). The ODM results show that the surface dilatational modulus of mixtures of CL and LHSB is large and increases with the decrease of surface area deformation, which results from hydrophobic interaction between adsorbed mixtures. Under test conditions, the Gibbs stability criterion E > σ/2 against foam coarsening is fulfilled. Results of Brewster angle microscopy (BAM) show that an uniform adsorption layer is established at the air-water interface. Temperature and pH-value influence the dilatation modulus of the surface by hydrophobic interaction or adsorption. Time shift has a similar variation trend. This is a surprising feature. It suggests that LHSB adsorbed on CL can respond to surface tension gradient. The time shift difference results from the response of LHSB at different adsorption sites. In addition, sand pack tests show that compared to LHSB, a finer foam was produced by the mixtures CL/LHSB due to the capillary-induced \snap-off". Thus, higher pressure difference and higher oil recovery could be achieved.
Abstract
Wir haben die Oberflächendilatationseigenschaften von wässrigen schaumbildenden Dispersionen, die Mischungen von Silica-Nanopartikeln (Ludox CL) und Sulfobetain (LHSB) enthalten, in Wasser der Tahe-Formation untersucht. Die Auswirkungen von Temperatur und pH-Wert auf den Oberflächen-Dilatationsmodul und die Relaxationszeit wurden mit Hilfe des oszillierenden Tropfenmoduls (ODM) untersucht. Die ODM-Ergebnisse zeigen, dass der Oberflächen-Dilatationsmodul von Mischungen aus CL und LHSB groß ist und mit der Abnahme der Oberflächendeformation zunimmt, die aus der hydrophoben Wechselwirkung zwischen adsorbierten Mischungen resultiert. Unter Testbedingungen wird das Gibbs-Stabilitätskriterium E > σ/2 gegen die Schaumvergröberung erfüllt. Ergebnisse der Brewster-Winkel-Mikroskopie zeigen, dass sich eine gleichmäßige Adsorptionsschicht an der Luft-Wasser-Grenzfläche ausbildet. Temperatur und pH-Wert beeinflussen den Oberflächen-Dilatationsmodul durch hydrophobe Wechselwirkung bzw. Adsorptions. Die Änderung der Relaxationszeit hat einen ähnlichen Trend. Dies ist ein überraschendes Merkmal. Es deutet darauf hin, dass an CL adsorbiertes LHSB auf den Oberflächenspannungsgradienten reagieren kann. Die Änderung der Relaxationszeit ergibt sich aus der Reaktion von LHSB an verschiedenen Adsorptionsstellen. Darüber hinaus zeigen die Sandpackversuche, dass im Vergleich zu LHSB mit den Mischungen CL/LHSB aufgrund des kapillarbedingten \snap-off" ein feinerer Schaum erzeugt wurde. Dadurch konnte eine höhere Druckdifferenz und eine höhere Ölrückgewinnung erzielt werden.
About the author
Yang Wang, lecturer of Xi’an Shiyou University.
Acknowledgements
Financial support by the National Natural Science Foundation of China (51574266, 51474234, 51704235 and 51504192) are gratefully acknowledged.
References
1 Rio, E., Drenckhan, W., Salonen, A. and Langevin, D.: Unusually Stable Liquid Foams. Adv Colloid Interface Sci. 205 (2014) 74–86. PMid:24342735; DOI:10.1016/j.cis.2013.10.02310.1016/j.cis.2013.10.023Search in Google Scholar
2 Alargova, R. G., Warhadpande, D. S., Paunov, V. N. and Velev, O. D.: Foam Superstabilization by Polymer Microrods. Lang. 20 (2004) 10371–10374. PMid:15544360; DOI:10.1021/la048647a10.1021/la048647aSearch in Google Scholar
3 Binks, B. P. and Horozov, T. S.: Aqueous Foams Stabilized Solely by Silica Nanoparticles. Angew. Chem. Int. Edit. 117 (2005) 3788–3791. DOI:10.1002/ange.20046247010.1002/ange.200462470Search in Google Scholar
4 Gonzenbach, U. T., Studart, A. R., Tervoort, E. and Gauckler, L. J.: Ultrastable Particle Stabilized Foams. Angew. Chem. Int. Edit. 45 (2006) 3526–3530. PMid:16639761; DOI:10.1002/ange.20050367610.1002/ange.200503676Search in Google Scholar
5 Fujii, S., Ryan, A. J. and Armes, S. P.: Long-range Structural Order, Moiré Patterns, and Iridescence in Latex-stabilized Foams. J. Am. Chem. Soc. 128 (2006) 7882–7886. PMid:16771501; DOI:10.1021/ja060640n10.1021/ja060640nSearch in Google Scholar
6 Vijayaraghavan, K., Nikolov, A. and Wasan, D.: Foam Formation and Mitigation in a Three-phase Gas-liquid-particulate System. Adv. Colloid Interface Sci. 123 (2006) 49–61. PMid:16997269; DOI:10.1016/j.cis.2006.07.00610.1016/j.cis.2006.07.006Search in Google Scholar
7 Binks, B. P. and Murakami, R. B.: Phase Inversion of Particle-stabilized Materials from Foams to Dry Water. Nat. Mater. 5 (2006) 865–869. PMid:17041582; DOI:10.1038/nmat175710.1038/nmat1757Search in Google Scholar
8 Tang, F. Q., Xiao, Z., Tang, J. A. and Jiang, L. C.: The Effect of SiO2 Particles upon Stabilization of Foam. J. Colloid Interf Sci. 131(1989) 498–502. DOI:10.1016/0021-9797(89)90192-610.1016/0021-9797(89)90192-6Search in Google Scholar
9 Kumagai, H., Torikata, Y., Yoshimura, H., Kato, M. and Yano, T.: Estimation of the Stability ofFoam Containing Hydrophobic Particles by Parameters in the Capillary Model. Agric Biol Chem. 5(1991) 1823–1829. DOI:10.1271/bbb1961.55.182310.1271/bbb1961.55.1823Search in Google Scholar
10 Garrett, P. R.: The Effect of Polytetrafluoroethylene Particles on the Foamability of Aqueous Surfactant Solutions. J Colloid Interface Sci. 69(1979) 107–121. DOI:10.1016/s0301-7516(03)00085-110.1016/s0301-7516(03)00085-1Search in Google Scholar
11 Aveyard, R., Binks, B. P., Fletcher, P. D., Peck, T. G. and Rutherford, C. E.: Aspects of Aqueous Foam Stability in the Presence of Hydrocarbon Oils and Solid Particles. Adv Colloid Interface Sci. 48(1994) 93–120. DOI:10.1016/0001-8686(94)80005-710.1016/0001-8686(94)80005-7Search in Google Scholar
12 Denkov, N. D.: Mechanisms of Foam Destruction by Oil-based Antifoams. Lang. 20 (2004) 9463–9505. PMid:15491178; DOI:10.1021/la049676o10.1021/la049676oSearch in Google Scholar
13 Binks, B. P.: Particles as Surfactants-Similarities and Differences. Curr Opin Colloid In. 7 (2002) 21–41. DOI:10.1016/s1359-0294(02)00008-010.1016/s1359-0294(02)00008-0Search in Google Scholar
14 Du, Z., Bilbao-Montoya, M. P., Binks, B. P., Dickinson, E. D. and Ettelaie, R. E.; Murray, B. S.: Outstanding Stability of Particle-stabilized Bubbles. Lang. 19 (2003) 3106–3108. DOI:10.1021/la034042n10.1021/la034042nSearch in Google Scholar
15 Dickinson, E., Ettelaie, R., Kostakis, T. and Murray, B. S.: Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles. Lang. 20 (2004) 8517–8525. PMid:15379469; DOI:10.1021/la048913k10.1021/la048913kSearch in Google Scholar
16 Horozov, T. S. and Binks, B. P.: Particle-Stabilized Emulsions: A Bilayer or a Bridging Monolayer? Angew Chem Int Edit. 45 (2006) 773–776. PMid:16355432; DOI:10.1002/ange.20050313110.1002/ange.200503131Search in Google Scholar
17 Holmberg, K., Shah, D. O. and Schwuger, M. J.: Handbook of Applied Surface and Colloid Chemistry. John Wiley & Sons, 2002.Search in Google Scholar
18 Shibata, J. and Fuerstenau, D. W.: Flocculation and Flotation Characteristics of Fine Hematite with Sodium Oleate. Int J Miner Process. 72 (2003) 25–32. DOI:10.1016/s0301-7516(03)00085.-110.1016/s0301-7516(03)00085.-1Search in Google Scholar
19 Healy, T. W., Somasundaran, P. and Fuerstenau, D. W.: The Adsorption of Alkyl and Alkylbenzene Sulfonates at Mineral Oxide–water Interfaces. Int J Miner Process. 72 (2003) 3–10. DOI:10.1016/s0301-7516(03)00083-810.1016/s0301-7516(03)00083-8Search in Google Scholar
20 Fuerstenau, D. W. and Colic, M. B.: Self-association and Reverse Hemimicelle Formation at Solid– water Interfaces in Dilute Surfactant Solutions. Colloids Surf A. 146(1999) 33–47. DOI:101016/s0927-7757(98)00795-x101016/s0927-7757(98)00795-xSearch in Google Scholar
21 Lu, S. and Song, S.: Hydrophobic Interaction in Flocculation and Flotation 1. Hydrophobic Flocculation of Fine Mineral Particles in Aqueous Solution. Colloids Surfaces. 57(1991) 49–60. DOI:10.1016/0166-6622(91)80179-r10.1016/0166-6622(91)80179-rSearch in Google Scholar
22 Gonzenbach, U. T., Studart, A. R., Tervoort, E. and Gauckler, L. J.: Ultrastable Particle-Stabilized Foams. Angew Chem Int Edit. 45 (2006) 3526–3530. PMid:16639761; DOI:10.1002/ange.20050367610.1002/ange.200503676Search in Google Scholar
23 Binks, B. P., Campbell, S. B., Mashinchi, S. C. and Piatko, M. P.: Dispersion Behavior and Aqueous Foams in Mixtures of a Vesicle-Forming Surfactant and Edible Nanoparticles. Lang, 31 (2015) 2967–2978. PMid:25734773; DOI:10.1021/la504761x10.1021/la504761xSearch in Google Scholar PubMed
24 Varade, D. A., Carriere, D. B., Arriaga, L. R., Fameau, A. L., Rio, E., Langevin, D. and Drenckhan W.: On the Origin of the Stability of Foams Made from Catanionic Surfactant Mixtures. Soft Matter. 7 (2011) 6557–6570. DOI:10.1039/c1sm05374d10.1039/c1sm05374dSearch in Google Scholar
25 Golemanov, K., Tcholakova, S., Denkov, N. D., Ananthapadmanabhan, K. P. and Lips, A.: Breakup of Bubbles and Drops in Steadily Sheared Foams and Concentrated Emulsions. Phys Rev E. 78 (2007) 902–904. PMid:19113128; DOI:10.1103/physreve.78.05140510.1103/physreve.78.051405Search in Google Scholar PubMed
26 Denkov, N. D., Tcholakova, S. and Golemanov, K.: The role of surfactant type and bubble surface mobility in foam rheology. Soft Matter. 5 (2009) 3389–3408, DOI: dx.doi.org/10.1039/b903586a DOI: 10.1039/b903586aSearch in Google Scholar
27 Gao, W., Ding, L. and Zhu, Y.: Effect of Surface Modification on the Dispersion, Thermal Stability and Crystallization Properties of PET/CaCO3 Nanocomposites. Tenside Surfactants Detergents, 54 (2017) 230–237. DOI:10.3139/113.11049010.3139/113.110490Search in Google Scholar
28 Khalid, K., Zain, S. M. and Suk, V. et al: Microscopic Evidence for the Correlation of Micellar Structures and Counterion Binding Constant for Flexible Nanoparticle Catalyzed Piperidinolysis of PS- in Colloidal System. Tenside Surfactants Detergents, 54 (2017):224–229. DOI:10.3139/113.11049910.3139/113.110499Search in Google Scholar
29 Yang, W., Jijiang, G. and Wen, Z.: Surface property and enhanced oil recovery study of foam aqueous dispersions comprised of surfactants-organic acids-nanoparticles. RSC Adv., 6 (2016) 113478–113486. DOI:10.1039/C6RA22988C10.1039/C6RA22988CSearch in Google Scholar
30 Nedyalkov, M., Krustev, R., Kashchiev, D., Platikanov, D. and Exerowa, D.: Permeability of Newtonian Black Foam Films to Gas. Colloid Polym Sci. 266(1998) 291–296. DOI:10.1007/bf0145259210.1007/bf01452592Search in Google Scholar
31 Binks, B. P., Kirkland, M. and Rodrigues, J. A.: Origin of Stabilisation of Aqueous Foams in Nanoparticle–surfactant Mixtures. Soft Matter. 4 (2008) 2373–2382, [32] Golemanov, K.; Denkov, N. D.; Tcholakova, S.; Vethamuthu, M.; Lips, A.: Surfactant Mixtures for Control of Bubble Surface Mobility in Foam Studies. Lang. 24 (2008) 9956–9961. PMid:18698860; DOI:10.1021/la801538610.1021/la8015386Search in Google Scholar PubMed
32 Denkov, N. D., Subramanian, V., Gurovich, D. and Lips, A.: Wall Slip and Viscous Dissipation in Sheared Foams: Effect of Surface Mobility. Colloids Surf A. 263 (2005) 129–145. 10.1016/j.colsurfa.2005.02.038Search in Google Scholar
33 Hu, X., Li, Y., Sun, H., Song, X., Li, Q., Cao, X. and Li, Z.: Effect of Divalent Cationic Ions on the Adsorption Behavior of Zwitterionic Surfactant at Silica/Solution Interface. J Phys Chem B. 114 (2010) 8910–8916. PMid:20572645; DOI:10.1021/jp101943m10.1021/jp101943mSearch in Google Scholar PubMed
34 Wang, Y. and Ge, J.: Effect of Surface Dilatational Modulus on Bubble Generation in Visualized Pore-Throat Models. Journal of Surfactants and Detergents. 21 (2018) 283–291. DOI:10.1021/la504761x10.1021/la504761xSearch in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Physical chemistry
- From Static to Dynamic Modeling of Surfactants Micellization
- Study on the Interaction of Cationic Gemini Surfactant with Sodium Carboxymethyl Cellulose
- Study on Binary Mixture System of Lauroyl Sodium Glutamate Surfactant
- Cloud Point Extraction of Direct Blue 71 Dye using Triton X-100 as Nonionic Surfactant
- Application
- The Role of Solid Particles Obtained from Plant Materials in Improvement the Quality of Cosmetic Care Balms
- Two Novel Methods for the Determination of Benzalkonium Chloride in Bandages by Resonance Light Scattering Technology
- Role of Magnesium Salts in Coal De-Ashing by Flotation
- Surface Dilatational Properties and Foam Performance of Surfactant-Nanoparticle Foaming System under Ultra-High Salinity
- Novel surfactants
- Preparation of a Gemini Surfactant from Mixed Fatty Acid and its Use in Cosmetics
- Biosurfactants
- Production and Characterization of Biosurfactant by Nocardia Species Isolated Form Soil Samples in Tehran
Articles in the same Issue
- Contents
- Physical chemistry
- From Static to Dynamic Modeling of Surfactants Micellization
- Study on the Interaction of Cationic Gemini Surfactant with Sodium Carboxymethyl Cellulose
- Study on Binary Mixture System of Lauroyl Sodium Glutamate Surfactant
- Cloud Point Extraction of Direct Blue 71 Dye using Triton X-100 as Nonionic Surfactant
- Application
- The Role of Solid Particles Obtained from Plant Materials in Improvement the Quality of Cosmetic Care Balms
- Two Novel Methods for the Determination of Benzalkonium Chloride in Bandages by Resonance Light Scattering Technology
- Role of Magnesium Salts in Coal De-Ashing by Flotation
- Surface Dilatational Properties and Foam Performance of Surfactant-Nanoparticle Foaming System under Ultra-High Salinity
- Novel surfactants
- Preparation of a Gemini Surfactant from Mixed Fatty Acid and its Use in Cosmetics
- Biosurfactants
- Production and Characterization of Biosurfactant by Nocardia Species Isolated Form Soil Samples in Tehran