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Abstract
Background ‒ Multiple sclerosis (MS) is a major demyeli-
nating disorder that affects the central nervous system. A
growing body of evidence has revealed the involvement of
coagulation pathway in the pathogenesis of MS. However,
the causal association between coagulation factors and MS
is still unclear.
Method ‒ A two-sample Mendelian randomization (MR)
analysis was conducted. Genetic variants for plasma coa-
gulation factors were identified as instrumental variables.
Summary-level statistics for MS were collected from a
large-scale genome-wide association study, including 47,429
cases and 68,374 controls. Primary MR analysis was per-
formed using the inverse-variance weighting (IVW) approach.
False discovery rate (FDR)-adjusted method was applied
to adjust for multiple testing. MR-Egger, weighted median,
simple mode, weighted mode, and MR-pleiotropy residual
sum and outlier (MR-PRESSO) methods were used as sensi-
tivity analysis approaches.
Results ‒ A causal effect of higher plasma tissue factor
(TF) levels on the risk of MS onset was identified using IVW
method (OR: 1.215, 95% CI 1.108–1.333, P < 0.001, PFDR < 0.001).

Complementary analysis using weighted median (OR: 1.262,
95% CI: 1.119–1.423, P < 0.001), weighted mode (OR: 1.238, 95%
CI: 1.100–1.394, P = 0.012), and MR-PRESSO (OR: 1.215, 95% CI:
1.125–1.313, P = 0.003) methods yielded consistent results. Null
associations were found for other plasma coagulation factors
with MS.
Conclusions ‒ The study demonstrates a suggestive asso-
ciation between TF and MS. Increasing plasma TF was
associated with an increase in MS risk. TF should be a
promising biomarker and new target for MS.

Keywords: coagulation factors, tissue factor, multiple sclerosis,
Mendelian randomization

1 Introduction

Multiple sclerosis (MS) is a chronic, degenerative disease
characterized by multifocal demyelination in the central
nervous system (CNS). The pathogenesis of the disorder
involves disruption of blood–brain barrier (BBB), extrava-
sation of immunocytes, disseminated neuroinflammation,
axonal damage, and demyelination within the brain par-
enchyma, leading to progressive and irreversible accumu-
lation of physical and cognitive disability [1].

The association between hemostasis, vascular throm-
bosis, and MS has been taken into consideration since 1882.
Ribbert et al. assumed that brain vascular thrombosis
caused by hematogenous infection could contribute to MS
lesion [2]. Thereafter, Putnam found that venular thrombosis
might be the primary cause of MS based on histologic and
experimental findings [3]. In addition, most of theMS patients
exhibited a peculiar defect in their clotting process, indicating
that thrombosis was not a result of vascular injury, but the
consequence of hematological changes [4]. Epidemiology stu-
dies also observed an increased risk of cardiovascular disease
and venous thromboembolism in MS patients [5,6].

As an essential element in the activation of hemostasis,
a growing body of evidence has revealed the involvement
of the coagulation pathway in the pathogenesis of MS [7,8].
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Histopathological analysis demonstrated extensive deposi-
tion of coagulation pathway proteins in post-mortem MS
plaques [9,10]. Animal models implicate that coagulation
factors play a proinflammatory role in experimental
allergic encephalomyelitis (EAE), a prototypic model of
MS, beyond their hemostatic function [10–12]. Further-
more, clinical studies have shown that higher levels of
coagulation factors including factor II (FII), factor X (FX),
factor XII (FXII), prothrombin, fibrinogen, and procoagu-
lant microparticles are present in the blood or cerebrosp-
inal fluid (CSF) of MS patients [10,13–15]. Nevertheless, the
above findings may be vulnerable to confounding factors,
and therefore insufficient to establish reliable causal rela-
tionships. It is still necessary to further investigate the
causal effects of coagulation components on the risk of MS.

Mendelian randomization (MR) is a genetic epidemio-
logical method used to identify and quantify the causal
relationship between clinical traits and disease phenotypes
[16,17]. The approach employs genetic instrumental vari-
ables (IVs) as substitutes for exposure. By leveraging the
random allocation of genetic alleles at conception, MR ana-
lysis can effectively avoid the influence of potential con-
founding, and provide more accurate and credible conclusion
[16,17]. Therefore, the present study used a two-sample MR
approach to investigate the genetic association between
plasma coagulation factors and the risk of MS.

2 Materials and methods

2.1 Ethical compliance

The study used summary data obtained from publicly
available genome-wide association studies (GWASs), which

have received approval from the respective institutional
review boards.

2.2 Study design

In this work, a univariable two-sample MR analysis was
performed to explore the causal relationship between
plasma coagulation factors and MS. The study has been
structured in accordance with the STROBE-MR guidelines
[18]. The successful implementation of our MR analysis is
contingent upon three critical assumptions [19]: first, the
chosen genetic variants should demonstrate a strong asso-
ciation with the exposures; second, the genetic variants
utilized as IVs for the exposures must not be affected by
any confounding factors; third, IVs should influence the
outcome only via the exposures, rather than through a
direct association. The workflow of our MR framework is
presented in Figure 1. Moreover, to prevent possible
reverse causation, a reverse-MR analysis was conducted.

2.3 Data sources

2.3.1 GWAS of plasma coagulation factors

We selected 11 major coagulation factors which participate
in the whole process of intrinsic and/or extrinsic coagula-
tion (Figure 2), including tissue factor (TF), factor V (FV),
factor VII (FVII), factor VIII (FVIII), factor IX (FIX), factor X
(FX), factor XI (FXI), prothrombin, fibrinogen, protein C
(PC), and tissue factor pathway inhibitor (TFPI). Detailed
information is summarized in Table 1.

Figure 1:Workflow ofMR framework in the study. MR analysis is based on three assumptions. Assumption 1, the chosen genetic variants should demonstrate
a strong association with the exposures; Assumption 2, the genetic variants utilized as IVs for the exposures must not be affected by any confounding factors;
and Assumption 3, the selected IVs should influence the outcome only via the exposures, rather than through a direct association.
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Genetic instruments for plasma TF levels were derived
from a large-scale genome-wide meta-analysis involving 13
European-ancestry cohorts [20]. The study included 21,758
individuals, with protein levels measured using the Olink
Proximity Extension Assay CVD-I panel. Summary statistics
were generated through standardized imputation (1000
Genomes Project phase 3 or later, or Haplotype Reference
Consortium) and quality control (call rate filters, sex mis-
matches, population outliers, heterozygosity deviations, and
cryptic relatedness). To avoid potential batch-differences
between cohorts, protein measurements (NPX values) were
rank-based inverse normal transformed and standardized to
unit variance. Genetic analyses employed additive linear
regression models adjusted for population structure and
study-specific parameters. To ensure robustness, meta-ana-
lysis was performed in duplicate at two independent research
centers using separate bioinformatic.

Genetic variants for plasma TFPI were extracted from
a GWAS dataset, including 3,301 European individuals from
the INTERVAL study [21]. Participants were recruited
between 2012 and 2014 at 25 National Health Service Blood
and Transplant centers across England. Standardized
online questionnaires were used to capture demographic
characteristics (age, sex, ethnicity), anthropometric mea-
surements (height, weight), and lifestyle factors (alcohol
consumption, smoking status, diet). Inclusion criteria
required participants to be aged ≥18 years without a his-
tory of major comorbidities (e.g., cardiovascular disease,
cancer, chronic infections) or recent acute illness. From the
original INTERVAL cohort of about 50,000 individuals, two
non-overlapping subcohorts (n = 2,731 and n = 831) were

Figure 2: Overview of the coagulation pathways. The hemostatic com-
ponents investigated in the study are highlighted. TF, tissue factor; FVa,
activated factor V; FVIIa, activated factor VII; FVIIIa, activated factor VIII;
FIXa, activated factor IX; FXa, activated factor X; FXIa, activated factor XI;
FXIIa, activated factor XII; aPC, activated protein C; and TFPI, tissue factor
pathway inhibitor. Ta
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randomly selected. After genetic quality control, 3,301 par-
ticipants (2,481 and 820 from each subcohort) were
retained for analysis. Plasma TFPI levels were measured
using a multiplexed, aptamer-based approach (SOMAscan
assay). Genetic association analyses were performed in
SNPTEST v2.5.2 by applying an additive genetic model
through simple linear regression.

For the rest hemostatic components (FV, FVII, FVIII,
FIX, FX, FXI, prothrombin, fibrinogen, and PC), summary-
level data were obtained from a Fenland study [23], which
is a population-based cohort conducted in the Cambridge-
shire region of the United Kingdom. The recruitment
occurred between 2005 and 2015. Exclusion criteria were
diabetes mellitus, mobility impairment, terminal illness,
psychiatric disorders, or current pregnancy/lactation. After
excluding ancestry outliers and related individuals, the
final GWAS analysis included 10,708 participants (mean
age 48.6 ± 7.5 years; 53.4% female). Proteomic measure-
ments underwent rank-based inverse normal transforma-
tion, followed by adjustment for age, sex, sample collection
site, and ten genetic principal components. Genome-wide
analyses were performed using BGENIE v1.3.

2.3.2 GWAS of MS

Summary-level data for MS were extracted from the
International Multiple Sclerosis Genetics Consortium
(IMSGC), which compared 47,429 MS patients (including
the relapsing-remitting and the progressive form) and
68,374 non-MS controls of European ancestry [22]. As of
the end of 2011, the IMSGC analyzed all available to the
IMSGC GWAS data and two other datasets, one from Rot-
terdam, Netherlands (Rotterdam) and another one from US
(Berkeley; Kaiser Permanente). The IMSGC GWAS data
included six datasets from Patsopoulos et al. [24] and
data from the WTCCC2 and IMSGC [25] studies. MS cases
of the Rotterdam study were recruited through a nation-
wide study in the Netherlands. Diagnoses were confirmed
at the Rotterdam MS Centre ErasMS outpatient clinic. In
the Berkeley study, cases and controls were recruited from
the Kaiser Permanente Medical Care Plan (Northern Cali-
fornia Region). Eligible MS patients were aged 18–69 years.
Diagnoses were validated via electronic health record
review and structured interviews. The majority of the par-
ticipants included in these datasets were of European des-
cent. All the MS patients were diagnosed based on the
standard diagnostic criteria [26,27].

As described, the GWAS data for both exposures and
outcomes were obtained from independent cohorts,
thereby minimizing the potential impact of sample overlap

on the results. Furthermore, as all samples comprised indi-
viduals of European ancestry, it is reasonable to assume
that the genetic variant-exposure associations were similar
between the exposure and outcome cohorts.

2.4 Selection of instruments

A series of processes were performed to extract eligible
IVs. First, single-nucleotide polymorphisms (SNPs) that
exhibited a P-value of genome-wide significance were
chosen as the potential IVs for exposures. When the
threshold for genome-wide significance was set at 5 ×

10−8, only two SNPs for FVII, prothrombin, fibrinogen,
and PC and one SNPs for FIX and TFPI were extracted.
Then the criteria were relaxed to 1 × 10−5 to include
more SNPs for analysis. For the rest coagulation factors
(including TF, FV, FVIII, FX, and FXI), the threshold was
set as 5 × 10−8 (Table S2). Second, SNPs that were in linkage
disequilibrium (LD; r2 threshold <0.001 within a 10 Mb
window) were excluded to avoid bias. The retained SNPs
were extracted from the outcome GWAS dataset (IMSGC).
The associations between SNPs and outcomes (e.g., β and P-
values) utilized in our analysis were directly extracted
from the original GWAS summary statistics. These associa-
tions had been previously computed by comparing allele
frequencies between MS cases and control groups. In addi-
tion, proxy SNPs in LD (r2 > 0.8) were used to replace the
instrumental SNPs that were absent from the outcome
dataset. Third, in order to avoid weak instrumental bias,
the strength of each SNPs was assessed by calculating
F-statistics. An F-statistic >10 indicated that the SNP was
robust enough for MR analysis [28]. The F-statistic was
calculated for each SNP using the formula: F-statistic = R2

× (N − 2)/(1 − R2), where R2 was calculated according to the
formula: R2 = 2 × EAF × (1 − EAF) × β2, where N is the
sample size of the exposure GWAS, EAF is the effect allele
frequency, and β is the estimated effect on the exposure,
representing the effect of each allele on standardized
plasma protein levels (units: standard deviation, SD). The
effect size (β) of each SNP on the exposure was obtained
directly from the summary statistics of the respective
GWAS datasets. Finally, we manually screened the chosen
SNPs using the PhenoScanner database (Version 2, http://
www.phenoscanner.medschl.cam.ac.uk/) [29] and the
LDlink web tool (https://ldlink.nih.gov/) to identify other
traits that may affect the outcome, with a genome-wide
significant level of P < 5 × 10−8. A related SNP that was
directly associated with MS has been removed from the
MR analysis (Table S1).
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2.5 Statistical analysis

The primary MR analysis was performed using inverse-var-
iance weighting (IVW) approach [30]. Several alternative
methods were conducted as sensitivity analysis, including
weighted median, weighted mode, simple mode, MR-Egger,
and MR-pleiotropy residual sum and outlier (MR-PRESSO)
[31,32]. A P-value less than 0.05 was considered to be statisti-
cally significant. To adjust formultiple testing, Benjamini-Hoch-
berg method was used to calculate false discovery rate (FDR)-
corrected P-values. Furthermore, Cochran’s Q-test and leave-
one-out analysis were conducted to assess the heterogeneity
across the SNPs [33]. The MR-PRESSO global test, MR-Egger
intercept test, and visual inspection of the funnel plot were
performed to identify potential horizontal pleiotropy [34]. A
P-value of <0.05 suggested that the IVW results might not be
valid due to the existence of heterogeneity or pleiotropy.

All the analyses were conducted using the TwoSampleMR
[35] andMR-PRESSO [34] packages in R software (version 4.1.2).

3 Results

3.1 Associations of plasma TF levels with MS

Seven SNPs significantly associated with plasma TF level
were extracted. The F-statistics for all SNPs ranged from 41
to 455, suggesting a low probability for weak instrumental
bias. Detailed information of the included SNPs is available
in Table S2.

The results of IVWmodel suggested that each SD increase
in plasma TF was associated with an elevated risk of MS (OR:

1.215, 95% CI: 1.108–1.333, P < 0.001, PFDR < 0.001) (Table 2). The
scatter plot and forest plot are shown in Figure 3. Sensitivity
analysis usingweightedmedian (OR: 1.262, 95% CI: 1.124–1.416,
P < 0.001), weighted mode (OR: 1.238, 95% CI: 1.093–1.402, P =

0.015), and MR-PRESSO (OR: 1.215, 95% CI: 1.125–1.313, P =

0.003) yielded consistent results (Table 3). Cochran’s Q-test
demonstrated no significant heterogeneity (Q-value = 4.149,
PQ = 0.657). The MR-Egger intercept test indicated no hori-
zontal pleiotropy (intercept = −0.022, Pintercept = 0.351). The
MR-PRESSO global test also failed to reveal any potential
pleiotropy and outliers (P = 0.646) (Table 4). In addition, the
leave-one-out analysis was conducted for SNP conformity.
Our IVW results were not affected by any single SNP
(Figure 4a). The funnel plot is presented in Figure 4b.

3.2 Associations of other plasma hemostasis
components levels with MS

No significant results were found for the causal association
of other plasma hemostasis components with MS (Table 2).
The scatter plot, forest plot, leave-one-out plot, and funnel
plot are shown in Figures S1–S10.

3.3 Reverse-MR analysis

To investigate potential reverse causality, a reverse-MR
analysis was carried out. In the initial screening using a
genome-wide significance threshold of 5 × 10−8, no SNPs
associated with MS met this criterion. Therefore, we
relaxed the significance threshold to 1 × 10−7, which

Table 2: Main results of MR analysis

Outcome Exposure nSNPs Method OR (95% CI) P-value PFDR

MS Plasma TF 7 IVW 1.215 (1.108–1.333) <0.001 <0.001
Plasma FV 4 IVW 1.093 (0.593–2.014) 0.777 0.844
Plasma FVII 18 IVW 1.018 (0.945–1.096) 0.642 0.844
Plasma FVIII 7 IVW 0.958 (0.890–1.031) 0.249 0.548
Plasma FIX 15 IVW 0.978 (0.860–1.112) 0.730 0.844
Plasma FX 6 IVW 1.119 (0.962–1.302) 0.144 0.548
Plasma FXI 4 IVW 0.993 (0.947–1.041) 0.773 0.844
Plasma prothrombin 11 IVW 1.147 (0.931–1.413) 0.197 0.548
Plasma fibrinogen 17 IVW 1.013 (0.893–1.148) 0.844 0.844
Plasma PC 21 IVW 1.078 (0.958–1.213) 0.213 0.548
Plasma TFPI 17 IVW 1.032 (0.940–1.133) 0.511 0.844

Bold symbol indicated statistically significances (P < 0.05). Abbreviations: TF, tissue factor; F(V, VII, VIII, IX, X, XI), factor (V, VII, VIII, IX, X, XI); PC, protein
C; TFPI, tissue factor pathway inhibitor; IVW, inverse-variance weighted; nSNPs, number of single-nucleotide polymorphisms; OR, odds ratio; CI,
confidence interval; FDR, false discovery rate.
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Figure 3: Scatter plot (a) and forest plot (b) of the causal effect of plasma TF on MS risk. TF, tissue factor; MS, multiple sclerosis.

Table 3: Sensitivity analysis of the associations between circulating hemostasis components with MS

Outcome Exposure MR-Egger Weighted median Simple mode Weighted mode MR-PRESSO
OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)
P-value P-value P-value P-value P-value

MS Plasma TF 1.380 (1.065–1.788) 1.262 (1.124–1.416) 1.188 (1.015–1.390) 1.238 (1.093–1.402) 1.215 (1.125–1.313)
0.059 <0.001 0.075 0.015 0.003

Plasma FV 0.249 (0.000–3570.452) 1.046 (0.896–1.221) 1.057 (0.908–1.231) 1.046 (0.898–1.218) 1.108 (0.667–1.839)
0.803 0.567 0.528 0.606 0.712

Plasma FVII 1.057 (0.964–1.158) 1.042 (0.966–1.124) 1.051 (0.807–1.369) 1.043 (0.966–1.125) 1.016 (0.973–1.060)
0.256 0.285 0.717 0.297 0.478

Plasma FVIII 0.921 (0.831–1.020) 0.958 (0.890–1.002) 0.982 (0.805–1.199) 0.941 (0.888–0.997) 0.958 (0.890–1.031)
0.173 0.058 0.867 0.087 0.293

Plasma FIX 1.067 (0.733–1.552) 0.909 (0.764–1.083) 0.858 (0.656–1.122) 0.855 (0.703–1.039) 0.989 (0.903–1.082)
0.740 0.285 0.281 0.138 0.806

Plasma FX 1.057 (0.802–1.394) 1.105 (0.965–1.266) 1.089 (0.899–1.319) 1.108 (0.960–1.279) 1.098 (0.964–1.250)
0.714 0.150 0.423 0.219 0.201

Plasma FXI 1.015 (0.870–1.184) 0.999 (0.950–1.051) 0.996 (0.925–1.073) 1.002 (0.953–1.054) 0.993 (0.971–1.015)
0.870 0.977 0.926 0.935 0.578

Plasma prothrombin 1.788 (0.910–3.514) 1.284 (1.019–1.617) 1.333 (0.944–1.882) 1.339 (1.018–1.761) 1.172 (0.965–1.424)
0.126 0.034 0.133 0.063 0.138

Plasma fibrinogen 0.924 (0.665–1.283) 1.010 (0.847–1.205) 1.137 (0.816–1.584) 0.814 (0.642–1.033) 1.013 (0.893–1.148)
0.642 0.910 0.460 0.109 0.846

Plasma PC 0.981 (0.702–1.372) 1.069 (0.913–1.251) 1.089 (0.816–1.453) 1.086 (0.837–1.408) 1.031 (0.980–1.084)
0.913 0.408 0.571 0.544 0.247

Plasma TFPI 1.072 (0.751–1.532) 1.036 (0.920–1.166) 1.037 (0.864–1.244) 1.037 (0.885–1.215) 1.027 (0.952–1.108)
0.707 0.558 0.705 0.663 0.505

Bold symbol indicated statistically significances (P < 0.05). Abbreviations: TF, tissue factor; F(V, VII, VIII, IX, X, XI), factor (V, VII, VIII, IX, X, XI); PC, protein
C; TFPI, tissue factor pathway inhibitor; MR-PRESSO, pleiotropy residual sum and outlier; OR, odds ratio; CI, confidence interval.
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enabled the identification of candidate SNPs. To exclude
the influence of confounding factors on causal effects,
three SNPs that demonstrated direct associations with coa-
gulation factors or venous thromboembolic disease were
excluded (Table S1). Then, 64 SNPs were chosen as IVs for
the reverse-MR analysis (Table S3). The results revealed no
evidence of causal effects of MS on coagulation factor
levels across all methodological approaches (Table S4).

4 Discussion

Coagulation factors are well known for their role in the
coagulation cascade and hemostasis. In recent years,
increasing evidence suggests that the coagulation pathway
may also be involved in the pathogenesis of MS [7,8]. The
study evaluated the associations between a range of geneti-
cally predicted circulating hemostasis components and MS,

Table 4: Heterogeneity and pleiotropy tests for the associations of circulating hemostasis components with MS

Outcome Exposure Cochrane’s Q-test MR-Egger intercept test MRPRESSOglobal test

Q-value PQ Intercept Pintercept P-value

MS Plasma TF 4.149 0.657 −0.022 0.351 0.646
Plasma FV 76.443 <0.001 0.264 0.790 <0.001
Plasma FVII 20.693 0.240 −0.010 0.207 0.584
Plasma FVIII 11.727 0.068 0.014 0.331 0.364
Plasma FIX 14.578 0.408 −0.011 0.633 0.579
Plasma FX 8.857 0.115 0.010 0.641 0.195
Plasma FXI 0.645 0.886 −0.010 0.800 0.808
Plasma prothrombin 17.645 0.061 −0.037 0.210 0.069
Plasma fibrinogen 18.479 0.297 0.009 0.560 0.264
Plasma PC 9.522 0.976 0.008 0.564 0.992
Plasma TFPI 22.717 0.121 −0.006 0.829 0.170

Bold symbol indicated statistically significances (P < 0.05). Abbreviations: TF, tissue factor; F(V, VII, VIII, IX, X, XI), factor (V, VII, VIII, IX, X, XI); PC, protein
C; TFPI, tissue factor pathway inhibitor; MR-PRESSO, pleiotropy residual sum and outlier.

Figure 4: Leave-one-SNP-out sensitivity analysis (a) and funnel plot (b) for plasma TF on MS risk. TF, tissue factor; MS, multiple sclerosis.
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using a two-sample MR method. Our results show that an
increase of one SD in genetically determined plasma TF
was associated with a 21.5% increase of the risk of MS
(IVW, OR: 1.215, 95% CI: 1.108–1.333). The robustness of
this association is further substantiated by the consistency
of causal estimates obtained through multiple MR
methods, including the weighted median, weighted mode,
and MR-PRESSO approaches. Furthermore, the reverse MR
analyses show no causal effect of MS on TF levels (OR:
0.995, 95% CI: 0.978–1.013, P = 0.592). These findings collec-
tively suggest a causal relationship between elevated
plasma TF and the risk of MS onset.

As the key trigger of the extrinsic coagulation cascade
for arresting bleeding, TF is highly expressed in the sub-
endothelial tissue [36]. Traditionally, vascular injury
induces the release of subendothelial TF. This exposed TF
binds to circulating FVII to form the activated TF:FVIIa
complex. Then, the TF:FVIIa complex activates FX and
FV, and ultimately leads to thrombin generation, fibrin
deposition, and physiological haemostasis. Clinical investi-
gations have demonstrated increased concentrations of
various coagulation factors (e.g., FII, FX, FXII, prothrombin,
and fibrinogen) in the blood or CSF of individuals diag-
nosed with MS [10,13–15]. In particular, a recent clinical
study compared serum/plasma levels of complement/coa-
gulation/vascular factors, viral/microbiological assays, fat-
soluble vitamins, and lymphocyte count among individuals
with MS during periods of clinical remission or relapse and
age/sex-matched controls [37]. The researchers (Tatiana et al.)
built two predictive models to determine the most specific
pro-coagulative/vascular factor forMS. In bothmodels, the
systemic level of TF emerged as a crucial variable in effec-
tively discriminating either MS from controls or MS
relapse from remission. The observational finding seemed
to be consistent with our MR results suggesting the invol-
vement of TF in MS pathogenesis. However, it should be
noted that Tatiana et al. paradoxically observed a signifi-
cant reduction of circulating TF levels in MS patients com-
pared to healthy controls. Notably, this reduction was
even more pronounced during relapse phases compared
to clinical remission. Tatiana et al. speculated that the
detected TF was free, unbound in complex form. In the
pathological state of MS, most of the circulating TF com-
bined with FVII to form a TF:FVIIa complex, resulting in
the reduced levels of free TF observed in plasma. This
phenomenon mirrors the “consumption” of clotting fac-
tors during thrombotic events, where active complexes
deplete free circulating components. Notably, our MR ana-
lysis demonstrates that elevated TF (as proxied by genetic
variants) leads to an increased risk of MS development.
The MR approach, which is based on genetic variants,

could effectively circumvent potential confounding fac-
tors arising fromdisease-induced alterations TFmolecular
forms (such as free TF versus TF:FVIIa complexes). Conse-
quently, it enables an assessment of the etiological rela-
tionship between genetically determined baseline TF
levels and the pathogenesis of MS, independent of sec-
ondary changes during disease activity. The genetic pre-
disposition to higher TF levels may contribute to TF:FVIIa
complex formation and disease development, while sub-
sequent disease activity alters the circulating form of TF.

The role of TF in MS pathogenesis may be explained by
the “infection – immunothrombosis – neuroinflammation”
framework [38,39]. Studies have shown that low levels of
TF can also be detected in a cryptic state on blood cells
including monocytes, neutrophils, and platelets [40,41].
Additionally, TF can also be found in a circulating form
of TF-bearing microparticles [42]. Chronic/recurrent infec-
tions (a risk factors for MS) may activate the coagulation
pathway via circulating TF, leading to the formation of
immunothrombosis [43–45]. While this process serves as
an evolutionary defense mechanism to restrict the spread
of infections and facilitate the elimination of pathogens
[46], the hypercoagulable state could result in neuropatho-
logical consequences. In addition to vascular obstruction,
immunothrombosis could also activate various inflamma-
tory mediators, including cytokines and chemokines. These
signaling molecules recruit inflammatory cells, which then
migrate toward the CNS. The cellular infiltration further
disrupts the BBB [39,47], which is a critical pathological
feature in MS development [48,49]. The compromised
BBB allows coagulation factors to enter the CNS environ-
ment, and initiate a cascade of pathological processes that
exacerbate disease progression.

In the CNS, TF has also been reported to be expressed
by astrocytes [50]. Disruption of the BBB allows TF to
interact with circulating coagulation factors, activating
the extrinsic coagulation pathway and leading to sustained
thrombin generation [51]. Thrombin is a pivotal serine
protease that has been reported to exacerbate neuroin-
flammation through protease-activated receptors (PARs).
Specifically, thrombin-induced activation of PAR initiates
a pro-inflammatory cascade in endothelial cells and glial
cells [14,15]. Activated microglia release pro-inflammatory
cytokines (e.g., IL-1β, TNF-α) that amplify immune cell
recruitment. Simultaneously, PAR signaling in endothelial
cells compromises the integrity of the BBB through
cytoskeletal rearrangement and increased vascular perme-
ability, which in turn facilitates the infiltration of leuko-
cytes. Furthermore, as the terminal product of coagulation
cascade, fibrin could also promote the activation and pro-
liferation of resident innate immune cells in CNS [52].
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Through binding to the CD11b/CD18 integrin receptor,
fibrin is able to prompt microglia and astrocytes to release
pro-inflammatory cytokines and chemokines [53,54]. These
processes ultimately result in axonal damage, demyelina-
tion, and neurodegeneration [55]. Indeed, a series of coa-
gulation-related proteins (e.g., TF, fibrin, and PC inhibitor),
have been observed in chronic active MS plaques [52,56]. It
has also been reported that fibrin deposition can be
observed even before the onset of clinical symptoms [57].
The expression of these coagulation proteins likely indi-
cates the activation of the TF-associated coagulation cas-
cade within MS lesions, thereby contributing to inflamma-
tion and tissue damage.

In animal model of EAE, researchers have demon-
strated that the administration of thrombin inhibitors (hir-
udin) and fibrin(ogen)-targeted therapies (Batroxobin) can
suppress the production of pro-inflammatory cytokines
and mitigate the severity of the disease [10,58,59]. Nonethe-
less, our MR analysis did not identify any causal association
between prothrombin/thrombin and fibrinogen/fibrin, as
well as other components (FVII, FX, and FV) of the extrinsic
coagulation pathway, and the risk of MS. Our genetic evi-
dence suggests that the alteration of these coagulation com-
ponents is a secondary consequence of TF-driven coagulation
activation, rather than primary causal contributors. These
findings provide additional evidence that TF, as the initiator
of the extrinsic coagulation cascade, constitutes a critical
genetic risk factor in the pathogenesis of MS. In contrast,
downstream factors may primarily represent the biochemical
outcomes of this activation. Future research should prioritize
the development of therapeutic strategies that specifically
target TF, rather than broadly suppressing downstream com-
ponents of the coagulation cascade. This approach may offer
a safer and more effective therapeutic strategy for the treat-
ment of MS.

Our MR analysis did not find any causal relationship
between intrinsic coagulation components (FXI, FIX, FVIII,
and aPC) and the risk of MS. We speculated that the effects
of these intrinsic coagulation factors might rely on the
intrinsic pathway promoter FXII. Similar to TF, FXII may
be another decisive genetic risk factor for MS pathogenesis.
Unfortunately, we could not clarify this relationship due to
the lack of available GWAS data for FXII. Additional
research is required to validate our findings.

A notable advantage of the study is that relatively large
GWAS data sources were used to examine the effects of
coagulation factors on MS. Another strength of the study
is that we identified almost all extrinsic and intrinsic
pathway factors to ensure the understanding of the role
of coagulation system in MS under MR frameworks.
Inevitably, there were also some limitations in this work.

First, the utilized GWAS datasets were not stratified by MS
subtypes, which precluded us from investigation of
whether similar findings could be found in different MS
populations. Second, due to the limited understanding of
individual data and adjusting factors, the study failed to
carry out a comprehensive assessment of the associations
between individual genetic variants and confounding fac-
tors. Third, the majority of the GWASs data used in the
study were derived from European population, which
could hinder the generalization of the findings to other
racial/ethnic populations.

5 Conclusions

In conclusion, the present study demonstrates that genetic
predisposition to plasma TF is associated with the risk of
MS onset. TF appears to be a promising biomarker for MS
diagnosis and prognosis, and a possible new target for
future therapeutic strategies of MS.
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