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Abstract: Parkinson’s disease (PD), a neurodegenerative
disorder characterized by degeneration of the dopaminergic
(DA) neurons, is still lack of available treatments to comple-
tely block neurodegeneration. (−)-Epigallocatechin-3-gallate
(EGCG), a predominant active polyphenol generated from
green tea, exerts multiple neuroprotective roles in the ner-
vous system. However, the function role of EGCG in PD
and the underlying mechanism remains to be investigated.
In the current study, we used the rotenone injection to build
the PD rat model, followed by the EGCG treatment and
determined by the behavior tests, measurements of malon-
dialdehyde, glutathione, and superoxide dismutase levels,
and enzyme-linked immunosorbent assay. We revealed
that, in PD rats, EGCG upregulates protein kinase D1 (PKD1)
and inhibits Parthanatos to ameliorate the impaired motor
function, reduce the expression of tyrosine hydroxylase, sup-
press the oxidative stress, and suppress the inflammation in
substantia nigra. These combined results suggest that EGCG
can suppress oxidative stress and inflammation to prevent
DA neuron degeneration to prevent rotenone-induced motor

impairments, laying the foundation for EGCG to be a novel
candidate for the treatment of PD.
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1 Introduction

Parkinson’s disease (PD), a kind of chronic neurodegenera-
tive disease featured with degeneration of dopaminergic
(DA) neurons [1], is accompanied by multiple clinical motor
symptoms, including bradykinesia, rest tremor, andmuscular
rigidity [2]. Rotenone, a well-known neurotoxin, causes beha-
vioral abnormalities, neurochemical depletion, biochemical
alterations, and PD-like neuropathological features, including
Lewy body inclusions and α-synuclein aggregation [3], and
finally provokes the mechanistic features of PD [4]. It has
been previously reported that neuronal cell death induced
by rotenone can result in neurodegeneration by inducing
inflammation and apoptotic pathways [5,6]. Hence, the
plant-derived novel drug candidates with documented anti-
oxidant, anti-inflammatory, and anti-apoptotic properties
may be relevant for the prevention of PD [7].

(−)-Epigallocatechin-3-gallate (EGCG) is a predominant
active polyphenol isolated from green tea and is consid-
ered to be a promising therapeutic candidate for the treat-
ment of diseases associated with oxidative damage and
chronic inflammation [8–10]. Several experimental studies,
including ours, have shown that EGCG can provide neuro-
protection against brain, spinal cord injury, sciatic nerve
injury, sensory function recovery after dorsal root crush
injury, intracranial hemorrhage, and brachial plexus root
avulsion [11–16].

Protein kinase D1 (PKD1), also called Cµ (PKCµ), is a
well-known serine/threonine protein kinase involved in a
wide spectrum of functions in both normal states and dis-
eased states [17–19]. PKD1 is increasingly associated with a
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great deal of life processes within the cell [20]. In neurons,
PKD1 regulates the exchange of dendritic membrane pro-
teins to exert an essential role in maintaining the polarity
of neuron and synaptic plasticity [21]. It has also been
indicated that activation of PKD1 is capable of protecting
the damaged cells from cell death caused by oxidative
insult [22–24].

Parthanatos, also called poly(ADP-ribose) polymerase 1
(PARP-1)-dependent death, is a kind of programmed cell
necrosis different from necrosis, apoptosis, and autophagy
[25] and widely exists in various diseases. PARP-1, as a
ribozyme in DNA repair, is considered a risk factor for
the Parthanatos progress, has an obvious protective effect
in multiple cell insult models, and can improve cell sur-
vival status [26]. Hence, Parthanatos is considered to be an
essential target for drugs to exert neuroprotective effects.

Given the neuroprotective roles of EGCG in the dis-
eased systems, the neuroprotective effects of EGCG on
modulating PKD1 and neuronal Parthanatos in PD remains
unknown. Therefore, the aim of the current study is to
determine the anti-oxidant and anti-inflammation effects
of EGCG on the functional recovery after PD, focusing on its
modulating PKD1 and anti-Parthanatos properties.

2 Materials and methods

2.1 Animals

Male Sprague-Dawley rats with a body weight of 200–220 g
purchased from the Guangdong Medical Laboratory Animal
Center were maintained in an air-conditioned room on a
12 h light/12 h dark cycle and afforded food and water ad
libitum.

2.2 Rotenone injection and groups

A total number of 50 rats were placed in a stereotaxic
apparatus (World Precision Instruments, USA) after being
anesthetized with 10% chloral hydrate anesthesia (350mg/kg).
Based on the rat brain atlas to determine bregma, a burr hole
was drilled at substantia nigra (SN) anterior-posterior: 5.0
mm, medial-lateral: 2.00 mm, and dorsal-ventral: 8.0 mm
[27]. 5 μg/rat at the concentration of 2 mg/kg rotenone was
bilateral intracranial injected via the burr hole using a 28-G
Hamilton syringe to SN.

To determine the neuroprotective role of EGCG after
PD, ten rats per group were randomly divided into five
groups: (1) CTRL control, (2) rotenone group, (3) rotenone
+ EGCG group, (4) rotenone + EGCG + CID755673 (an

inhibitor of PKD1) group, and (5) rotenone + EGCG + Ad-
PARP-1 (an agonist of Parthanatos) group. The treatment
groups were intraperitoneally injected with equivalent
phosphate-buffered saline or EGCG (10 mg/kg/day) with
or without CID755673/Ad-PARP-1 once daily after injection
of 2 mg/kg rotenone for 28 days till sacrifice. The rats
without rotenone injection or EGCG treatment were used
as CTRL control (n = 10/group). All injections were performed
at 9:00–11:00 am once daily for 28 days till sacrifice.

2.3 Behavioral function tests

All behavioral tests were carried out at 8:00–11:00 am by
the experimenters who were blinded to the groups after
injection of rotenone and other treatments for 2 h.

2.3.1 Open field test

A plexiglass open field apparatus (72 cm × 72 cm area with
36 cm walls) was used to evaluate the locomotor activity of
individual rat [28]. The apparatus floor was divided by
lines into 16 squares (18 cm × 18 cm) plus one central
square (18 cm × 18 cm). Locomotor activity was indicated
by recording the number of squares crossed and the immo-
bility time in 5 min.

2.3.2 Rotarod test

The experiments were conducted as described [29]. All rats
were trained on the rotarod apparatus for 3 consecutive
days before the injection of rotenone and other treatments.
The selected rotor accelerations were 5, 10, 15, and 20 rpm,
and the maximum time period of each trial was 5 min. The
spent time of rats on the rotating drum was calculated.

2.3.3 Cylinder test

A plexiglass cylinder (30 cm × 20 cm) was used to deter-
mine the number of forelimb contacts made by each limb
to the apparatus for 5 min.

2.3.4 Catalepsy test

The catalepsy set-up consisted of a vertical grid and a hor-
izontal bar to ascertain inert or static behavior. (1) Grid test
[30]: gridiron 30 cm wide and 35 cm high with a space of 1.2
cm between each wire was used. Each rat was hung by all
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four paws on the vertical grid, and the time taken by each
rat to descend the grid was noted as descent latency. Max-
imum descent latency time was fixed at 180 s. (2) Bar test
[31]: rats were placed with both fore paws on a bar, 10 cm
above the surface, in half rearing position. The time taken
by each rat to remove one paw from the bar was recorded.
The maximum latency time was set at 180 s.

2.3.5 Locomotor activity

The locomotor activity was measured by an activity monitor
(Opto-Varimex-Mini Model B, Columbus Instruments,
Columbus, OH, USA) based on the traditional infrared photo-
cell principle where interruption of 15 infrared beams
(wavelength: 875 nm, scan rate: 160 Hz, diameter: 0.32 cm,
spacing: 2.65 cm). Rats were habituated in the recording
chamber for 2 min, and then, activity was recorded for
5 min and expressed as counts per 5 min [32].

2.3.6 The pole test and traction test

The experiments were conducted as described [33]. In the
pole test, a thick rod of 1 cm in diameter and 50 cm in
length was first placed in the center of the empty cage,
and the time from the top of the rod to the bottom of the
cage was recorded for each rat. In the traction test, the ability
of the rat to grasp a 0.5-cm-diameter horizontal wire was
determined with the following score criteria: 4 points: all
limbs can grasp; 3 points: 2 forelimbs and 1 hind limb grip;
2 points: 2 forelimbs grasp; 1 point: only 1 forelimb can grasp;
and 0 points: unable to grasp and dropped the wire.

2.4 Tissue preparations

After performing all behavioral tests, the SN tissues were
collected and homogenized according to previous studies
[34] and following centrifugation at 14,000 × g at 4°C for 15
min to collect the supernatant for further measurements of
malondialdehyde (MDA), glutathione (GSH), superoxide
dismutase (SOD), and reactive oxygen species (ROS) levels
and enzyme-linked immunosorbent assay (ELISA).

2.5 ELISA

The experiments were conducted as described [35,36]. The
supernatant was used to determine the protein levels of

PKD1 (cat. no. ab131267, Abcam), apoptosis-inducing factor
(AIF; cat. no. ab288370, Abcam), PARP-1 (cat. no. ab191217,
Abcam), tyrosine hydroxylase (TH; ARD10979, GuideChem),
tumor necrosis factor (TNF-α; cat. no. EK0393; WuhanBoster
Biological Technology, Ltd.), interleukin-1β (IL-1β; cat. no.
EK0412; WuhanBoster Biological Technology, Ltd.), and IL-6
(interleukin-6, cat. no. EK0526; WuhanBoster Biological Tech-
nology, Ltd.) using available kits according to the manufac-
turer’s protocol.

2.6 Measurements of MDA, GSH, SOD, and
ROS levels

The experiments were conducted as described [37,38]. The
commercial assay kits for MDA (cat. no. A003-1-2; Jiancheng
Biotech Ltd., Nanjing, China), GSH (cat. no. S0053; Beyotime
Institute of Biotechnology, Shanghai, China), SOD (cat. no.
A001-3-2; Jiancheng Biotech Ltd., Nanjing, China), and ROS
(QC11851, GuideChem, Guangzhou, China) were used according
to the instructions [39].

2.7 Statistics

All statistical analyses were carried out by GraphPad Prism
6.0 software. Data were reported as mean ± standard
deviation and analyzed using one-way analysis of variance
followed by the post hoc Bonferroni test. *P < 0.05, **P <

0.01, or ***P < 0.001 indicate statistical significance.

Ethical approval: The research related to animals’ use has
been complied with all the relevant national regulations
and institutional policies for the care and use of animals.
All experimental protocols conducted on rats were approved
by The Laboratory Animal Ethics Committee at Xiangnan
University.

3 Results

3.1 EGCG upregulates PKD1 and inhibits
Parthanatos in SN of PD rats

To evaluate the effect of EGCG on PKD1 and Parthanatos,
ELISA was performed to determine the protein levels of
PKD1, apoptosis-inducing factor (AIF), and PARP-1 in SN.
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Compared with the CTRL group, PKD1 level was down-
regulated in SN of PD rats, whereas EGCG increased PKD1
level (Figure 1a). The reversed patterns for AIF level (Figure
1b) and PARP-1 level (Figure 1c) were also observed.

3.2 EGCG upregulates PKD1 and inhibits
Parthanatos to ameliorate the impaired
motor function in PD rats

To evaluate the effect of EGCG on the motor functional
recovery of PD rats, the function assessments (open field
test, rotarod test, cylinder test, catalepsy test, locomotor
activity, pole test, and traction test) were performed.

In the open field test, compared with the CTRL group,
the number of squares of crossed was decreased in PD rats,
whereas EGCG increased the number of squares of crossed;
moreover, EGCG did not decrease the number of squares of
crossed in PD rats when CID755673 was used to inhibit the
PKD1 expression, and Ad-PARP-1 was used to activate the
Parthanatos (Figure 2a). The reverse pattern for immobility
time (Figure 2b) to the number of squares of crossed was
also observed.

In the rotarod test, compared with the CTRL group, the
time spent on the rotarod was decreased in PD rats, whereas
EGCG increased the time spent on rotarod; moreover, EGCG
did not decrease the time spent on rotarod in PD rats when
CID755673 was used to inhibit the PKD1 expression and Ad-
PARP-1 was used to activate the Parthanatos (Figure 2c).

In the cylinder test, compared with the CTRL group,
the ratio of rears was decreased in PD rats, whereas EGCG
increased the ratio of rears; moreover, EGCG did not

decrease the ratio of rears in PD rats when CID755673
was used to inhibit the PKD1 expression, and Ad-PARP-1
was used to activate the Parthanatos (Figure 2d).

In the catalepsy test, compared with the CTRL group,
the relative descent latency in the Bar test was increased in
PD rats, whereas EGCG decreased the relative descent
latency in the Bar test; moreover, EGCG did not increase
the relative descent latency in Bar test in PD rats when
CID755673 was used to inhibit the PKD1 expression and
Ad-PARP-1 was used to activate the Parthanatos (Figure
2e). A similar pattern for the relative descent latency in
the Grid test (Figure 2f) was observed.

In the locomotor activity test, compared with the CTRL
group, the counts per 5 min were decreased in PD rats,
whereas EGCG increased the counts per 5 min; moreover,
EGCG did not decrease the counts per 5 min in PD rats
when CID755673 was used to inhibit the PKD1 expression
and Ad-PARP-1 was used to activate the Parthanatos
(Figure 2g).

In the pole test, compared with the CTRL group, the
descent time was increased in PD rats, whereas EGCG
decreased the descent time; moreover, EGCG did not
decrease the descent time in PD rats when CID755673
was used to inhibit the PKD1 expression and Ad-PARP-1
was used to activate the Parthanatos (Figure 2h).

In the traction test, compared with the CTRL group, the
relative traction test score was decreased in PD rats,
whereas EGCG increased the relative traction test score;
moreover, EGCG did not increase the relative traction
test score in PD rats when CID755673 was used to inhibit
the PKD1 expression and Ad-PARP-1 was used to activate
the Parthanatos (Figure 2i).

Figure 1: Effect of EGCG on PKD1 and Parthanatos in SN of PD rats. EGCG increased the protein level of (a) PKD1 and inhibited the Parthanatos, as
indicated by the decreased protein levels of (b) AIF and (c) PARP-1 (**p < 0.01, ***p < 0.001, n = 4).
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Figure 2: Effect of EGCG on motor impairments in PD rats. EGCG upregulates PKD1 and inhibits Parthanatos to alleviate the motor impairments, as
indicated by (a) the increased number of squares of crossed and (b) decreased immobility time in the open field test, (c) the increased time spent on
rotarod in the rotarod test, (d) the increased ratio of rears in the cylinder test, (e) the decreased relative descent latency in bar test and (f) the
decreased relative descent latency in grid test in the catalepsy test, (g) the increased counts per 5 min in the locomotor activity, (h) the decreased
descent time in the pole test, and (i) the increased relative traction test score in the traction test (*p < 0.05, **p < 0.01, ***p < 0.001, n = 6).
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3.3 EGCG upregulates PKD1 and inhibits
Parthanatos to reduce the expression of
TH in SN of PD rats

To further investigate the effect of EGCG on the expression
of TH, ELISA was performed to determine the protein
levels of TH in SN.

Compared with the CTRL group, the TH level was down-
regulated in the SN of PD rats, whereas EGCG increased the
TH level; moreover, EGCG did not decrease the TH level in
the SN of PD rats when CID755673 was used to inhibit the
PKD1 expression and Ad-PARP-1 was used to activate the
Parthanatos (Figure 3).

3.4 EGCG upregulates PKD1 and inhibits
Parthanatos to suppress the oxidative
stress in SN of PD rats

To evaluate the effect of EGCG on the oxidative stress in SN
of PD rats, measurements of GSH, SOD, MDA, and ROS
levels were performed.

Compared with the CTRL group, the GSH level was down-
regulated in the SN of PD rats, whereas EGCG increased the
GSH level; moreover, EGCG did not decrease the GSH level in
the SN of PD rats when CID755673 was used to inhibit the
PKD1 expression and Ad-PARP-1 was used to activate the
Parthanatos (Figure 4a).

Similar patterns for the SOD level (Figure 4b) and the
reverse patterns for MDA level (Figure 4c) and ROS level
(Figure 4d) were observed.

3.5 EGCG upregulates PKD1 and inhibits
Parthanatos to suppress the
inflammation in the serum of PD rats

To evaluate the effect of EGCG on the inflammation in SN of
PD rats, ELISA was performed to determine the TNF-α, IL-
1β, and IL-6 levels.

Compared with the CTRL group, TNF-α level was upre-
gulated in the SN of PD rats, whereas EGCG decreased TNF-
α level; moreover, EGCG did not increase TNF-α level in the
SN of PD rats when CID755673 was used to inhibit the PKD1
expression and Ad-PARP-1was used to activate the Parthanatos
(Figure 5a).

Similar patterns for IL-1β (Figure 5b) and IL-6 levels
(Figure 5c) were observed.

4 Discussion

Substantial efforts have been to identify plant-oriented
antioxidant compounds to counteract the mechanisms under-
lying neurodegenerative disorders like PD [40,41]. In this study,
we reported that EGCG can upregulate PKD1 to inhibit Partha-
natos to ameliorate the impaired motor function, reduce the
expression of TH, suppress the oxidative stress, and suppress
the inflammation in SN, suggesting that EGCG may improve
the motor impairments via promoting the PKD1 and inhibiting
Parthanatos to improve the cell survival of DA neuron in PD.

Assessment of neurological function is a commonly
used measure to evaluate the degree of injury and the
therapeutic effect of medications [42]. Administration of
rotenone in rats can reproduce multiple PD-like behavioral
characteristics, including rigidity and hypokinesia [43]. In
the present study, we observed that EGCG can ameliorate
impaired motor function in PD rats.

Pathological features involved in the development of
PD include oxidative stress, misfolded protein accumula-
tion, inflammation, and apoptosis [44]. Oxidative stress
may be the key factor leading to Parthanatos [45]. When
chemicals in the environment or by-products of oxidative
stress damage DNA, PARP-1 is over-activated, causing PAR
products to aggregate and further cause nuclear transloca-
tion of AIF. Finally, AIF starts nuclear chromatin dissolves
or condenses and performs the task of cell death [25]. In the

Figure 3: Effect of EGCG on the neuronal survival in SN of PD rats. EGCG
upregulates PKD1 and inhibits Parthanatos to increase the expression of
TH (***p < 0.0001, n = 4).
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current study, we revealed that EGCG can inhibit the
Parthanatos.

Several experimental studies have shown that EGCG
can provide neuroprotection against brain, spinal cord
injury, and sciatic nerve injury [11,12]. These benefits are
mainly due to free radical scavenging or the antioxidant,
anti-inflammatory, and anti-apoptotic properties of EGCG
[46,47]. EGCG was verified to modulate cell cycle and cell sig-
naling [48] and be against liver injury via its anti-inflammatory
and antioxidant effects [49]. Oxidative stress, remarkably

increased in the brain tissue of patients with PD [50],
plays important roles in the initial degeneration of DA neu-
rons [51]. In the current study, we revealed that EGCG can
inhibit the oxidative stress. Chronic neuroinflammation and
its elements are accepted as hallmarks of PD progression
[52]. Sustained neuroinflammatory products are detrimental
to DA neuronal survival [53,54]. In the current study, we
revealed that EGCG can inhibit inflammation.

Taken together, treatment with EGCG partially reverses
the damage of DA neuron degeneration induced by

Figure 4: Effect of EGCG on the oxidative stress in SN of PD rats. EGCG upregulates PKD1 and inhibits Parthanatos to increase the levels of (a) GSH and
(b) SOD and decrease the levels of (c) MDA and (d) ROS (***p < 0.0001, n = 4).
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rotenone to improve motor impairments via promoting
PKD1 and inhibiting neuronal Parthanatos, suggesting the
effect of EGCG on the treatment of PD.

Although the results are exciting, there are still many
limitations, further studies are needed to be performed to
detect the effect of EGCG on brain functions, including the
striatum, and more methods, including the immunocyto-
chemical staining should be performed, also, the experi-
ments on female animals are needed.
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