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Introduction

Cognitive functions such as learning and
memory depend on synaptic efficiency in
certain regions of the brain [1]. In human
neurodegenerative diseases, synapses are
exposed to pathologically modified proteins
aggregated in the intracellular and extracellular
space. The protein aggregates may induce the
loss of synaptic connections in vulnerable brain
areas. The recurrent dysregulation of synaptic
proteins [2], rapid N-methyl-D-aspartate
receptors (NMDAR) endocytosis and regression
of dendritic spines [3] are the forerunners
in imposing synaptic impairment in these
disorders.
Alzheimer’s disease (AD) is the most
prevalent neurodegenerative disorder with
an estimated 35 million people affected
worldwide [4]. The risk factors for AD include
lower mental and physical activity during old
age, head trauma, cardiovascular diseases,
diabetes, obesity and smoking [5]. Histological
examinations of an AD brain uncover two
classical hallmarks, namely neurofibrillary
tangles - composed of tau protein and senile
plagues consisting of amyloid-beta (AB) protein

[6, 71. A very small proportion of AD cases have
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TAU-MEDIATED SYNAPTIC
DAMAGE IN ALZHEIMER’S

DISEASE

Abstract

Synapses are the principal sites for chemical communication between neurons and are essential for performing
the dynamic functions of the brain. In Alzheimer’s disease and related tauopathies, synapses are exposed to
disease modified protein tau, which may cause the loss of synaptic contacts that culminate in dementia. In recent
decades, structural, transcriptomic and proteomic studies suggest that Alzheimer’s disease represents a synaptic
disorder. Tau neurofibrillary pathology and synaptic loss correlate well with cognitive impairment in these
disorders. Moreover, regional distribution and the load of neurofibrillary lesions parallel the distribution of the
synaptic loss. Several transgenic models of tauopathy expressing various forms of tau protein exhibit structural
synaptic deficits. The pathological tau proteins cause the dysregulation of synaptic proteome and lead to the
functional abnormalities of synaptic transmission. A large body of evidence suggests that tau protein plays a key

role in the synaptic impairment of human tauopathies.
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genetic dispositions which are categorized as
familial AD [8]. However, the majority of AD
cases are idiopathic, meaning that the cause
of the illness is unknown. [9]. Despite scientific
and pharmaceutical advancements, AD still
poses as an epidemiological challenge for
the future [10]. Therapeutic intervention for a
neurodegenerative disease is best performed
before irreversible memory loss and tissue
damage occurs [11]. Therefore, investigating
and understanding early pathological changes
in AD would prove to be beneficial.

It has been suggested that AD may
[12-14].
Synaptic impairment occurs very early in

represent a synaptic disorder
AD and correlates well with the severity of
dementia [15-18]. Furthermore, at least certain
components of the synaptic loss in AD occur
regionally and are disproportionately large in
the hippocampus [2].

Several studies have demonstrated that
the degree of synaptic impairment and loss is
linked with tangle pathology [19-21]. Therefore,
studies on the involvement of tau protein in
synaptic damage have received increased
importance in recent years [22]. Identification
of the molecular mechanisms underlying tau

mediated synaptic damage in AD signifies
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an important step in the development of
therapeutic agents that can prevent or delay
the onset or progression of the disease.

Tau physiology and function

Tauproteinbelongstothefamily of microtubule-
associated proteins (MAP). It is localized
mainly in the neurons of both vertebrates and
certain invertebrates. In the human brain, tau
proteome consists of six isoforms ranging from
352 to 441 aa [23]. The tau proteins are further
classified by the presence of three repeat (3R)
or four repeat (4R) regions in the C-terminal
and the presence or absence of one (29 aa)
or two (58 aa) inserts in the N-terminal region
[24-26]. It is suggested that the repeat regions
aa 244-368 of tau bind to microtubules directly
[27] and the aa domains 151-243 and 369-400
surrounding the repeat region enhance the
affinity of microtubule binding of tau.
Tauisinvolved in retrograde and anterograde
transport by differential interaction with
dynein and kinesin motor proteins [28]. Tau
interacts with actin and spectrin proteins,
this allows microtubules to interconnect with
other cytoskeletal components and restrict the

flexibility of the microtubules [29]. Furthermore,
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the N-terminal domain also interacts with the
SRChomology 3 (SH3) domain of phospholipase
C-y (PLC-y) and mediates the generation of
arachidonic acid [30]. These results suggest that
tau may modulate microtubule flexibility and
also alter cell shape and structure. It is reported
that the phosphorylation of tau protein in early
developmental stages is slightly upregulated to
provide optimal flexibility to the growth cones
[31]. In addition, tau interacts with embryonic
(Eed)
facilitate nuclear transport of Eed suggesting a

ectoderm development protein to
possible role of tau in embryonic development
[32]. Studies also suggest a role of tau protein
in metabolic rate depression in hibernating
animals [33].

Recent studies demonstrate the role of tau
protein in long term potentiation [34] and
long term depression [35, 36]. Tau to dendrite
conglomeration is also necessary for targeting
of fyn kinase to the postsynaptic compartment
[37] and subsequent phosphorylation of
NMDAR subunit NR2B in dendrites [38], and in
the initiation of myelination [39]. To sum up, tau
protein plays a diverse role in neuronal activity
including cytoskeleton organization, signaling
and synaptic plasticity.

Neurofibrillary tangles and tau
protein

In 1906, Alzheimer first reported the presence
of neurofibrillary tangles (NFT) in a woman
suffering from dementia [40]. These structures
are observed mainly in the glutamatergic
pyramidal neurons of the hippocampus and
the entorhinal cortex, supra and infragranular
layers of association cortical areas, cholinergic
neurons of nucleus basalis of Meynert and
noradrenergic neurons in the locus coeruleus
[6, 23]. Electron microscopy images of
NFT were first studied by Kidd and were
referred to as longitudinally arranged fibrillar
bundles [41]. Additionally, diffraction pattern
revealed the presence of a double helical
stack of cytoskeletal protofilaments [42]. NFT
predominantly composed of paired helical
filaments (PHF) are morphologically described
as helical ribbons being 8-24 nm in width,
with 80-nm periodic twists in AD [43]. Several
decades later it was established that tau was

one of the main components of NFT [44-47].
However, it was not until 1988 that tau protein
was proved to be the major and integral part of
the PHFs in AD [48, 49].

Tau is an intrinsically disordered protein
[50]. In diseased brains, tau protein undergoes
alterations

numerous pathological leading

to aberrant conformational modifications
which

[51-53]. Although tau phosphorylation is

liberate tau from the microtubules

observed in normal human brains, the degree
and extent of tau phosphorylation is severe
in AD [54, 55]. Phosphorylation is one of the
crucial post-translational modifications of tau
protein in AD brains [24]. In AD, tau protein
is hyperphosphorylated at 19 aa residues
[56]. Numerous studies have reported the
phosphorylation of tau in the binding domain,
which hinders tau binding to microtubules such
as Ser 262 [57],Thr 231 [58], Thr 212 and Ser 214
[59]. The liberated tau proteins then aggregate
into PHF and deposit intracellularly into NFT.
Studies have further shown that isolated PHF
exhibit either a-helical or B-sheeted structures
in various conditions [60, 61] and intermediary
conformations during structural transition [62].

Truncation of tau transforms physiological
tau to pathological forms that are vulnerable
[63].
characterization of PHF revealed a 12 kDa

to  oligomerization Biochemical
pronase resistant fragment decorated by
antibody MN423 [64].
suggests that MN423 recognizes truncated

Epitope mapping

tau at Glu391 of the PHF core, suggesting that
tau truncation is a disease associated process
[65]. Later it was shown that the truncation
at Glu391 enhanced the rate of tau filament
formation [66]. Furthermore, it was also shown
that truncation of tau may be involved in the
evolution of NFT in AD brains [67-69].

Tau proteome in human

tauopathies
Biochemical and proteomic studies
of different

pathological tau compositions in tauopathies.

demonstrate the existence
Based on the type of tau isoforms involved,
tauopathies are classified into several classes
[70]. In class | tauopathies, the aggregation of
all 6 tau isoforms in equal ratios is observed
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[70, 71]. Biochemically, tau triplets of 60, 64
and 69 kDa, and additional minor bands of
72/74 kDa are characteristic for AD, some cases
of frontotemporal dementia with parkinsonism
linked to chromosome 17 (FTDP 17), Niemann-
Pick disease, type C, Down syndrome and
dementia pugilistica [70].

In class Il tauopathies, insoluble tau doublets
of 64 and 69 kDa predominantly composed
of 4R tau isoforms are observed. This class
includes progressive supranuclear palsy (PSP),
corticobasal degeneration (CBD) and some
specific cases of FTDP-17 [72, 73]. Class llI
tauopathies are characterized by the presence
of pathological tau doublets of 60 kDa and 64
kDa with predominant 3R tau isoforms (lacking
the exon 10) [70]. Pick’s disease is the sole
neurodegenerative tauopathy assigned to this
class [72]. Class IV tauopathy is represented
by a single neurological disorder — myotonic
dystrophy of type | or Steinert’s disease (DM1),
in which a major insoluble tau band of 60 kDa,
and minor 64 and 69 kDa bands are identified.

Tau synaptic proteome

The localization of tau in the axonal and
somatodendritic compartments has drawn
in the
It has been suggested that tau protein is

considerable interest last decade.
localized mainly in the axons [74] due to the
presence of an axonal targeting sequence [75].
However, some recent studies indicate a wide
spread distribution of tau protein in other
compartments including the nucleus [76] and
dendrites [37, 77]. Interestingly, tau protein
has been detected in the total synaptosomes
isolated from a rat brain [38]. Our study
demonstrated that tau protein in the rat brain
was mainly distributed in presynaptic fractions
while in postsynaptic densities it was almost
absent [78] (Fig. 1). Isolation and evaluation
of synaptic fractions from human and dogs
also revealed identical patterns of tau protein
distribution (Fig. 1). These results suggest
that tau is mostly located in the presynaptic
component, which supports the notion that
tau is predominantly distributed in axonal
compartment.

On the other hand, it has been shown that
tau protein migrates to dendrites following
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synaptic activation and is phosphorylated at
various sites [38, 79]. In synapses, tau protein
interacts with actin [80], microfilaments [81],
postsynaptic density protein 95 (PSD-95),
NMDAR [38] and kinases such as fyn [37].
Likewise, tau protein is necessary for dendritic
targeting of fyn kinase [37]. Besides, the loss of
tau protein in dendrites resulted in a decreased
spine density [82]. Independent results from
tau knockout mice show that tau protein is
essential for NMDA-dependent long term
potentiation (LTP) [34] and a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA)-
dependent long term depression (LTD) [35,
36]. Furthermore, selective phosphorylation
of tau protein was observed following
NMDAR activation which in turn regulates tau
interaction with fyn kinase [38]. These results
establish a profound role of tau protein in the
neuronal dendrites.

Synaptic impairmentin
Alzheimer’s disease

In AD, cognitive decline best correlates with
synaptic loss and synaptic failure [6, 12, 83-
85]. Synaptic degeneration is a slow process,
which begins as a reversible functionally-
responsive stage marked by deregulation of
synaptic function, and then culminating into
irreparable loss of synapses [86]. Furthermore,
the degree of synaptic reorganization in AD is
also perturbed due to defective microtubule
re-organization, impaired actin dynamics, and
re-entry into the cell cycle [87-89].

Loss of synapses in the limbic cortex is the
basis for cognitive deficits in AD brains [12,
13]. It is suggested that dementia in AD is a
combined manifestation of the disruption of
neuritic substructures and the loss of synaptic
terminals in neocortical and subcortical regions
in the brain [90]. Initial investigations in the
field of synaptic impairment in AD involved
morphological studies for synaptic loss and
damage in various brain areas [16], both in
early and late stages of AD [2, 91-95]. During
early stages, an increase in glutamatergic
and cholinergic synapses was observed [96,
97]. However, as the disease progressed
there was a rampant change in the density of
these synapses. Synaptic loss occurs in early
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Figure 1. Tau synaptic proteome in physiological conditions. Pre- and postsynaptic fractions were isolated as
previously published [78]. Synaptic fractions from rat, dog and humans show that tau protein is predominantly
distributed in the presynaptic fraction (pre), while in postsynaptic fraction is observed in traces (post).

pathological stages with almost 45% fewer
synapses in mild AD [18, 98]. A significant
decrease in the synapses/ neurons ratio by up
to 48% in hippocampus and 56% in cerebellum
was reported [99]. In AD brains, synaptic
loss is seen in the cortical areas [13, 100],
predominantly in the frontal (45% reduction)
and temporal cortex (25-36% reduction) [15, 90,
101]. Furthermore, the entorhinal cortex and
locus coeruleus also display a loss of synapses

[18, 90, 102-104]. In addition, cognitive
disabilities in mild cognitive impairment
were associated with decreased levels of

glutamatergic synapses [97, 105]. The levels
of glutamatergic synapses strongly correlated
with clinical dementia in patients with mild
and severe AD [97]. Interestingly, an enlarged
average area of surviving synapses in AD was
also observed [99]. However, this increase led
to an overall reduction in synaptic surface per
um? of tissue indicating that structural changes
and concomitant functional changes play a
crucial role in synaptic pathology in AD.

The mechanisms of synaptic damage in AD
are still unclear. It is suggested that abnormal
processing of growth associated proteins
may be responsible for synaptic damage in
CNS of AD brains [106, 107]. Ultrastructural
investigations revealed pathological
accumulation of cytoskeletal proteins and
lysosomal structures in the synapses of
AD patients [106, 108, 109]. Additionally,
accumulation of both AP and tau protein in the

synaptosomes from AD brains [110] present

cues for synaptic pathogenesis and its possible
relation to either the abnormal function of
synaptic proteins or direct toxic effects at the
synaptic sites or both [111]. Several factors may
be attributed to the changes in the synapses of
AD brains: 1) decreased mRNA levels of synaptic
proteins [85, 112]; 2) selective degradation of
proteins; for example, the presence of caspases
was observed in synaptosomes isolated from
AD brains [110, 113]; 3) decreased transporter
proteins in the synapses [114]; 4) abnormal
function of synaptic proteins [111,115]; 5)
abnormal deposition of proteins leading to
diminished synaptic activity; for example, tau
protein was shown to interact with synaptic
proteins in vivo [37, 38].

Role of tau protein in synaptic
pathology

Several studies have focused on A as the trigger
for synaptic damage in AD and suggest that tau
protein is downstream of AB in AD pathology [7,
116, 117]. Interestingly, it was shown that the loss
of neocortical synaptic inputs in AD brain could
beindependentfromamyloid deposits[107,118].
In addition, neurodegeneration in AD is not a
direct result of extracellular AR neurotoxicity
[119]. Therefore, AB pathology may or may not
be a direct causal agent for synapse loss in AD
[120]. Conversely, limited studies focusing on
tau as the candidate mediating synaptic protein
loss and damage have been reported. Several
factors point towards a prominent role of tau
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protein in mediating synaptic pathology: 1)
the progression of tau pathology correlates
well with the cognitive decline in human AD
[121]; tangle pathology also showed stronger
correlation with synapse density and Blessed
score of cognitive impairment in AD [122], 2)
synapse loss parallels tangle formation and
occurs in the same regions in AD brains [13,
15, 20, 21], 3) higher tangle count is associated
with lower levels of presynaptic proteins in AD
[91]; furthermore, neurons containing NFT are
responsible for selective synaptic deficits [123],
4) NFT-bearing neurons demonstrated a 35-57%
reduction in synaptophysin mRNA in AD brain
[85], and even more importantly 5) synaptic
deficits are observed in frontotemporal lobar
degeneration (FTLD), PSP, and Niemann-Pick
disease type C (NP-C), which are independent of
any A pathology [124-128]. All these evidences
suggest a well-established relationship between
synaptic damage and tau pathology.

Insights on tau mediated
pathology in synapses from tau
transgenic models

Tau transgenic models have been widely used
to examine disease pathogenesis of tau protein.
Behavioral and cognitive functional deficits can
be easily studied in these animals due to the
availability of lab scale methodologies such
as Morris maze test, object recognition test
and many others neurobehavioral tests [129].
Transgenic models used for the study of the
tau neurodegenerative cascade express human
wild-type tau, mutant tau linked to FTDP-17 or
structurally modified tau species derived from
AD [130]. Tau transgenic lines are driven by
constitutive or inducible promoters to regulate
the expression of the exogenous protein [131,
132]. Several of these tau transgenic models
exhibit deregulation in synaptic proteome,
impairment of synaptic transmission, loss of
synapses and dendritic loss (Table 1).

Structural alterations and
electrophysiological changes

Transgenic tauopathy models recapitulate
several AD like morphological changes in

the synapses. Transgenic tau lines expressing

human 6 tau isoforms or human full length tau
protein (hTau2N/4R) display loss of synapsesand
mushroom spines [133- 135]. More specifically,
mice lines expressing 6 human tau isoforms in
tau knockout background exhibit more thin
spines rather than mushroom like spines [135].
Interestingly, an initial decline in mushroom
spine volume at 3 months of age was reversed
after 6 months, indicating a certain degree of
compensatory mechanism [135]. Despite an
increase in mushroom spine volume, the older
animals still displayed diminished LTP and
spatial memory deficits [136]. Interestingly, the
effect of htau40 in spine reduction was rescued
by double transfection of the cells with MARK2
(phosphorylates tau in repeat region KXGS)
indicating that phosphorylation of tau at this
site is crucial for tau release from microtubules
[137].

Several mice models expressing FTDP-17
tau mutations have been developed which
demonstrate synaptic deficiency. For instance,
mice expressing P301S mutation show
hippocampal synaptic loss [138], mainly in the
CA3region [139]. More specifically,a progressive
loss of spines in layer V of the neocortex along
with reduced LTP was observed in these mice
[140]. Similarly, mice expressing human mutant
tau with P301L mutation also exhibit loss of
synapses in this subset of neurons [141-143]
and a loss of dendritic spines [77]. In addition,
remnant dendritic spines exhibit deficits in
[144,145].
Finally, synaptic hyperexcitability in the form

dendritic diameter and length
of increase in depolarization, action potential
and synaptic excitatory postsynaptic potentials
(sEPSP) were observed in these animals [146].
Comparable effects were also observed in
other mice strains expressing P301L mutant tau
with a different genetic background (JNPL13)
[147], mainly as increases in long-phase LTP
[148]. The animals also exhibited improved
learning and memory processes. Interestingly,
mice models expressing P301L mutated tau
protein residing solely in the entorhinal cortex
(rTgTauEC) exhibited loss of synaptic vesicles
[149]. In contrast, the presynaptic alteration
enhanced axonal excitability in these animals,
but reduced LTP [150]. However, signs of
cognitive insufficiency were absent or mild in
these animals. Interestingly, in early stages the
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P301L tau mutant mice showed elevated levels
of dendritic spine when compared to wild type
mice (tau-P301L mice) [143]. The P301L tau
mutant mice also exhibited increased levels
of vesicular glutamate transporter 1 (vGLUT1)
indicating a compensatory mechanism [151].
Although in older animals the deleterious
repercussions of P301L mutant tau expression
are widely noted.

Unlike previously reported tau lines, young
mice expressing G272V/P301S double mutant
tau showed no overt synaptic pathology [152].
However, older animals displayed a decrease
in excitatory postsynaptic potentiation (EPSP)
[153]. Organotypic sections from THY-Tau22
mice (G272V and P301S mutations) showed
that the reduction in synaptic activity is
induced by brain-derived neurotrophic factor
[154]. Likewise, the double mutated tau mice
model expressing K257T/P301S also displayed
impairment in sustenance of LTP [155].

Sydow et al. [156] generated on/off mouse
(TaufP2PP  (244-372) AK280 mice)
expressing the tau repeat domain with pro-

model

aggregant mutation (where point mutation
at lysine 280 drives aggregation of tau). The
mice showed aggregation of endogenous
and recombinant tau, tau missorting into the
dendrites and synaptic loss [157]. Moreover,
organotypic slides from mice showed marked
reduction in synaptic boutons, diminished
dendritic density and altered morphology [158-
159]. Furthermore, diminished calcium influx
after membrane depolarization was observed
suggesting altered calcium dynamics in these
neurons. Transgenic mice also showed marked
deficits in LTP in CA1 and CA3 hippocampal
regions [156, 160].

Studies from transgenic tau models clearly
show that tau protein can damage the structural
and functional properties of synapses leading
to the impairment of LTP and/or LTD.

Proteomic changes in tau
transgenic models

The synaptic impairment in AD is mainly
characterized by the dysregulation of synaptic
proteins at proteomic and transcriptomic levels
[91, 161, 162]. Massive loss in components
of the synaptic and dense core vesicles is
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prominent in AD [163, 164]. More specifically,
proteins regulating synaptic plasticity are
reduced in the AD brain [165]. Moreover, stage
dependent decline in synaptic protein levels
have also been observed [91].

Interestingly, synaptic fractions from human
AD displayed elevated levels of tau protein
in the postsynaptic density suggesting tau
mislocalization and missorting [166]. Synaptic
activity induced the physiological release of tau
protein from synapses [167], a process which is
aggravated in synaptosomes from AD brains
[168], suggesting a massive deregulation in
synaptic machinery in AD brains. Interestingly,
C-terminally truncated tau was more prominent
in the presynapses of AD brain (about 75-85%)
with low levels of N- and C-terminal double
[168].
predominant tau species in the synapses

truncated tau species Remarkably,
of AD brains were insoluble indicating tau
aggregation. These results demonstrate that
tau mislocalization and truncation exacerbate
synaptic dysfunction in AD brains.

It is still uncertain how the tau isoforms in
the synaptic compartments of diseased brain
vary when compared to the healthy individuals.
In murine neurons expressing human
tau proteins, the three repeat tau isoform
shows both neuronal body and synapse like
distribution, while four repeat tau isoform
was more “synapse like” in distribution [169].
However, based on these pieces of evidence,
it is hypothesized that regional specific
changes in the tau isoforms may contribute
to pathogenesis of human tauopathies [169].
Therefore altered distribution of tau isoforms
may be one of the causative factors for deficits
in the synapses in the tauopathy brain.

Although several studies have evaluated the
deregulation of synaptic proteins, less is known
about the pathological tau proteome in the
presynaptic and postsynaptic compartments.
We evaluated the synaptic tau proteome in
a rat model of tauopathy expressing human
truncated tau [78]. Transgenic rat models fully
recapitulate the human neurodegenerative
tau cascade [170, 171]. Like humans, rats also
express six tau isoforms in the CNS and can
mimic changes in tau proteome as in humans
[172]. Synaptic tau proteome was significantly

altered in transgenic rats [78]. Tau protein in
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Figure 2. Tau mislocalization in disease conditions. In Alzheimer’s disease (Human AD) and transgenic rat model
expressing human truncated tau protein aa151-391 (Transgenic rat model) tau protein is mislocalized to the
postsynaptic fraction (Post). Synaptic fractions were isolated as previously reported [78]. Recombinant 6 human
tau isoforms (6i) and truncated 3 repeat tau protein (3R) were used as controls.

the presynaptic compartment was elevated in
transgenic rats expressing human truncated tau
(Fig. 2). In the postsynaptic fraction, expression
of human truncated tau protein induced mis-
sorting and mislocalization of endogenous
tau (Fig. 2). These results are consistent with an
earlier report showing mislocalization of tau in
postsynaptic density of AD brains [166]. These
results establish that physiological distribution
of tau protein is perturbed in AD brains
contributing to synaptic degeneration.
Evaluation of truncated tau proteome in the
presynaptic compartments of transgenic rats
revealed phosphorylation of human truncated
tau at residues T205, S214, S262 and S356.
Conversely, truncated tau in the postsynaptic
compartment was phosphorylated mainly at
T212. This pattern of tau distribution elicited
specific pathological changes in these rats.
Elevated levels of a- and B-tubulin proteins
and specific increase in glutamylated and
detyrosinated tubulin was observed in the
presynaptic terminals of these animals. Electron
microscopy revealed microtubule bundling
and diminished levels of synaptic vesicles in
the presynaptic terminals of these animals. In
the postsynaptic compartment, expression
of human truncated tau protein led to a
decrease in neurofilament proteins. However,

no change in the levels of tubulin or MAP 2B/2C
was observed. These evidences suggest that
different phospho-tau species elicits specific
pathological effects in the presynaptic and
postsynaptic compartments of transgenic rat
model [78].

Deregulation of synaptic proteins is widely
observed in transgenic models of tauopathies.
Loss of synaptophysin, a synaptic vesicle
protein,iscommonly observed in tau transgenic
models [78, 149, 173, 174]. In addition, other
synaptic proteins synapsin, synaptojanin,
synaptobrevin are reportedly decreased in
these animals. Furthermore, expression of tau
also deregulated dendritic proteins PSD95 and
spinophillin suggesting postsynaptic deficits
in these animals [132, 149]. In mice models,
tau protein induces synaptic impairment by
diminishing the trafficking of metabotropic
glutamate receptors (mGIuR) [156,173], AMPA
and NMDA receptors [77], which contribute to
LTP deficits.

Recent evidence speculates a role of
tau protein in synaptic signaling and point
towards functional reduction of tau within
synaptic contacts in transgenic tau models. All
of this evidence points to a more intricate role
of tau protein in the synapses. Furthermore,

synaptic tau proteome alterations may be one
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of the key pathological steps in AD and other
tauopathies.

Conclusion

Outcomes from numerous studies indicate a
vital role of physiological tau protein in the
synaptic biology including induction of LTP,
LTD and dendritic activity (Fig. 3). Besides,
cues from transgenic rodent tau models
clearly demonstrate deleterious effects of

pathological tau protein in the synapses
(Fig. 3). A strong knowledge on tau driven
synaptic damage will be essential in order to
understand and intervene early pathological
events in AD. We emphasize the role of disease
modified tau protein in inducing synaptic
impairment and comprehensively assemble
multiple evidence of synaptic damage from
transgenic tau models expressing various
forms of tau protein. Put together, unlike
previously assumed, tau protein may have a

Decreases
synapse density

significantly larger role in imparting synaptic
instability and cognitive deficits in AD and
other tauopathies.
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