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Introduction  

Cognitive functions such as learning and 
memory depend on synaptic efficiency in 
certain regions of the brain [1]. In human 
neurodegenerative diseases, synapses are 
exposed to pathologically modified proteins 
aggregated in the intracellular and extracellular 
space. The protein aggregates may induce the 
loss of synaptic connections in vulnerable brain 
areas. The recurrent dysregulation of synaptic 
proteins [2], rapid N-methyl-D-aspartate 
receptors (NMDAR) endocytosis and regression 
of dendritic spines [3] are the forerunners 
in imposing synaptic impairment in these 
disorders. 

Alzheimer’s disease (AD) is the most 
prevalent neurodegenerative disorder with 
an estimated 35 million people affected 
worldwide [4]. The risk factors for AD include 
lower mental and physical activity during old 
age, head trauma, cardiovascular diseases, 
diabetes, obesity and smoking [5]. Histological 
examinations of an AD brain uncover two 
classical hallmarks, namely neurofibrillary 
tangles - composed of tau protein and senile 
plaques consisting of amyloid-beta (Aβ) protein 
[6, 7]. A very small proportion of AD cases have 

genetic dispositions which are categorized as 
familial AD [8]. However, the majority of AD 
cases are idiopathic, meaning that the cause 
of the illness is unknown. [9]. Despite scientific 
and pharmaceutical advancements, AD still 
poses as an epidemiological challenge for 
the future [10]. Therapeutic intervention for a 
neurodegenerative disease is best performed 
before irreversible memory loss and tissue 
damage occurs [11]. Therefore, investigating 
and understanding early pathological changes 
in AD would prove to be beneficial.

It has been suggested that AD may 
represent a synaptic disorder [12-14]. 
Synaptic impairment occurs very early in 
AD and correlates well with the severity of 
dementia [15-18]. Furthermore, at least certain 
components of the synaptic loss in AD occur 
regionally and are disproportionately large in 
the hippocampus [2]. 

Several studies have demonstrated that 
the degree of synaptic impairment and loss is 
linked with tangle pathology [19-21]. Therefore, 
studies on the involvement of tau protein in 
synaptic damage have received increased 
importance in recent years [22]. Identification 
of the molecular mechanisms underlying tau 
mediated synaptic damage in AD signifies 

an important step in the development of 
therapeutic agents that can prevent or delay 
the onset or progression of the disease. 

Tau physiology and function

Tau protein belongs to the family of microtubule-
associated proteins (MAP). It is localized 
mainly in the neurons of both vertebrates and 
certain invertebrates. In the human brain, tau 
proteome consists of six isoforms ranging from 
352 to 441 aa [23]. The tau proteins are further 
classified by the presence of three repeat (3R) 
or four repeat (4R) regions in the C-terminal 
and the presence or absence of one (29 aa) 
or two (58 aa) inserts in the N-terminal region  
[24-26]. It is suggested that the repeat regions 
aa 244-368 of tau bind to microtubules directly 
[27] and the aa domains 151-243 and 369-400 
surrounding the repeat region enhance the 
affinity of microtubule binding of tau. 

Tau is involved in retrograde and anterograde 
transport by differential interaction with 
dynein and kinesin motor proteins [28]. Tau 
interacts with actin and spectrin proteins, 
this allows microtubules to interconnect with 
other cytoskeletal components and restrict the 
flexibility of the microtubules [29]. Furthermore, 
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the N-terminal domain also interacts with the 
SRC homology 3 (SH3) domain of phospholipase 
C-γ (PLC-γ) and mediates the generation of 
arachidonic acid [30]. These results suggest that 
tau may modulate microtubule flexibility and 
also alter cell shape and structure. It is reported 
that the phosphorylation of tau protein in early 
developmental stages is slightly upregulated to 
provide optimal flexibility to the growth cones 
[31]. In addition, tau interacts with embryonic 
ectoderm development (Eed) protein to 
facilitate nuclear transport of Eed suggesting a 
possible role of tau in embryonic development 
[32]. Studies also suggest a role of tau protein 
in metabolic rate depression in hibernating 
animals [33]. 

Recent studies demonstrate the role of tau 
protein in long term potentiation [34] and 
long term depression [35, 36]. Tau to dendrite 
conglomeration is also necessary for targeting 
of fyn kinase to the postsynaptic compartment 
[37] and subsequent phosphorylation of 
NMDAR subunit NR2B in dendrites [38], and in 
the initiation of myelination [39]. To sum up, tau 
protein plays a diverse role in neuronal activity 
including cytoskeleton organization, signaling 
and synaptic plasticity. 

Neurofibrillary tangles and tau 
protein

In 1906, Alzheimer first reported the presence 
of neurofibrillary tangles (NFT) in a woman 
suffering from dementia [40]. These structures 
are observed mainly in the glutamatergic 
pyramidal neurons of the hippocampus and 
the entorhinal cortex, supra and infragranular 
layers of association cortical areas, cholinergic 
neurons of nucleus basalis of Meynert and 
noradrenergic neurons in the locus coeruleus 
[6, 23]. Electron microscopy images of 
NFT were first studied by Kidd and were 
referred to as longitudinally arranged fibrillar 
bundles [41]. Additionally, diffraction pattern 
revealed the presence of a double helical 
stack of cytoskeletal protofilaments [42]. NFT 
predominantly composed of paired helical 
filaments (PHF) are morphologically described 
as helical ribbons being 8-24 nm in width, 
with 80-nm periodic twists in AD [43]. Several 
decades later it was established that tau was 

one of the main components of NFT [44-47]. 
However, it was not until 1988 that tau protein 
was proved to be the major and integral part of 
the PHFs in AD [48, 49]. 	  

Tau is an intrinsically disordered protein 
[50]. In diseased brains, tau protein undergoes 
numerous pathological alterations leading 
to aberrant conformational modifications 
which liberate tau from the microtubules 
[51-53]. Although tau phosphorylation is 
observed in normal human brains, the degree 
and extent of tau phosphorylation is severe 
in AD [54, 55]. Phosphorylation is one of the 
crucial post-translational modifications of tau 
protein in AD brains [24]. In AD, tau protein 
is hyperphosphorylated at 19 aa residues 
[56]. Numerous studies have reported the 
phosphorylation of tau in the binding domain, 
which hinders tau binding to microtubules such 
as Ser 262 [57], Thr 231 [58], Thr 212 and Ser 214 
[59]. The liberated tau proteins then aggregate 
into PHF and deposit intracellularly into NFT. 
Studies have further shown that isolated PHF 
exhibit either α-helical or β-sheeted structures 
in various conditions [60, 61] and intermediary 
conformations during structural transition [62]. 

Truncation of tau transforms physiological 
tau to pathological forms that are vulnerable 
to oligomerization [63]. Biochemical 
characterization of PHF revealed a 12 kDa 
pronase resistant fragment decorated by 
antibody MN423 [64]. Epitope mapping 
suggests that MN423 recognizes truncated 
tau at Glu391 of the PHF core, suggesting that 
tau truncation is a disease associated process 
[65]. Later it was shown that the truncation 
at Glu391 enhanced the rate of tau filament 
formation [66]. Furthermore, it was also shown 
that truncation of tau may be involved in the 
evolution of NFT in AD brains [67-69]. 

Tau proteome in human 
tauopathies

Biochemical and proteomic studies 
demonstrate the existence of different 
pathological tau compositions in tauopathies. 
Based on the type of tau isoforms involved, 
tauopathies are classified into several classes 
[70]. In class I tauopathies, the aggregation of 
all 6 tau isoforms in equal ratios is observed 

[70, 71]. Biochemically, tau triplets of 60, 64 
and 69 kDa, and additional minor bands of 
72/74 kDa are characteristic for AD, some cases 
of frontotemporal dementia with parkinsonism 
linked to chromosome 17 (FTDP 17), Niemann-
Pick disease, type C, Down syndrome and 
dementia pugilistica [70]. 

In class II tauopathies, insoluble tau doublets 
of 64 and 69 kDa predominantly composed 
of 4R tau isoforms are observed. This class 
includes progressive supranuclear palsy (PSP), 
corticobasal degeneration (CBD) and some 
specific cases of FTDP-17 [72, 73]. Class III 
tauopathies are characterized by the presence 
of pathological tau doublets of 60 kDa and 64 
kDa with predominant 3R tau isoforms (lacking 
the exon 10) [70]. Pick’s disease is the sole 
neurodegenerative tauopathy assigned to this 
class [72]. Class IV tauopathy is represented 
by a single neurological disorder – myotonic 
dystrophy of type I or Steinert’s disease (DM1), 
in which a major insoluble tau band of 60 kDa, 
and minor 64 and 69 kDa bands are identified. 

Tau synaptic proteome 

The localization of tau in the axonal and 
somatodendritic compartments has drawn 
considerable interest in the last decade. 
It has been suggested that tau protein is 
localized mainly in the axons [74] due to the 
presence of an axonal targeting sequence [75]. 
However, some recent studies indicate a wide 
spread distribution of tau protein in other 
compartments including the nucleus [76] and 
dendrites [37, 77]. Interestingly, tau protein 
has been detected in the total synaptosomes 
isolated from a rat brain [38]. Our study 
demonstrated that tau protein in the rat brain 
was mainly distributed in presynaptic fractions 
while in postsynaptic densities it was almost 
absent [78] (Fig. 1). Isolation and evaluation 
of synaptic fractions from human and dogs 
also revealed identical patterns of tau protein 
distribution (Fig. 1). These results suggest 
that tau is mostly located in the presynaptic 
component, which supports the notion that 
tau is predominantly distributed in axonal 
compartment.  

On the other hand, it has been shown that 
tau protein migrates to dendrites following 
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synaptic activation and is phosphorylated at 
various sites [38, 79]. In synapses, tau protein 
interacts with actin [80], microfilaments [81], 
postsynaptic density protein 95 (PSD-95), 
NMDAR [38] and kinases such as fyn [37]. 
Likewise, tau protein is necessary for dendritic 
targeting of fyn kinase [37]. Besides, the loss of 
tau protein in dendrites resulted in a decreased 
spine density [82]. Independent results from 
tau knockout mice show that tau protein is 
essential for NMDA-dependent long term 
potentiation (LTP) [34] and α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA)-
dependent long term depression (LTD) [35, 
36]. Furthermore, selective phosphorylation 
of tau protein was observed following 
NMDAR activation which in turn regulates tau 
interaction with fyn kinase [38]. These results 
establish a profound role of tau protein in the 
neuronal dendrites. 

Synaptic impairment in 
Alzheimer’s disease

In AD, cognitive decline best correlates with 
synaptic loss and synaptic failure [6, 12, 83-
85]. Synaptic degeneration is a slow process, 
which begins as a reversible functionally-
responsive stage marked by deregulation of 
synaptic function, and then culminating into 
irreparable loss of synapses [86]. Furthermore, 
the degree of synaptic reorganization in AD is 
also perturbed due to defective microtubule 
re-organization, impaired actin dynamics, and 
re-entry into the cell cycle [87-89]. 

Loss of synapses in the limbic cortex is the 
basis for cognitive deficits in AD brains [12, 
13]. It is suggested that dementia in AD is a 
combined manifestation of the disruption of 
neuritic substructures and the loss of synaptic 
terminals in neocortical and subcortical regions 
in the brain [90]. Initial investigations in the 
field of synaptic impairment in AD involved 
morphological studies for synaptic loss and 
damage in various brain areas [16], both in 
early and late stages of AD [2, 91-95]. During 
early stages, an increase in glutamatergic 
and cholinergic synapses was observed [96, 
97]. However, as the disease progressed 
there was a rampant change in the density of 
these synapses. Synaptic loss occurs in early 

pathological stages with almost 45% fewer 
synapses in mild AD [18, 98]. A significant 
decrease in the synapses/ neurons ratio by up 
to 48% in hippocampus and 56% in cerebellum 
was reported [99]. In AD brains, synaptic 
loss is seen in the cortical areas [13, 100], 
predominantly in the frontal (45% reduction) 
and temporal cortex (25-36% reduction) [15, 90, 
101]. Furthermore, the entorhinal cortex and 
locus coeruleus also display a loss of synapses 
[18, 90, 102-104]. In addition, cognitive 
disabilities in mild cognitive impairment 
were associated with decreased levels of 
glutamatergic synapses [97, 105]. The levels 
of glutamatergic synapses strongly correlated 
with clinical dementia in patients with mild 
and severe AD [97]. Interestingly, an enlarged 
average area of surviving synapses in AD was 
also observed [99]. However, this increase led 
to an overall reduction in synaptic surface per 
µm3 of tissue indicating that structural changes 
and concomitant functional changes play a 
crucial role in synaptic pathology in AD.

The mechanisms of synaptic damage in AD 
are still unclear. It is suggested that abnormal 
processing of growth associated proteins 
may be responsible for synaptic damage in 
CNS of AD brains [106, 107]. Ultrastructural 
investigations revealed pathological 
accumulation of cytoskeletal proteins and 
lysosomal structures in the synapses of 
AD patients [106, 108, 109]. Additionally, 
accumulation of both Aβ and tau protein in the 
synaptosomes from AD brains [110] present 

cues for synaptic pathogenesis and its possible 
relation to either the abnormal function of 
synaptic proteins or direct toxic effects at the 
synaptic sites or both [111]. Several factors may 
be attributed to the changes in the synapses of 
AD brains: 1) decreased mRNA levels of synaptic 
proteins [85, 112]; 2) selective degradation of 
proteins; for example, the presence of caspases 
was observed in synaptosomes isolated from 
AD brains [110, 113]; 3) decreased transporter 
proteins in the synapses [114]; 4) abnormal 
function of synaptic proteins [111,115]; 5) 
abnormal deposition of proteins leading to 
diminished synaptic activity; for example, tau 
protein was shown to interact with synaptic 
proteins in vivo [37, 38].

Role of tau protein in synaptic 
pathology

Several studies have focused on Aβ as the trigger 
for synaptic damage in AD and suggest that tau 
protein is downstream of Aβ in AD pathology [7, 
116, 117]. Interestingly, it was shown that the loss 
of neocortical synaptic inputs in AD brain could 
be independent from amyloid deposits [107,118]. 
In addition, neurodegeneration in AD is not a 
direct result of extracellular Aβ neurotoxicity 
[119]. Therefore, Aβ pathology may or may not 
be a direct causal agent for synapse loss in AD 
[120]. Conversely, limited studies focusing on 
tau as the candidate mediating synaptic protein 
loss and damage have been reported. Several 
factors point towards a prominent role of tau 

Figure 1. Tau synaptic proteome in physiological conditions. Pre- and postsynaptic fractions were isolated as 
previously published [78]. Synaptic fractions from rat, dog and humans show that tau protein is predominantly 
distributed in the presynaptic fraction (pre), while in postsynaptic fraction is observed in traces (post). 
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protein in mediating synaptic pathology: 1) 
the progression of tau pathology correlates 
well with the cognitive decline in human AD 
[121]; tangle pathology also showed stronger 
correlation with synapse density and Blessed 
score of cognitive impairment in AD [122], 2) 
synapse loss parallels tangle formation and 
occurs in the same regions in AD brains [13, 
15, 20, 21], 3) higher tangle count is associated 
with lower levels of presynaptic proteins in AD 
[91]; furthermore, neurons containing NFT are 
responsible for selective synaptic deficits [123], 
4) NFT-bearing neurons demonstrated a 35-57% 
reduction in synaptophysin mRNA in AD brain 
[85], and even more importantly 5) synaptic 
deficits are observed in frontotemporal lobar 
degeneration (FTLD), PSP, and Niemann-Pick 
disease type C (NP-C), which are independent of 
any Aβ pathology [124-128]. All these evidences 
suggest a well-established relationship between 
synaptic damage and tau pathology. 

Insights on tau mediated 
pathology in synapses from tau 
transgenic models 

Tau transgenic models have been widely used 
to examine disease pathogenesis of tau protein. 
Behavioral and cognitive functional deficits can 
be easily studied in these animals due to the 
availability of lab scale methodologies such 
as Morris maze test, object recognition test 
and many others neurobehavioral tests [129]. 
Transgenic models used for the study of the 
tau neurodegenerative cascade express human 
wild-type tau, mutant tau linked to FTDP-17 or 
structurally modified tau species derived from 
AD [130]. Tau transgenic lines are driven by 
constitutive or inducible promoters to regulate 
the expression of the exogenous protein [131, 
132]. Several of these tau transgenic models 
exhibit deregulation in synaptic proteome, 
impairment of synaptic transmission, loss of 
synapses and dendritic loss (Table 1). 

Structural alterations and 
electrophysiological changes 

Transgenic tauopathy models recapitulate 
several AD like morphological changes in 
the synapses. Transgenic tau lines expressing 

human 6 tau isoforms or human full length tau 
protein (hTau2N/4R) display loss of synapses and 
mushroom spines [133- 135]. More specifically, 
mice lines expressing 6 human tau isoforms in 
tau knockout background exhibit more thin 
spines rather than mushroom like spines [135]. 
Interestingly, an initial decline in mushroom 
spine volume at 3 months of age was reversed 
after 6 months, indicating a certain degree of 
compensatory mechanism [135]. Despite an 
increase in mushroom spine volume, the older 
animals still displayed diminished LTP and 
spatial memory deficits [136]. Interestingly, the 
effect of htau40 in spine reduction was rescued 
by double transfection of the cells with MARK2 
(phosphorylates tau in repeat region KXGS) 
indicating that phosphorylation of tau at this 
site is crucial for tau release from microtubules 
[137].

Several mice models expressing FTDP-17 
tau mutations have been developed which 
demonstrate synaptic deficiency. For instance, 
mice expressing P301S mutation show 
hippocampal synaptic loss [138], mainly in the 
CA3 region [139]. More specifically, a progressive 
loss of spines in layer V of the neocortex along 
with reduced LTP was observed in these mice 
[140]. Similarly, mice expressing human mutant 
tau with P301L mutation also exhibit loss of 
synapses in this subset of neurons [141-143] 
and a loss of dendritic spines [77]. In addition, 
remnant dendritic spines exhibit deficits in 
dendritic diameter and length [144,145]. 
Finally, synaptic hyperexcitability in the form 
of increase in depolarization, action potential 
and synaptic excitatory postsynaptic potentials 
(sEPSP) were observed in these animals [146]. 
Comparable effects were also observed in 
other mice strains expressing P301L mutant tau 
with a different genetic background (JNPL13) 
[147], mainly as increases in long-phase LTP 
[148]. The animals also exhibited improved 
learning and memory processes. Interestingly, 
mice models expressing P301L mutated tau 
protein residing solely in the entorhinal cortex 
(rTgTauEC) exhibited loss of synaptic vesicles 
[149]. In contrast, the presynaptic alteration 
enhanced axonal excitability in these animals, 
but reduced LTP [150]. However, signs of 
cognitive insufficiency were absent or mild in 
these animals. Interestingly, in early stages the 

P301L tau mutant mice showed elevated levels 
of dendritic spine when compared to wild type 
mice (tau-P301L mice) [143]. The P301L tau 
mutant mice also exhibited increased levels 
of vesicular glutamate transporter 1 (vGLUT1) 
indicating a compensatory mechanism [151]. 
Although in older animals the deleterious 
repercussions of P301L mutant tau expression 
are widely noted.

Unlike previously reported tau lines, young 
mice expressing G272V/P301S double mutant 
tau showed no overt synaptic pathology [152]. 
However, older animals displayed a decrease 
in excitatory postsynaptic potentiation (EPSP) 
[153]. Organotypic sections from THY-Tau22 
mice (G272V and P301S mutations) showed 
that the reduction in synaptic activity is 
induced by brain-derived neurotrophic factor 
[154]. Likewise, the double mutated tau mice 
model expressing K257T/P301S also displayed 
impairment in sustenance of LTP [155]. 

Sydow et al. [156] generated on/off mouse 
model (TauRD∆PP (244-372) ∆K280 mice) 
expressing the tau repeat domain with pro-
aggregant mutation (where point mutation 
at lysine 280 drives aggregation of tau). The 
mice showed aggregation of endogenous 
and recombinant tau, tau missorting into the 
dendrites and synaptic loss [157]. Moreover, 
organotypic slides from mice showed marked 
reduction in synaptic boutons, diminished 
dendritic density and altered morphology [158-
159]. Furthermore, diminished calcium influx 
after membrane depolarization was observed 
suggesting altered calcium dynamics in these 
neurons. Transgenic mice also showed marked 
deficits in LTP in CA1 and CA3 hippocampal 
regions [156, 160]. 

Studies from transgenic tau models clearly 
show that tau protein can damage the structural 
and functional properties of synapses leading 
to the impairment of LTP and/or LTD. 

Proteomic changes in tau 
transgenic models

The synaptic impairment in AD is mainly 
characterized by the dysregulation of synaptic 
proteins at proteomic and transcriptomic levels 
[91, 161, 162]. Massive loss in components 
of the synaptic and dense core vesicles is 
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prominent in AD [163, 164]. More specifically, 
proteins regulating synaptic plasticity are 
reduced in the AD brain [165]. Moreover, stage 
dependent decline in synaptic protein levels 
have also been observed [91]. 

Interestingly, synaptic fractions from human 
AD displayed elevated levels of tau protein 
in the postsynaptic density suggesting tau 
mislocalization and missorting [166]. Synaptic 
activity induced the physiological release of tau 
protein from synapses [167], a process which is 
aggravated in synaptosomes from AD brains 
[168], suggesting a massive deregulation in 
synaptic machinery in AD brains. Interestingly, 
C-terminally truncated tau was more prominent 
in the presynapses of AD brain (about 75-85%) 
with low levels of N- and C-terminal double 
truncated tau species [168]. Remarkably, 
predominant tau species in the synapses 
of AD brains were insoluble indicating tau 
aggregation. These results demonstrate that 
tau mislocalization and truncation exacerbate 
synaptic dysfunction in AD brains. 

It is still uncertain how the tau isoforms in 
the synaptic compartments of diseased brain 
vary when compared to the healthy individuals. 
In murine neurons expressing human 
tau proteins, the three repeat tau isoform 
shows both neuronal body and synapse like 
distribution, while four repeat tau isoform 
was more “synapse like” in distribution [169]. 
However, based on these pieces of evidence, 
it is hypothesized that regional specific 
changes in the tau isoforms may contribute 
to pathogenesis of human tauopathies [169]. 
Therefore altered distribution of tau isoforms 
may be one of the causative factors for deficits 
in the synapses in the tauopathy brain. 

Although several studies have evaluated the 
deregulation of synaptic proteins, less is known 
about the pathological tau proteome in the 
presynaptic and postsynaptic compartments. 
We evaluated the synaptic tau proteome in 
a rat model of tauopathy expressing human 
truncated tau [78]. Transgenic rat models fully 
recapitulate the human neurodegenerative 
tau cascade [170, 171]. Like humans, rats also 
express six tau isoforms in the CNS and can 
mimic changes in tau proteome as in humans 
[172]. Synaptic tau proteome was significantly 
altered in transgenic rats [78]. Tau protein in 

the presynaptic compartment was elevated in 
transgenic rats expressing human truncated tau 
(Fig. 2). In the postsynaptic fraction, expression 
of human truncated tau protein induced mis-
sorting and mislocalization of endogenous 
tau (Fig. 2). These results are consistent with an 
earlier report showing mislocalization of tau in 
postsynaptic density of AD brains [166]. These 
results establish that physiological distribution 
of tau protein is perturbed in AD brains 
contributing to synaptic degeneration.

Evaluation of truncated tau proteome in the 
presynaptic compartments of transgenic rats 
revealed phosphorylation of human truncated 
tau at residues T205, S214, S262 and S356. 
Conversely, truncated tau in the postsynaptic 
compartment was phosphorylated mainly at 
T212. This pattern of tau distribution elicited 
specific pathological changes in these rats. 
Elevated levels of α- and β-tubulin proteins 
and specific increase in glutamylated and 
detyrosinated tubulin was observed in the 
presynaptic terminals of these animals. Electron 
microscopy revealed microtubule bundling 
and diminished levels of synaptic vesicles in 
the presynaptic terminals of these animals. In 
the postsynaptic compartment, expression 
of human truncated tau protein led to a 
decrease in neurofilament proteins. However, 

no change in the levels of tubulin or MAP 2B/2C 
was observed. These evidences suggest that 
different phospho-tau species elicits specific 
pathological effects in the presynaptic and 
postsynaptic compartments of transgenic rat 
model [78]. 

Deregulation of synaptic proteins is widely 
observed in transgenic models of tauopathies. 
Loss of synaptophysin, a synaptic vesicle 
protein, is commonly observed in tau transgenic 
models [78, 149, 173, 174]. In addition, other 
synaptic proteins synapsin, synaptojanin, 
synaptobrevin are reportedly decreased in 
these animals. Furthermore, expression of tau 
also deregulated dendritic proteins PSD95 and 
spinophillin suggesting postsynaptic deficits 
in these animals [132, 149]. In mice models, 
tau protein induces synaptic impairment by 
diminishing the trafficking of metabotropic 
glutamate receptors (mGluR) [156,173], AMPA 
and NMDA receptors [77], which contribute to 
LTP deficits. 

Recent evidence speculates a role of 
tau protein in synaptic signaling and point 
towards functional reduction of tau within 
synaptic contacts in transgenic tau models. All 
of this evidence points to a more intricate role 
of tau protein in the synapses. Furthermore, 
synaptic tau proteome alterations may be one 

Figure 2. Tau mislocalization in disease conditions. In Alzheimer’s disease (Human AD) and transgenic rat model 
expressing human truncated tau protein aa151-391 (Transgenic rat model) tau protein is mislocalized to the 
postsynaptic fraction (Post). Synaptic fractions were isolated as previously reported [78]. Recombinant 6 human 
tau isoforms (6i) and truncated 3 repeat tau protein (3R) were used as controls.
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of the key pathological steps in AD and other 
tauopathies.

Conclusion

Outcomes from numerous studies indicate a 
vital role of physiological tau protein in the 
synaptic biology including induction of LTP, 
LTD and dendritic activity (Fig. 3). Besides, 
cues from transgenic rodent tau models 
clearly demonstrate deleterious effects of 

pathological tau protein in the synapses 
(Fig. 3). A strong knowledge on tau driven 
synaptic damage will be essential in order to 
understand and intervene early pathological 
events in AD. We emphasize the role of disease 
modified tau protein in inducing synaptic 
impairment and comprehensively assemble 
multiple evidence of synaptic damage from 
transgenic tau models expressing various 
forms of tau protein. Put together, unlike 
previously assumed, tau protein may have a 

significantly larger role in imparting synaptic 
instability and cognitive deficits in AD and 
other tauopathies.
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Figure 3. Tau protein in the physiology and pathology of neuronal synapses. Tau protein performs physiological functions in synapses (in light green). In diseased condi-
tions, misfolded phosphorylated and truncated tau proteins impair several pre- and postsynaptic machineries to perturb synaptic function (dark green). Misfolded tau 
impairs synaptic vesicle transport and release, deregulates several synaptic proteins and alters synaptic and dendritic morphology. The cumulative effect of synaptic tau in 
disease condition results in reduction of synaptic plasticity and induction of excitotoxicity and postsynaptic long-term depression.
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