Startseite A Centrifugal Compressor Performance Map Empirical Prediction Method for Automotive Turbochargers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Centrifugal Compressor Performance Map Empirical Prediction Method for Automotive Turbochargers

  • Antonios Fatsis ORCID logo EMAIL logo , Nikolaos Vlachakis und George Leontis
Veröffentlicht/Copyright: 30. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Centrifugal compressor performance map prediction is of primary importance for safe and effective operation of turbochargers. This article is a contribution on compressor map prediction using empirical relations based on automotive turbocharger manufacturers’ performance maps. The present method evaluates the minimum and the maximum air flow rates, as well as the maximum compressor pressure ratio by original empirical equations exploiting impeller geometrical data. Newly introduced equations based on the mass flows and the maximum pressure ratio acquired above provide the compressor characteristic lines. The method is validated by applying it to various commercial automotive turbochargers with known performance maps from their manufacturers. At intermediate values of impeller speed, where the turbocharger is expected to match the engine, the computed compressor map agrees to the manufacturer’s data, while, differences are observed at the maximum impeller speed line. From the cases examined, it can be stated that the present model can be applied to predict small diameter, high rotational speed compressor performance, particularly at the high efficiency region that the turbocharger is supposed to match the IC engine.

Nomenclature

D

Impeller diameter

M

Mach number

Ν

Angular impeller speed in RPM

P

Static pressure

Π

Compressor Pressure Ratio

T

Static Temperature

Z

Number of impeller blades

c

Absolute velocity

m ˙

Mass Flow

u

Tangential velocity

β 2 b

Blade angle at impeller trailing edge

γ

Ratio of specific heats

σ

Solidity

ρ

Density

ψ

Load coefficient

Subscripts
h

Impeller hub

m

Projection in the axial direction

max

Maximum

min

Minimum

t

Impeller tip

Abbreviations
IC

Internal Combustion

References

1. Watson N, Janota MS Turbocharging the internal combustion engine. London and Basingstoke: The Macmillan Press Ltd, 1982. ISBN 978-1-349-04026-1, ISBN 978-1-349-04024-7 (eBook), DOI 10.1007/978-1-349-04024-7.Suche in Google Scholar

2. Moraal P, Kolmanovsky I. Turbocharger modeling for automotive control applications. SAE Paper 1999-01-0908, 1999.10.4271/1999-01-0908Suche in Google Scholar

3. Tu H, Chen H. Modeling of a compressor’s performance map by fitting function methodology. Adv Mater Res. 2013;779-780:1194–8.10.4028/www.scientific.net/AMR.779-780.1194Suche in Google Scholar

4. El Hadef J, Colin G, Chamaillard Y, Talon V. Turbocharged SI engine models for control. 11th International Symposium on Advanced Vehicule Control, AVEC’12, Seoul, South Korea, 2012.Suche in Google Scholar

5. Bell C, Zimmerle D, Bradley T, Olsen D, Young P. Scalable turbocharger performance maps for dynamic state-based engine models. Int J Engine Res. 2016;17:705–12.10.1177/1468087415609855Suche in Google Scholar

6. Harley P, Spence S, Filsinger D, Dietrich M, Early J. An evaluation of 1D loss model collections for the off-design performance prediction of automotive turbocharger compressors. 6th International Conference on Pumps and Fans with Compressors and Wind Turbines, IOP Conf. Series: Materials Science and Engineering, Vol. 52, 2013.10.1088/1757-899X/52/4/042011Suche in Google Scholar

7. Casey M, Robinson C. A method to estimate the performance map of a centrifugal compressor stage. J Turbomach. 2013;135(2);021034-1 – 021034-10. DOI:10.1115/1.4006590.Suche in Google Scholar

8. Galvas M. Fortran program for predicting off-design performance of centrifugal compressors. NASA TN D-7487, 1973.Suche in Google Scholar

9. Aungier RH. Mean streamline aerodynamic performance analysis of centrifugal compressors. J Turbomach. 1995;117:360–6.10.1115/1.2835669Suche in Google Scholar

10. Oh HW, Yoon ES, Chung MK. An optimum set of loss models for performance prediction of centrifugal compressors. Proc Inst Mech Eng Part A: J Power Energy. 1997;211:331–8.10.1243/0957650971537231Suche in Google Scholar

11. Sanz Solaesa S, “Analytical prediction of turbocharger compressor performance: A comparison of loss models with numerical data”, Master of Science Thesis, E.T.S.I.I. (UPM) – KTH, 2016, http://oa.upm.es/44651/ Suche in Google Scholar

12. Dean RC, Senoo Y. Rotating wakes in vaneless diffusers. ASME, J Fluids Eng. 1960;82:563–70.10.1115/1.3662659Suche in Google Scholar

13. Japikse D. Centrifugal compressor design and performance, 1st ed. Vermont, USA: Concepts ETI, 1996.Suche in Google Scholar

14. Van Den Braembussche RV. Centrifugal compressors - analysis and design. von Karman Institute CN 192, 2007.10.1002/9781119424086Suche in Google Scholar

15. Yang M, Zheng X, Zhang Y, Li Z. Improved performance model of turbocharger centrifugal compressor. Proceedings of ASME Turbo Expo 2008, Paper GT2008-50009, Berlin, Germany.10.1115/GT2008-50009Suche in Google Scholar

16. Schneider M, Bühler J, Hanna M, Schiffer HP. Analytical loss prediction for turbocharger compressors. 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics ETC11, Madrid, Spain, 2015.Suche in Google Scholar

17. Du W, Li Y, Li L, Lorenzini G. A quasi-one-dimensional model for the centrifugal compressors performance simulations. Int J Heat Technol. 2018;36:391–6.10.18280/ijht.360202Suche in Google Scholar

18. Kerres B, Sanz S, Sundström E, Mihaescu M. A comparison of performance predictions between 1D models and numerical data for a turbocharger compressor. 12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics ETC12, Paper ID: ETC2017-350, Stockholm, Sweden, 2017.10.29008/ETC2017-350Suche in Google Scholar

19. Fatsis A, Pierret S, Van Den Braembussche R. 3D unsteady flow and forces in centrifugal impellers with circumferential distortion of the outlet static pressure. ASME J Turbomach. 1997;119:94–102.10.1115/95-GT-033Suche in Google Scholar

20. Dixon SL, Hall CA. Fluid mechanics and thermodynamics of turbomachinery. 6th ed. Elsevier, 2010. Butterworth-Heinemann is an imprint of Elsevier, 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA. ISBN 978-1-85617-793-1.Suche in Google Scholar

21. Garrett Turbocharger Guide, Vol. 5, https://www.turbobygarrett.com/turbobygarrett/sites/default/files/catalog/GarrettCatalogV5.pdf.Suche in Google Scholar

22. TurboMaster, http://www.turbomaster.info/eng/applications/778445-0001.php.Suche in Google Scholar

23. Honeywell-Garrett Product Catalog, https://www.turbobygarrett.com/turbobygarrett/turbochargers/g-series-g25-550.Suche in Google Scholar

24. Garrett Turbocharger Guide, Vol. 6 https://www.turbobygarrett.com/turbobygarrett/sites/default/files/catalog/TBG-Catalog-Vol-6.pdf Suche in Google Scholar

25. Stealth 316, http://www.stealth316.com/images/td04-09b-raw.gif.Suche in Google Scholar

26. Wiesner FJ. A review of slip factors for centrifugal impellers. Trans ASME, J Eng Power. 1967;89:558–66.10.1115/1.3616734Suche in Google Scholar

27. Visser FC, Brouwers JJ, Badie R. Theoretical analysis of inertially irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers with equiangular blades. J Fluid Mech. 1994;268:107–41.10.1017/S0022112094001503Suche in Google Scholar

28. Paeng KS, Chung MK. A new slip factor for centrifugal impellers. Proc Inst Mech Eng Part A: J Power Energy. 2001;215:645–9.10.1243/0957650011538776Suche in Google Scholar

29. Bronshtein IN, Semendyayef KA, Musiol G, Mühlig H. Handbook of mathematics, 6th ed. Springer-Verlag Berlin Heidelberg, 2015. ISBN 978-3-662-46220-1, DOI 10.1007/978-3-662-46221-8.Suche in Google Scholar

Received: 2019-02-21
Accepted: 2019-03-10
Published Online: 2019-03-30
Published in Print: 2021-12-20

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tjj-2019-0006/html?lang=de
Button zum nach oben scrollen