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Abstract

Objectives: Hepatocellular carcinoma (HCC) and sepsis are
significant global health challenges, both involving complex
molecular mechanisms that may overlap. Identifying shared
differentially expressed genes (DEGs) between these condi-
tions could provide novel insights into disease progression
and therapeutic targets. This study aimed to determine
common DEGs between HCC and sepsis using microarray
datasets and to explore their biological implications through
bioinformatics analyses.
Methods: Publicly available microarray datasets for HCC
and sepsis were retrieved from gene expression re-
positories. After preprocessing and normalization, DEGs
were identified using statistical approaches, and over-
lapping genes were determined through comparative anal-
ysis. Functional enrichment analysis was performed with
the DAVID platform to assess associated biological processes
and pathways. A protein–protein interaction (PPI) network

was then constructed to identify hub genes, and transcrip-
tion factor (TF)–gene interaction analysis was carried out to
evaluate potential regulatory mechanisms shared between
the two conditions.
Results: A total of 379 common DEGs were identified be-
tween HCC and sepsis. Functional enrichment analysis
indicated that these DEGs were mainly related to immune
response, cell cycle regulation, and antigen presentation
pathways. PPI network analysis revealed hub genes
including CCNA2, NUSAP1, TOP2A, and CDK1, all of which
were significantly upregulated in both diseases. TF–gene
interaction analysis highlighted convergent transcriptional
regulatory mechanisms linking immune dysregulation in
sepsis with tumorigenesis in HCC.
Conclusions: This study demonstrates molecular similar-
ities between HCC and sepsis, emphasizing shared DEGs and
regulatory networks. The identification of hub genes and
enriched pathways provides potential diagnostic markers
and therapeutic targets, underscoring the importance of
transcriptional dysregulation in both cancer development
and sepsis pathophysiology.
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Introduction

Hepatocellular carcinoma (HCC) and sepsis are two life-
threatening conditions that significantly impact global
health, contributing to high rates of illness and death
worldwide [1, 2]. HCC, themost common and aggressive form
of primary liver cancer, is a leading cause of cancer mor-
tality, particularly in regions where hepatitis B (HBV) and
hepatitis C (HCV) infections are prevalent. The absence of
noticeable symptoms in the early stages of HCC often leads to
late detection, reducing the availability of curative treat-
ments and resulting in a poor prognosis [3, 4]. Major risk
factors for HCC development include chronic viral hepatitis,
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non-alcoholic fatty liver disease (NAFLD), excessive alcohol
intake, andmetabolic disorders such as diabetes and obesity.
These conditions drive persistent liver inflammation,
fibrosis, and cirrhosis [5, 6]. The transformation from
chronic liver disease to HCC is driven by complex molecular
and genetic changes, including altered cell cycle regulation,
immune evasion mechanisms, and dysregulated inflamma-
tory pathways.

Sepsis, on the other hand, is a severe, life-threatening
syndrome characterized by organ dysfunction due to a
dysregulated host response to infection [7]. It is a major
cause of mortality in critically ill patients and can rapidly
progress to septic shock, leading to multiple organ failure
and death [8]. The pathophysiology of sepsis involves
excessive activation of pro-inflammatory and anti-
inflammatory pathways, endothelial dysfunction, and im-
mune system dysregulation, which ultimately contribute to
widespread tissue damage and impaired homeostasis [9].
Even while sepsis and hepatocellular carcinoma (HCC)
have different clinical manifestations, new research in-
dicates that they can have similar molecular processes,
especially when it comes to immune control and inflam-
matory reactions. This suggests that there are biochemical
pathways that overlap between the formation of tumours,
infection-induced systemic inflammation, and chronic liver
disease [10].

Although sepsis is a systemic inflammatory condition
and HCC is a tissue-specific malignancy, recent studies have
emphasized the interconnectedness of immune dysregula-
tion and chronic inflammation in both diseases. The liver
plays a central role in systemic immune responses, and it is
both a target and an active modulator of inflammation
during sepsis. Moreover, persistent inflammation following
sepsis has been associated with long-term immunosup-
pression and tissue remodeling, which may predispose in-
dividuals to tumorigenesis, particularly in the liver.
Conversely, chronic liver diseases that predispose to HCC
often involve recurrent infections and microbial trans-
location, both of which can lead to systemic inflammatory
responses resembling sepsis. Therefore, despite differences
in primary tissue involvement, HCC and sepsis may
converge at shared immune-related and inflammatory mo-
lecular pathways. Exploring these overlapping mechanisms
through comparative transcriptomic analysis can provide
valuable insights into immune-mediated pathogenesis and
identify common therapeutic targets [10–12].

In recent years, bioinformatics-based approaches have
revolutionized disease research by enabling the large-scale
identification of DEGs across various pathological condi-
tions. These DEGs have essential functions in fundamental
biological processes such as immune regulation, apoptosis,

oxidative stress, and cell proliferation, which are key factors
in both cancer progression and the host response to in-
fections [11, 12]. Investigating the shared genetic and mo-
lecular alterations between HCC and sepsis could reveal
crucial biomarkers and therapeutic targets with trans-
lational potential. Previous studies have identified certain
immune-related pathways, such as cytokine signalling, an-
tigen presentation, and programmed cell death, as potential
intersections between cancer and systemic infections,
further supporting the hypothesis of amolecular connection
between these two diseases [13, 14].

Given the increasing availability of high-throughput
gene expression datasets, the integration of bioinformatics
tools has provided a powerful strategy for uncovering novel
disease mechanisms. In this study, we aimed to identify
common molecular signatures between HCC and sepsis us-
ing publicly available microarray datasets. By analysing
differentially expressed genes and their associated path-
ways, we sought to determine key regulatory networks that
may underlie both conditions. To achieve this, we con-
structed a comprehensive protein-protein interaction (PPI)
network, performed functional enrichment analyses, and
explored transcription factor (TF)-gene interactions to map
the shared molecular landscape of HCC and sepsis.

Despite growing recognition of these connections, there
is limited integrated transcriptomic analysis directly
comparing HCC and sepsis. Therefore, leveraging high-
throughput bioinformatics tools to explore their shared
molecular signatures could uncover novel insights into dis-
ease mechanisms and potential therapeutic targets.

In this study, we aimed to identify common differen-
tially expressed genes (DEGs) and biological pathways be-
tween HCC and sepsis by analyzing publicly available gene
expression datasets. By constructing protein-protein inter-
action (PPI) networks, performing gene ontology (GO) and
pathway enrichment analyses, and mapping transcription
factor (TF)-gene interactions, we sought to elucidate
converging molecular processes. We hypothesize that iden-
tifying these shared regulatory networks will enhance our
understanding of immune dysfunction and inflammation
across both diseases and support the discovery of novel
biomarkers and drug targets.

Materials and methods

Retrieval of datasets

In order to find the related datasets, the publicly accessible
Gene Expression Omnibus database (https://www.ncbi.nlm.
nih.gov/geo/accessed on 09 August 2024) was searched for
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HCC or sepsis. Two datasets, GSE28750 for sepsis and
GSE45267 for HCC selected for analysis. GSE28750 includes
peripheral whole blood samples consisting of 10 sepsis pa-
tients and 20 healthy controls. GSE28750 has been used as a
validation set for key gene signatures and potential diag-
nostic biomarkers in different research, previously [15, 16].
Identification of GSE45267 comprises 48 healthy individuals
having normal liver tissues and 39 HCC patients with tumor
liver tissues. GSE45267 stands out due to its balanced and
well-characterized sample set, its rich differential gene
expression data. Both experiments were performed by
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Arraya widely used and well-validated microarray
platform, ensuring high-quality, comparable gene expres-
sion data [17].

Screening of differentially expressed genes
(DEGs)

DEGs were identified using GEO2R [18] with a threshold of
adjusted p-value (FDR) < 0.05. |log2FC| ≥ 1. The adjusted
p-values were calculated using the Benjamini & Hochberg
method to control the false discovery rate. Overlapping
DEGs between sepsis and HCC were discovered with the
Draw Venn Diagram (http://bioinformatics.psb. ugent.be/
webtools/Venn/). Overlapped genes used in the down-
stream analysis.

Protein-protein interaction (PPI) network
analysis and hub genes identification

PPI of shared DEGs was carried out via STRING online data
base (https://www.string-db.org/). The PPI network for
common DEGs were created with a confidence score≥0.7.
Next, the PPI network was viewed using the Cytoscape
(www.cytoscape.org/) software [19]. CytoHubba is a plugin
used within Cytoscape for identifying key hub genes or
nodes in a biological network. We used cytoHubba [20] to
identify highly connected or influential nodes within a
protein-protein interaction network, which may be critical
for understanding disease mechanisms or biological pro-
cesses. By using Maximal Clique Centrality (MCC) algorithm
top 10 hub genes were selected with the highest connectivity
since the MCC algorithm effectively captures the most cen-
tral and functionally important genes in complex biological
networks.

Kyoto encyclopaedia of genes and genomes
(KEGG) pathway and gene ontology (GO)
functional enrichment analysis

For KEGG and GO analyses overlapped genes between
datasets were utilized. The enrichment analysis was ach-
ieved by using The Database for Annotation, Visualization,
and Integrated Discovery (DAVID) version 6.8 (last updated:
October 2021) online tool (http://david-d.ncifcrf.gov/). For
KEGG and GO analyses, p-value of <0.05 was set as the
threshold. Benjamini–Hochberg FDR method was applied
formultiple testing correctionwithin DAVID, and only terms
with adjusted p<0.05 were considered significant.

Transcription factor (TF)- gene and miRNA-
gene interaction prediction

Transcriptional Regulatory Relationships Unravelled by Sen-
tence Based Text Mining (TRRUST) within the NetworkAna-
lyst, a database for predicting transcriptional regulatory
networks, was employed for 10 hub genes to prediction of TF-
gene interactions [21]. MiRNA-gene interaction network con-
structed by miRTarBase (version 8.0; https://mirtarbase.cuhk.
edu.cn/) found in the Networkanalyst framework [22].

Results

Identification of shared DEGs in HCC and
sepsis

Using the NCBI GSE28750 and GSE45267microarray datasets,
we investigated the DEGs in Sepsis patient’s vs. healthy in-
dividuals and HCC patient’s vs. healthy individuals. Volcano
plots were used to display the results of the differential
analysis. In sepsis dataset we detected 2805 DEGs with 1,368
of them down-regulated and 1,437 up-regulated. The number
of total DEGs found in HCC dataset was 2928. In this dataset
1,613 DEGs showed down-regulation whereas 1,315 showed
up-regulation. Following, we identified 379 common DEGs
between GSE28750 and GSE45267 (Figure 1). The further
analysis was conducted upon common DEGs. Among these
DEGs 129 of them were commonly up-regulated and the
number of commonly down-regulated DEGs was 81. The
heatmap demonstrates the expression level of common
DEGs (Figure 1). Volcano plots visualize expression changes
in both disease states (Figure 1).
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PPI network analysis and identification of
hub genes

The PPI network of the commonDEGswas constructed using
STRING (Figure 2), where nodes represent proteins and
edges represent predicted interactions. This network
included 275 nodes and 687 edges, reflecting the complex
interaction landscape of the shared differentially expressed
genes. To identify the most critical genes within this
network, the dataset was further analyzed using CytoHubba,
a plugin in Cytoscape for hub gene identification. The Cyto-
Hubba analysis revealed 10 hub genes based on their topo-
logical importance: CCNA2, NUSAP1, TOP2A, CDK1, ASPM,
KIF11, CEP55, BIRC5, CCNB1, and DLGAP5 (Figure 3).
Expression analysis showed that all of these hub genes were
upregulated in both HCC and sepsis samples, suggesting a
potential shared pathogenic mechanism.

GO and KEGG analysis of overlapped genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed us-
ing the DAVID online tool for 379 overlapping genes. Results
were ranked by statistical significance (p-value), and the top
10most significantly enriched GO terms and KEGG pathways
were visualized in Figures 4 and 5, respectively.

Figure 4 illustrates the GO enrichment analysis results,
highlighting key Biological Process terms. In the biological
process category, enrichment analysis revealed significant
involvement of sharedDEGs in cell division (GO:0051301), G2/
M and G1/S transitions of the mitotic cell cycle (GO:0000086,
GO:0000082), and chromosome segregation (GO:0007059),
indicating enhanced proliferative activity in both diseases.
Immune-related processes were also enriched, such as an-
tigen processing and presentation (GO:0019882) and peptide
antigen assembly with MHC class II protein complex
(GO:0002504), highlighting shared immune modulation
pathways between HCC and sepsis.

In terms of molecular function, significant enrichment
was observed in genes involved in protein binding
(GO:0005515), which reflects general molecular interaction
capacity. However, more specific and disease-relevant
functions were also enriched, such as MHC class II protein
complex binding (GO:0023026) and MHC class II receptor
activity (GO:0032395), suggesting a potential role for antigen
presentation and adaptive immune modulation in both HCC
and sepsis. Additionally, enrichment in kinase-related
functions – such as cyclin-dependent protein serine/threo-
nine kinase regulator activity and protein kinase bind-
ing – indicates alterations in signaling pathways related to
cell cycle control and inflammatory signaling cascades.

For cellular components, shared DEGs were enriched in
the cytosol (GO:0005829) and cytoplasm (GO:0005737),
consistent with intracellular signaling and metabolic

Figure 1: Volcano plots of microarray data showing differential gene expression changes in HCC and sepsis. Intersection of DEGs detected in HCC and
sepsis. The heatmap was generated based on expression levels of shared DEGs. Red colour indicates higher expression, and blue colour indicates lower
expression.
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processes. Notably, there was significant enrichment in
extracellular exosomes (GO:0070062) and clathrin-coated
vesicle membranes (GO:0030669), suggesting active inter-
cellular communication and vesicle-mediated antigen
transport, which are relevant to both tumor microenviron-
ment remodeling and systemic immune responses during
sepsis.

Figure 5 presents the KEGG pathway enrichment anal-
ysis. KEGG pathway enrichment analysis of the shared DEGs
revealed significant involvement in immune-related and
proliferative pathways. The most significantly enriched
pathway was Hematopoietic cell lineage, highlighting
disruption in immune cell differentiation and development
common to both HCC and sepsis. Other prominently
enriched pathways included the p53 signaling pathway,
associated with DNA damage response and apoptosis, and
the cell cycle, supporting a role for uncontrolled prolifera-
tion. Pathways related to immune dysfunction and infec-
tion – such as antigen processing and presentation, systemic

lupus erythematosus, Staphylococcus aureus infection, and
effercytosis – further indicate immune dysregulation as a
shared hallmark. Collectively, these results suggest conver-
gence in cell cycle control and immune system perturbation
across both disease states.

TF–gene ınteraction analysis

To further explore the regulatory mechanisms of the
identified hub genes, transcription factors (TFs) targeting
these genes were analyzed using the TRRUST database via
NetworkAnalyst. The resulting TF-hub gene interaction
network was visualized using Cytoscape (Figure 6). This
analysis revealed five key transcription factors E2F1,
TOP2A, TP53, E2F3, and E2F4suggesting their central roles
in modulating the expression of hub genes involved in both
HCC and sepsis.

Figure 2: The PPI network of shared DEGs in HCC and sepsis.
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miRNA analysis

To identify post-transcriptional regulators of the hub genes,
miRNA-hub gene interactions were analyzed using miR-
TarBase (version 8.0) through the NetworkAnalyst platform.
A total of 306 miRNAs targeting the 10 hub genes were
identified. These interactions were assessed based on degree
centrality to highlight the most influential regulatory miR-
NAs. The top 10 key miRNAs commonly involved in both
sepsis and HCC were identified as: hsa-mir-193b-3p, hsa-let-
7b-5p, hsa-mir-24-3p, hsa-mir-16-5p, hsa-mir-195-5p, hsa-mir-

497-5p, hsa-mir-6507-5p, hsa-mir-192-5p, hsa-mir-215-5p,
hsa-mir-186-5p, and hsa-mir-218-5p. This regulatory network
highlights the potential roles of specific miRNAs in modu-
lating hub gene expression in both disease contexts.

Discussion

HCC and sepsis are increasing global health concerns, with
projections indicating that more than one million HCC cases
are expected annually by 2025. The most common form of

Figure 3: The identified top 10 hub genes having maximum number of interactions detected via Cytohubba.
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liver cancer HCC accounts for 90 % of all cases. The high
mortality rate associated with HCC is primarily due to late-
stage diagnosis and limited treatment options [23]. Mean-
while, sepsis continues to be a leading cause of death for
severely ill individuals, worldwide, characterized by dysre-
gulated host immune responses to infections [24].

Despite being different diseases, sepsis and HCC have
some molecular pathways in common that contribute to

their pathogenesis. Our bioinformatics analysis revealed
significant overlaps in immune response modulation,
inflammation, and cell cycle regulation, suggesting shared
molecular networks. Although the molecular mechanisms
underlying HCC and sepsis are distinct, both diseases may
intersect at various biological pathways. Exploring these
common pathways can enhance our understanding of the
pathogenesis of both conditions and potentially lead to the

Figure 4: GO analysis of HCC and sepsis shared DEGs (p≤0.05).

Figure 5: Pathway analysis displaying
associations with shared DEGs of HCC and
sepsis (p≤0.05).
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development of novel therapeutic strategies. Specifically,
fundamental biological mechanisms such as immune re-
sponses, cell cycle regulation, and inflammatory processes
may present promising targets for both HCC and sepsis.
Illuminating these intersections could pave theway formore
effective treatment approaches in the future.

There may be an indirect link between HCC and sepsis,
as both conditions are related to the immune system, in-
fections, and inflammation. A key factor connecting these
two conditions is immune system dysregulation, which can
increase the risk of infections in HCC patients and contribute
to sepsis severity. Individuals with HCC may become more
susceptible to infections as their immune system weakens

with the progression of the disease, increasing their risk of
sepsis. Moreover, sepsis itself can cause liver damage,
impairing liver function and potentially increasing the risk
of HCC development. Additionally, bacterial translocation in
cirrhotic patients has been associated with increased
tumorigenesis risk, further linking these two conditions at
the molecular level. So, while there is no direct cause-and-
effect relationship, there may be an indirect connection
between sepsis and HCC due to the roles of inflammation,
immune system dysfunction, and infection. [25–31].

In our study the relationship between sepsis and HCC-
related genes was investigated using the GSE28750 and
GSE45267 microarray datasets. Here, we identified the genes

Figure 6: TF-hub gene interaction network visualized via cytoscape. The blue rectangle shows TFs, the yellow ellipses represent hub genes and green
triangles represents hub TFs.
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that are affected in common or different ways in sepsis and
HCC by comparing gene expression profiles obtained from
sepsis and HCC patients and healthy individuals. Our findings
revealed that approximately 13 % of the genes differentially
expressed in sepsis and HCC were common, supporting the
hypothesis that shared molecular mechanisms exist between
these diseases. A PPI network of the common DEGs was
created via STRING, and 10 hub genes (CCNA2, NUSAP1,
TOP2A, CDK1, ASPM, KIF11, CEP55, BIRC5, CCNB1, DLGAP5)
were identified using Cytohubba. GO and KEGG enrichment
analyses showed significant enrichment in biological pro-
cesses such as cell division, G2/M transition, and antigen
presentation. TF-gene interaction analysis identified five key
TFs: E2F1, TOP2A, TP53, E2F3, and E2F4. In their study to
identify hub genes and potential therapeutic drugs for HCC,
Su et al. identified the genes TOP2A, CCNA2, CDK1, and CCNB1
[32]. In our study, these genes have also been detected.

Interestingly, gene ontology enrichment revealed a
significant overrepresentation of MHC class II–related
pathways in the liver-derived HCC dataset. However, this
finding should be interpreted with caution. Hepatocytes, the
main parenchymal cells of the liver, do not typically express
MHC class II molecules under physiological conditions
[33].Therefore, the observed enrichment likely reflects the
presence of non-parenchymal immune cells – particularly
infiltrating macrophages, dendritic cells, or B cells – within
the tumor microenvironment, rather than intrinsic expres-
sion by hepatocytes or tumor cells [33]. Since our analysis
was based on bulk RNA expression data, we could not
directly quantify or adjust for cell type composition.Without
immune deconvolution or single-cell resolution, such
enrichment patterns may confound tissue-specific in-
terpretations and overestimate the role of certain pathways
in hepatocyte biology.

E2F1 and TP53 are two critical TFs that play pivotal roles
in cancer biology and immune system regulation. They often
interact in complex ways to influence tumor progression
and immune responses. E2F1 is usually overexpressed in
HCC and is related with poor prognosis. It regulates genes
that control cell cycle progression, apoptosis, and DNA
repair, encouraging tumour growth and metastasis. Beyond
its role in tumour cell proliferation, E2F1 influences the
tumour immunological microenvironment. Elevated E2F1
levels correlate with increased infiltration of immunosup-
pressive Th2 cells and suppression of antitumor Th1 re-
sponses, leading to immune evasion. Silencing E2F1 can
reverse this impact by promoting a Th2-to-Th1 transition and
increasing anticancer immunity [34, 35]. TP53, a crucial tu-
mor suppressor gene, is themost commonlymutated gene in
human cancers, including HCC [36]. In TP53 wild-type HCC
cells, E2F1 can bind to the p53 protein, influencing the

expression of immune checkpoint molecules like PD-L1 [35].
Both E2F1 and TP53 play critical roles in HCC progression
and regulation of the tumor immune microenvironment.
Their interactions affect immune cell behavior and tumor-
immune crosstalk, making them potential targets for ther-
apeutic interventions aimed at enhancing antitumor im-
munity in HCC.

The DNA topoisomerase II alpha (TOP2A) gene encodes
an enzyme that regulates the topological state of DNA during
essential cellular processes such as transcription and repli-
cation. This gene has a significant function in important
biological mechanisms, including chromatid separation,
alleviation of torsional stress during transcription and
replication and chromosome condensation [37]. Given the
regulatory importance of these hub genes, they could serve
as potential biomarkers for disease progression and treat-
ment response. In research on acute respiratory distress
syndrome (ARDS), the TOP2A gene was identified as one of
the 20 hub genes in a PPI network. Other notable hub genes
include Cyclin B1 (CCNB1), Cyclin B2 (CCNB2), and tran-
scription factors such as FOXM1. These genes are considered
potential candidates for innovative gene therapies that may
be used in the treatment of sepsis-related ARDS. Studies
comparing sepsis and healthy paediatric populations have
shown that the TOP2A gene is significantly expressed in
infected sepsis groups, suggesting that it could serve as a
biomarker for distinguishing sepsis in children from healthy
controls. Its involvement in cellular stress mechanisms
during infection indicates that TOP2A could be a valuable
target for therapeutic interventions [38]. In our study,
TOP2A also appears among the commonhub genes found for
both HCC and sepsis, further supporting its relevance. Wu
et al. identified 118 DEGs between very early-stage HCC and
cirrhotic tissue samples in their study. These genes were
found to have a strong association with important biological
processes, such as negative regulation of growth and the p53
signalling pathway. The PPI network analysis results indi-
cated eight hub genes, including CDK1, CCNB1, TOP2A, and
CCNA2. In our study, we identified 379 DEGs between HCC
and sepsis, and our PPI network analysis identified 10 hub
genes, including CDK1, CCNA2, CCNB1 and TOP2A. Extensive
investigations of these hub genes have been conducted in
previous studies [37, 39–42].

Up to the present, numerous studies have reported
various single nucleotide polymorphisms (SNPs) associated
with the development of HCC. These SNPs are linked to genes
involved in several critical biological processes. For
instance, some SNPs are associated with inflammatory
pathways, including genes such as TNF-α, IL-1β, IL-10, and
TGF-β. Others relate to iron metabolism, particularly the
HFE1 gene. Additionally, SNPs have been found in genes
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related to oxidative stress pathways, such as GSTM1, SOD2,
and MPO, as well as in DNA repair mechanisms involving
MTHFR, TP53, and MDM2. Emerging evidence suggests that
these SNPs may also influence sepsis susceptibility and
progression, as inflammatory and oxidative stress-related
pathways are crucial in both diseases. Collectively, these
genetic variations play a significant role in influencing the
risk of developing HCC by affecting key biological processes.
Further investigations into these shared polymorphisms
could provide insights into common genetic predispositions
and potential biomarkers for early detection or risk assess-
ment in both conditions [43–45].

306 miRNAs were found to interact with the hub genes,
with hsa-mir-193 b-3p and hsa-let-7b-5p emerging as key
miRNAs. hsa-mir-193 b-3p acts as a tumor suppressor in HCC
by targeting CDK1 and inhibiting tumor cell proliferation
and migration but its role in sepsis is not well established
[46]. On the other hand, hsa-let-7b-5p has a protective, anti-
inflammatory role in sepsis by modulating neutrophil
function and TLR4/NF-κB signaling but its involvement in
HCC remains to be clarified [47]. Both miRNAs represent
promising molecular targets, yet further studies are needed
to fully elucidate their roles across these diseases and to
overcome translational limitations. Hence, both in vivo and
in vitro experiments need to be done.

One important limitation of this study is the use of
transcriptomic data derived from different tissues: periph-
eral blood for sepsis and liver tissue for HCC. This introduces
a potential confounding factor due to the heterogeneous
cellular composition and baseline expression profiles
inherent to each tissue. Nevertheless, we aimed to uncover
overarching immune and inflammatory gene signatures
that might converge between a systemic inflammatory dis-
ease (sepsis) and an inflammation-driven cancer (HCC). Our
results should thus be interpreted as hypothesis-generating
and not as conclusive evidence of shared mechanisms
without further tissue-matched validation. Second, the
sample sizes in both datasets were relatively small, limiting
statistical power and potentially affecting the robustness of
differential expression and enrichment results. Third,
although normalization and background correction were
performed using the GEO2R platform, no explicit batch effect
correction was applied, so it may have influenced the
outcome. Finally, the retrospective nature of the data re-
stricts the ability to control for confounding variables or
perform systematic validation. Future studies incorporating
larger, tissue-matched cohorts and standardized pre-
processing pipelines are required to confirm and extend
these findings.

In conclusion, our study highlights the molecular in-
tersections between HCC and sepsis, revealing shared

pathways related to immune response, cell cycle regulation,
and inflammation. The identification of common hub genes,
transcription factors, and miRNAs suggests potential bio-
markers and therapeutic targets for both diseases. Further
research into these molecular mechanisms may contribute
to the development of novel diagnostic and treatment stra-
tegies, ultimately improving patient outcomes in HCC and
sepsis.
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