Research Article

Sevgi Kolayli, Zehra Can*, Hilal Ebru Çakir, Onur Tolga Okan and Oktay Yildiz

TURNING A OCHEMICAL

An investigation on Trakya region Oak (*Quercus* spp.) honeys of Turkey: their physico-chemical, antioxidant and phenolic compounds properties

Türkiye'nin Trakya Bölgesindeki Meşe (*Quercus* spp.) Ballarının: Fiziko-kimyasal, antioksidan ve fenolik kompozisyon özelliklerin araştırılması

https://doi.org/10.1515/tjb-2017-0174 Received June 28, 2017; accepted October 5, 2017; previously published online February 13, 2018

Abstract

Objective: The purpose of this study was therefore to investigate various physicochemical properties, phenolic composition and antioxidant capacities of the oak honey, large quantities of which are produced in the Thrace region of Northwest Turkey.

Methods: Hunter color values (Lab), optical rotation, electrical conductivity, moisture and ash were measured as physicochemical determinants. Sugar, proline content, mineral, phenolic acids, total phenolic flavonoids contents were evaluated as chemical parameters. Ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging were used as antioxidant determinants.

Results: The results determined that dark-colored honeys (mean 24.95 ± 8.35 L) have proline levels (649.82 \pm 203.90 mg/kg), total phenolic content (TPC) (67.29 \pm 13.10 mg GAE/100 g) and total flavonoid content

(TFC) (10.14 \pm 4.78 mg QE/100 g), a high ratio of fructose/glucose (1.65 \pm 0.18). Rutin (11.14 \pm 8.50 μ g/g), p-coumaric acid (6.97 \pm 5.80 μ g/g) and protocatechuic acid (6.12 \pm 4.39 μ g/g) were the major phenolic components, and querce-tin was also detected in varying amounts in all samples. Potassium (2523 \pm 0.28 mg/kg), calcium (63.40 \pm 3.20 mg/kg) and magnesium (38.88 \pm 0.65 mg/kg) were the major minerals in the honeys.

Conclusion: Our results showed that physicochemical properties, phenolic compounds, antioxidant capacity, sugar and mineral contents successfully distinguish the geographical origins of oak honey. These findings will contribute to a more accurate evaluation of oak honey in the literature.

Keywords: Antioxidant; Honeydew; Oak; Phenolic; *Quercus* spp.; Mineral; Sugar.

Özet

Amaç: Bu çalışmanın amacı, Kuzeybatı Trakya bölgesinde bol miktarda üretilen meşe balının çeşitli fiziko-kimyasal özellikleri, fenolik bileşimi ve antioksidan kapasitelerini araştırmaktır.

Metod: Fiziko-kimyasal özellik olarak Hunter renk değeri (Lab), optik rotasyon, elektriksel iletkenlik, nem, kül analizleri belirlendi. Kimyasal parametreler olarak şeker, prolin içeriği, mineral, fenolik asitler, toplam fenolik flavonoid içerik belirlendi. Antioksidan aktivite olarak demir indirgeme/antioksidan kapasitesi (FRAP) ve 2,2 difenil-1-pikrahidrazil (DPPH) belirlendi.

Bulgular: Sonuçlarda, koyu renkli balların L değeri ortalama (24.95 \pm 8.35), değeri (649.82 \pm 203.90 mg/kg), toplam fenolik içeriği (67.29 \pm 13.10 mg GAE/100 g), toplam flavonoid içeriği (10.14 \pm 4.78 mg QE/100 g), yüksek fruktoz/glukoz oranı (1.65 \pm 0.18) tespit edildi. Rutin

Turkey, Tel.: +905058860607, e-mail: zehra.can@giresun.edu.tr. http://orcid.org/0000-0002-7156-4941

Sevgi Kolayli and Hilal Ebru Çakir: Karadeniz Technical University, Faculty of Sciences, Department of Chemistry, 61080 Trabzon, Turkey, e-mail: skolayli@ktu.edu.tr (S. Kolayli), hilalebruhotaman@gmail.com (H. E. Çakir)

Onur Tolga Okan: Karadeniz Technical University, Technology Transfer Office Kanuni Campus, 61080 Trabzon, Turkey,

e-mail: onurtolgaokan@ktu.edu.tr

Oktay Yildiz: Karadeniz Technical University, Maçka Vocational School, Maçka, 61750 Trabzon, Turkey, e-mail: oktayyildiz@ktu.edu.tr

^{*}Corresponding author: Dr. Zehra Can, Giresun University, Şebinkarahisar Technical Sciences Vocational School, 28400 Giresun,

 $(11.14 \pm 8.50 \,\mu\text{g/g})$, p-kumarik asit $(6.97 \pm 5.80 \,\mu\text{g/g})$, protokatekuik asit (6.12±4.39 µg/g) major fenolik bilesen olarak, kuersetin değişik miktarlarda tüm ballarda tespit edildi. Potasyum, (2523±0.28 mg/kg), kalsiyum $(63.40 \pm 3.20 \text{ mg/kg})$ ve magnezvum $(38.88 \pm 0.65 \text{ mg/kg})$ ballarda major mineral olarak bulundu.

Sonuç: Sonuçlarımızda, fiziko-kimyasal özellikleri, fenolik kompozisyonları antioksidan kapasitesi, seker ve mineral içerikleri coğrafi orjinleri farklı olan meşe ballarında başarılı bir şeklide ayırt edildiğini ortaya koymaktadır. Elde edilen bu bulgular, mese balının literatürde daha doğru bir şekilde değerlendirilmesine katkıda bulunacaktır.

Anahtar Kelimeler: Antioksidan; salgı balı; meşe; fenolik; Quercus spp.; mineral; şeker.

Introduction

Honey is a sweet natural substance produced by honeybees (Apis mellifera). Honey produced from nectars are known as blossom honey, and those produced from liquids secreted from living parts of plants as honeydew honey. The dry weight of honey is composed of 94–97% carbohydrates. The principal monosaccharides are glucose and fructose [1]. The rest of the dry weight is composed of proteins, amino and organic acids, phenolic compounds, enzymes, hormones, lipids, vitamin, essential oils and mineral substances [2]. Many secondary metabolites, such as flavonoids and phenolic acids, are responsible for the biological properties of honey [3]. Therefore, honey is appreciated not only for its taste, but also for its high nutritional and nutraceutical value [3]. In general, honey is classified under two categories depending on the sources involved, honeydew honey and blossom honey. These exhibit different physico-chemical properties [2, 4].

Blossom honey is produced from nectar, and the honey was identified as their positive optical rotation values. Honeydew honeys are produced in two different ways. One is from secretions of insects and the other from the sweat of leaves. Pine honey is one well-known honeydew honey. In order to produce pine honey, bees use the honeydew of the insect species Marchalina hellenica that live on the sap of pine trees. Oak honey can be produced in one of two ways. One involves the secretions of some oak aphids, such as Kernes guercus, Lachnus iliciphilus and Thelaxes dryophila [5]. An alternative method involves sweating by oak leaves under stress conditions, such as sudden temperature changes, or nocturnal and diurnal temperature changes. Sweating of leaves results in the

secretion of various sugars, an important food source for bees in honey production. For these reasons, honeydew and nectar honeys differ from one another in terms of chemical composition, physical properties and melissopalynological analysis [6].

Due to its geographical location and ideal climatic conditions, Turkey is one of the world's most important honey-producing countries. It is the largest producer of pine honey, the best-known honeydew honey, in the world. However, little is known about oak honey. Turkey is an oak-rich country, and oak forests are found in almost all its geographical regions. However, not all oak forests are suitable for oak honey production. The climatic conditions also have to be appropriate. Sugars form in association with stress factors in the leaves of plants in regions with a high difference between dayand night-time temperatures. Bees store the sugars from the leaves when it is moist. Various polyphenolic substances enter the honey from the leaves together with the sugars. For these reasons, oak honey is darkcolored, rich in polyphenolic components and has its own unique aroma. Oak honey production is known to occur in Thrace, northwest Anatolia and the region of the Istranca Mountains, with their rich oak forests. However, insufficient studies have to date investigating the chemical and biologically active properties of the honey of the region. The aim this study was therefore to investigate various physicochemical properties, phenolic composition and antioxidant capacities of the oak honey, large quantities of which are produced in the Thrace region of Northwest Turkey. There is not much information about oak honey in the Thrace region. The oak honey, which is known as secretion honey, is dark in color and has high antioxidant capacity and the high apitherapy value, so its characteristic features have to be illuminated.

Materials and methods

Chemicals

2,4,6-Tripyridyl-s-triazine (TPTZ), Folin-Ciocalteu's phenol reagent, 2,2-diphenyl-1-picrylhydrazyl (DPPH), Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), were purchased sigma-aldrich merck (Darmstandt, Germany). All chemical standards were HPLC-grade pure, and the common phenolic and sugar standards were obtained from Sigma-Aldrich (Munich, Germany). HPLC grade organic reagents were supplied by

Sigma-Aldrich Co. (St. Louis, MO, USA), and methanol by Merck KGaA, (Darmstandt, Germany).

Honey samples

Twenty oak (Quercus spp.) honey samples were collected from experienced beekeepers in the Thrace region of Turkey in the 2016 harvest season (August). This region lies on Turkey's European border, and contains the Istranca Mountains and forest. The forest contains many species of oak trees (Quercus spp.), such as Quercus robur, Quercus petraea, Ouercus hartwissians, Ouercus infectoria, Ouercus macranthera, Quercus libani, Quercus auches and Quercus ilex [7]. Despite being honeydew honeys, pollen analyses were performed as a melissopalynological test [8].

Determination of physicochemical properties

Color, moisture, ash, electrical conductivity and optical rotation analysis

Color characteristics were assessed using the CIE L*a*b* method. The apparent (surface) color of samples was measured in terms of L (degree of darkness), a (degree of redness and greenness) and b (degree of vellowness and blueness) using appropriate equipment (Konica, Minolta, CR-5). Ash content was determined using official methods of analysis [9]. Moisture was measured using a portable refractometer (Atago, Germany), electrical conductivities with a conductometer (Hanna Instrument, HI 2030-02, Romania) and optical rotation with a polarimeter (Beta PPP7, England). Proline content was determined using the spectrophotometric method [10]. Maximum absorbance was read at 510 nm, with the aid of a calibration curve obtained from solutions of pure dry proline. The content was expressed as a proportion of the mass of honey as mg/kg.

Honey extraction for antioxidant activity and phenolics analysis

Each honey sample (10 g) was dissolved in 50 mL methanol in a falcon tube. The mixture was stirred continuously with a shaker (Heidolph Promax 2020, Schwabach, Germany) at room temperature for 24 h. The mixture was then filtered with filter paper (Whatman) and concentrated in a rotary evaporator (IKA-Werke, Staufen,

Germany) at 40°C. The residue was dissolved in methanol to a known final concentration and kept at 4°C until use for antioxidant and phenolic compound analysis.

Preparation of samples for RP-HPLC-UV analysis

The methanolic extract was evaporated until dryness with a rotary drier at 40°C. The residue was dissolved in 15 mL acidified distilled water (pH 2), after which liquid-liquid extraction was carried out with 5×3 mL diethyl ether (sigma-aldirch Louis, MO Burlington, USA) and 5×3 mL ethyl acetate, consecutively [11]. Both the diethyl ether and ethyl acetate phases were pooled and dried by rotary evaporation (IKA-Werke, Staufen, Germany) at 40°C. The pellet was resuspended in 2 mL methanol, filtered with syringe filters (RC-membrane, 0.45 µm), and injected to HPLC.

Total phenolic content (TPC) and total flavonoid content (TFC)

Total phenolic compound contents were determined by spectrophotometric analysis using the Folin-Ciocalteu method [12]. The maximum absorbance was read at 760 nm, and total phenolic contents (TPC) were expressed as gallic acid equivalents in mg per 100 g of honey (mg GAE/100 g).

Total flavonoid contents (TFC) were measured using a spectrophotometric assay [13]. The maximum absorbance was read at 415 nm, and TFC was expressed as mg quercetin equivalents per 100 g honey (mg QE/100 g).

Determination of ferric reducing antioxidant power (FRAP) and free radical scavenging

Ferric reducing antioxidant power (FRAP) assay was used to determine total antioxidant capacity [14]. FeSO, ·7H,O was used as a positive control to construct a reference curve (31.25-1000 μ M). FRAP values were expressed as umol FeSO₄ · 7H₃O equivalent 100 g of sample.

The scavenging of DPPH radicals were used to determine the radical scavenging activity of the methanolic honey samples. This test is based on the disappearance of color in the presence of antioxidants [15]. Radical scavenging activity was measured using Trolox as standard, and the values were expressed as SC₅₀ (mg sample per mL), the concentration of sample resulting in 50% scavenging of DPPH · radicals.

Analysis of phenolic profiles by HPLC-UV detector

HPLC analyses of phenolic profiles were carried out on an Elite LaChrom Hitachi HPLC with a UV-Vis detector. A C18 column (150 mm × 4.6 mm, 5 um; Fortis) was used. Gradient elution was used for HPLC-UV analyses [2]. The mobile phase consisted of (A) 2% acetic acid in water and (B) acetonitrile:water (70:30) (merck Darmstandt, Germany). The 14 standards were recorded at 280 nm, while guercetin was recorded at 315 nm. The programmed solvent used began with a linear gradient held at 95% A for 3 min, decreasing to 80% A at 10 min, 60% A at 20 min, 20% A at 30 min and finally 95% A at 50 min [16].

Determination of sugar content profiles by HPLC-RI detector

Sugar profiles of the honey was determined using a refractive detector (RID) with HPLC (Elite LaChrom, Hitachi, Japan) and a reverse phase-amide column (200/4.6 Nucleosil100-5 NH₂) adjusted to a 45°C column temperature. HPLC-RI was performed using the method described by Can et al. [2]. The mobile phase consisted of an acetonitrile and ultrapure water mixture (79:21, v/v) with an injection volume of 15 min. The volume of each injection was 20 µL.

Determination of mineral contents

ICP-MS (Agilent, 7700) was used to determine element contents in the honey samples. Ten minerals (K, C, Mg, C, Al, Na, Fe, Zn, Ni, Cu and Mn) were determined in the specimens. Honeys (1 g) were digested with a Teflonmicrodigestion vessel (CEM, MARSXperss), to which was added 5 mL high purity nitric acid and 1.5 mL 30% H₂O₂. The samples were digested at 120°C for 45+25 min, held at 190°C 30+10 min, allowed to cool and then made up to 14 mL of distilled water. For calibration standards for measurement with ICP-MS, Merck VI multi element calibration solution was prepared volumetrically by dilution with 1% nitric acid [17].

Statistical analysis

Data were tested on SPSS (version 9.0 for Windows 98, SPSS Inc.) software. Regression and correlation analyses were performed with Kruskal-Wallis and Pearson correlation analysis as a non-parametric test. Significance was set at p < 0.05. Pearson's correlations were calculated for color, TP, TF, FRAP, DPPH and proline levels to determine differences.

Results and discussion

Organoleptic and physicochemical properties

The melissopalynological analysis was performed to determine the specific botanical origins of the honeys. Microscopic analysis of the 20 honey samples revealed much lower pollen contents compared to nectar honeys. The predominate pollens in the samples were Quercus spp., from the family Fagaceae. The predominat pollen ratio was greater than 45%. The other minor pollen families identified were Lauraceae, Tiliceae, Pinaceae, Asteraceae, Rosaceae and Lamiaceae. A lower level of pollen in the oak honey than in nectar honey was an expected finding, as the sample is a honeydew honey and the its production was performed after flowering time. There is a considerable difference between flowering and the collection of the honey. In general, oak trees bloom in March-April, while honey collection starts in July-August. Therefore, oak honey contains low levels of pollens. These consisted of both oak pollens and other flower pollens observed around the forest.

Various physicochemical parameters of the samples are summarized in Table 1. The mean moisture content in the samples was 17.2 ± 1.47%. In general, honey moisture ranges between 16% and 20% in many honey codices [18]. A mean honeydew moisture level of 17.4%, ranging from 15.5% to 19.8%, has been reported in honeys from Spain [4]. In general terms, honey moisture varies depending on climatic and soil conditions, geographical and botanical origins and the season of production.

Another important physical property of honey is electrical conductivity, a parameter widely used to distinguish between nectar and honeydew honeys [19]. Mean electrical conductivity value of the honey samples in this study was 0.88 mS/cm, ranging from 0.81 to 1.03 mS/cm (Table 1). The conductivity of honey derives from various ions, proteins, organic acids, amino acids, phenolic and mineral contents [19]. Generally, honeydew honeys should possess an electrical conductivity value higher than 0.80 mS/cm. Many honey studies have shown that dark-colored honeys have higher electrical conductivity than light honeys [19]. Electrical conductivity in Spanish honeydew honeys has been reported to range between 0.80 and 1.20 mS/cm, similarly to our results [4]. The

Table 1: Some physico-chemical properties and prolin amount of the studied honeys.

Sample	Moisture (%)	Optic rotation			Hunter colors	Conductivity	Ash (%)	Proline (mg/kg)
		$\left[\pmb{\alpha}\right]_{20}$	L	a	b	(mS/cm)		
H1	15.00±0.17ª	0.46 ± 0.00^{i}	34.09±0.05 ⁿ	35.92±0.02°	57.84±0.10°	0.92 ± 0.01^{i}	0.40±0.01 ^{cd}	473.69 ± 44.81 ^b
H2	17.00 ± 0.00^{c}	$-0.57\pm0.00^{\mathrm{j}}$	15.12 ± 0.01^a	27.94 ± 0.04^a	25.84 ± 0.02^{b}	$0.90\pm0.01^{\text{h}}$	0.41 ± 0.01^{c}	$762.82 \pm 16.80^{\rm g}$
H3	15.00 ± 0.17^{a}	-0.26 ± 0.00^{f}	21.95 ± 0.01^{i}	36.39 ± 0.02^p	37.57 ± 0.02^k	0.95 ± 0.01^{j}	0.60 ± 0.01^{i}	$691.53 \pm 16.80^{\rm f}$
H4	16.00 ± 0.50^{b}	$-0.24\pm0.00^{\mathrm{e}}$	$15.11\pm0.09^{\text{a}}$	33.87 ± 0.03^{g}	25.73 ± 0.02^a	$0.88 \pm 0.01^{\rm g}$	0.36 ± 0.01^{b}	1242.05 ± 11.20^k
H5	17.00 ± 0.00^{c}	$-0.09\pm0.00^{\text{a}}$	$35.08 \pm 0.00^{\circ}$	33.18 ± 0.01^d	58.77 ± 0.05^p	0.92 ± 0.01^{i}	0.56 ± 0.01^{h}	556.86 ± 5.60^{de}
H6	16.00 ± 0.17^{b}	-0.37 ± 0.00^{h}	$16.42 \pm 0.00^{\rm d}$	35.00 ± 0.01^k	$28.03\pm0.01^{\text{e}}$	$0.87\pm0.01^{\text{fg}}$	0.33 ± 0.01^a	901.44 ± 11.20^{j}
H7	$16.00\pm0.00^{\mathrm{b}}$	-0.37 ± 0.00^{h}	18.90 ± 0.02^{e}	$35.98 \pm 0.01^{\circ}$	32.31 ± 0.02^f	0.88 ± 0.01^{gh}	$0.42\pm0.01^{\scriptscriptstyle d}$	865.79±39.21 ^{ij}
Н8	$17.00\pm0.00^{\text{c}}$	-0.59 ± 0.00^k	35.46 ± 0.01^p	33.74 ± 0.02^f	59.61 ± 0.08^{r}	0.84 ± 0.01^{cd}	$0.41 \pm 0.01^\text{cd}$	572.71 ± 5.60^{e}
H9	$17.00\pm0.00^{\text{c}}$	0.99 ± 0.00^{l}	26.42 ± 0.03^{s}	30.52 ± 0.01^{b}	70.20 ± 0.02^u	0.98 ± 0.01^k	0.66 ± 0.01^{j}	434.09 ± 0.00^a
H10	19.00 ± 0.17^{e}	-0.26 ± 0.00^{f}	15.24 ± 0.01^{b}	34.26 ± 0.02^{i}	$26.01 \pm 0.03^{\circ}$	$0.86\pm0.01^{\text{ef}}$	0.36 ± 0.01^{b}	818.27 ± 39.21^{h}
H11	19.00 ± 0.50^{e}	$-0.17\pm0.00^{\scriptscriptstyle d}$	42.13 ± 0.02^{r}	32.92 ± 0.01^{c}	69.70 ± 0.05^t	$0.87\pm0.01^{\text{fg}}$	0.48 ± 0.01^{f}	687.57 ± 11.20^{f}
H12	$17.00\pm0.00^{\text{c}}$	$0.12\pm0.00^{\text{b}}$	$16.29\pm0.11^{\scriptscriptstyle \complement}$	34.81 ± 0.03^{j}	$27.81\pm0.04^{\scriptscriptstyle d}$	0.82 ± 0.01^{ab}	0.32 ± 0.01^a	758.86 ± 33.61^{g}
H13	$16.00\pm0.00^{\mathrm{b}}$	-0.26 ± 0.00^{f}	21.50 ± 0.01^{h}	37.38 ± 0.09^{s}	36.83 ± 0.20^{i}	0.84 ± 0.01^{cd}	0.49 ± 0.01^{f}	857.87 ± 16.80^{i}
H14	$16.00\pm0.00^{\text{b}}$	$1.16\pm0.00^{\scriptscriptstyle m}$	30.53 ± 0.01^{l}	$36.09 \pm 0.02^{\circ}$	$52.00\pm0.05^{\scriptscriptstyle m}$	0.83 ± 0.01^{bc}	0.36 ± 0.01^{b}	509.34 ± 16.81 bc
H15	19.00 ± 0.00^{e}	0.09 ± 0.00^a	$20.03\pm0.01^{\rm g}$	$35.66\pm0.01^{\scriptscriptstyle m}$	34.24 ± 0.05^{h}	$0.85\pm0.01^\text{de}$	$0.44\pm0.01^{\text{e}}$	529.14 ± 0.00^{cd}
H16	18.00 ± 0.00^{d}	0.15 ± 0.00^{c}	19.63 ± 0.00^{f}	35.44 ± 0.01^{l}	33.59 ± 0.03^{g}	$0.86\pm0.01^{\text{ef}}$	$0.57\pm0.01^{\text{h}}$	552.90 ± 0.01^{de}
H17	19.00 ± 0.17^{e}	-0.26 ± 0.00^{f}	35.52 ± 0.01^p	36.94 ± 0.01^{r}	60.27 ± 0.02^s	0.83 ± 0.01^{bc}	$0.52 \pm 0.01^{\text{g}}$	489.53 ± 22.40bc
H18	20.00 ± 0.50^{f}	$0.12\pm0.00^{\text{b}}$	31.26 ± 0.01^{m}	$36.08 \pm 0.01^{\circ}$	53.20 ± 0.05^{n}	$0.81\pm0.01^{\text{a}}$	0.49 ± 0.01^f	497.46 ± 33.61 bc
H19	$17.00\pm0.00^{\text{c}}$	$0.09\pm0.00^{\text{a}}$	23.21 ± 0.00^{j}	33.24 ± 0.01^{e}	39.52 ± 0.01	$\boldsymbol{1.03 \pm 0.01}^{l}$	0.79 ± 0.01^k	497.40 ± 11.20^{bc}
H20	$18.00\pm0.01^{\text{d}}$	$0.30\pm0.01^{\rm g}$	25.22 ± 0.00^k	$34.26 \pm 0.01^{\text{h}}$	37.22 ± 0.01^{j}	0.81 ± 0.01^a	$0.52\pm0.01^{\text{g}}$	499.47 ± 10.20 ^{bc}

Different letters in the same column indicate significantly different at the 5% level (p < 0.05) among the results.

elevated conductivity in honeydew honey is associated with its high phenolic and mineral contents, as well as ash levels. Total ash in the samples ranged from 0.36% to 0.72%, higher than in many blossom honeys [20] (Table 1). The ash content of honey depends on the mineral content, and this is in turn affected by various environmental pollution and soil properties [21]. The optical rotation values of the samples are given in Table 1. Some of the honey has positive optic rotation, and others negative, in nearly equal proportions. Although honeydew honey exhibits dextrorotatory properties with positive optic rotation, the honeys showed different rotation. Each of the honey samples must be examined separately in order to explain this variation. Undergrowth plant cover may also affect honeydew qualities. On the other hand, the optic rotation values were between -0.57 and 1.16, and half of the honey samples exhibited positive optic rotation. Negative rotation values not greater than -0.57 that can be considered close positive values. As a result, the honey samples optic rotations were found between -0.57 and 1.12. In one previous study, oak honey exhibited positive rotation, with a mean value of 0.74 ± 0.25 [19]. There is considerable previous research into honeydew in the literature, and optic rotation is reported to be an important distinguishing factor for honeydew honeys in some studies [22]. However, other studies have shown that the classification

is not always possible, as mono and oligosaccharide compositions of honeydew can affect environmental flora [23]. However, optic rotation of -7.8 and 7.5 has been reported in Macedonian honeydew honeys [23]. For this reason, specific rotation is not the only characteristic factor in oak honeys, and further evidence is required.

Color values of the honeys are given in Table 1. There are two methods for determining honey colors, the pfund scale and Hunter L*a*b* assays [24]. The tritium color values of honeys are expressed as L*/ for darkness/lightness (0 black, 100 white), $a^*/(-a \text{ greenness}, +a \text{ redness})$, and b*/(-b blueness, +b yellowness) [25]. Comparing our results with values in the previous literature, the samples exhibited lower L values, defined as dark-color honeys [19, 26]. Light-colored honeys are reported to have L values lower than 50, and our L values were also below 50 [26]. Dark-colored honeys are reported to have a stronger taste, while light-colored honeys have a delicate flavor [18]. Honey color depends on the flora involved and on associated vitamin, pigment, phenolic substance and mineral contents. Chlorophyll, carotene and xanthophylls type compounds bestow a vellow-green color [27].

Maillard products emerging with exposure to heat treatment also cause honey to darken. Since the honey colors were measured immediately and without exposure to heat treatment, Maillard reaction products are not thought to

Table 2: Antioxidant properties of the oak honeys.

Sample	Total phenolic (mg GAE/100 g)	Total flavonoid (mg QE/100 g)	FRAP (µmol FeSO₄ · 7H₂O/100 g)	DPPH SC ₅₀ (mg/mL)
H1	64.06±0.60°	4.70±0.40b	509 ± 4 ^d	15.42±0.09 ^f
H2	77.40 ± 0.60^{j}	12.91 ± 0.10^{h}	606 ± 19^{fg}	17.20 ± 0.43^{g}
H3	75.44 ± 0.22^{i}	13.22 ± 1.61^{h}	809 ± 1^{l}	13.95 ± 0.43^{e}
H4	68.21 ± 0.70^{g}	18.10 ± 0.11^{k}	625±1 ^h	8.49 ± 0.21 ^b
H5	49.57 ± 0.80 ^b	4.52 ± 0.10^{ab}	439±5°	27.89 ± 0.66^{1}
H6	73.60 ± 0.40^{h}	13.00 ± 0.50^{h}	$897\pm2^{\text{m}}$	12.35 ± 0.13^{d}
H7	66.13 ± 0.10^{f}	3.00 ± 0.40^{a}	$710\pm24^{\mathrm{j}}$	16.78 ± 0.41^{g}
Н8	$64.29 \pm 0.10^{\text{ef}}$	7.61 ± 0.11°	625 ± 2^{h}	19.47 ± 0.32^{i}
H9	40.60 ± 0.09^{a}	4.21 ± 0.30^{ab}	385±4ª	20.53 ± 1.16^{j}
H10	66.01 ± 0.01^{f}	8.63 ± 0.11^{cd}	770 ± 7^k	$8.09\pm0.17^{\text{ab}}$
H11	56.58±0.01°	3.92 ± 0.30^{ab}	410±1 ^b	18.77 ± 0.58^{h}
H12	98.56±3.33 ^m	11.30 ± 0.70^{fg}	1015±3°	8.32 ± 0.06^{ab}
H13	82.80 ± 2.30^{l}	$10.12\pm0.60^{\text{def}}$	819 ± 12^{1}	9.22±0.22°
H14	58.77 ± 0.80^{d}	$10.62\pm0.30^{\text{efg}}$	546±6°	15.75±0.21 ^f
H15	80.27 ± 0.42^{k}	11.84 ± 0.60^{gh}	$901\pm18^{\text{m}}$	8.56 ± 0.12^{bc}
H16	82.00 ± 1.30^{l}	21.00 ± 0.80^{l}	973 ± 22 ⁿ	7.67 ± 0.09^{a}
H17	58.88 ± 0.70^{d}	$9.33 \pm 1.80^{\text{de}}$	609 ± 3^{gh}	14.33±0.01e
H18	59.00 ± 0.12^{d}	15.44 ± 2.31^{i}	658±6 ⁱ	16.51 ± 0.23^{g}
H19	64.75 ± 0.60^{ef}	$10.10\pm1.30^{\text{def}}$	658±7 ⁱ	15.52 ± 0.41^{f}
H20	59.06 ± 0.60^{d}	9.23 ± 0.09^{de}	589±8 ^f	16.75±0.09g

Different letters in the same column indicate significantly different at the 5% level (p < 0.05) among the results.

Table 3: Pearson's correlation coefficient for color, total phenolic, total flavonoids, FRAP, DPPH and proline in honey samples in Thrace region of Turkey.

		Color (L)	Color (a)	Color (b)	TPC	TFC	FRAP	DPPH	Proline (mg/kg)
Color (L)	Pearson correlation	1	-0.144	0.996(a)	-0.764(a)	-0.559(a)	-0.751(a)	0.673(a)	-0.618(a)
	Sig. (two-tailed)		0.271	0.000	0.000	0.000	0.000	0.000	0.000
	n	60	60	60	60	60	60	60	60
Color (a)	Pearson correlation	-0.144	1	-0.108	0.243	0.140	0.422(a)	-0.404(a)	-0.014
	Sig. (two-tailed)	0.271		0.410	0.062	0.286	0.001	0.001	0.917
	n	60	60	60	60	60	60	60	60
Color (b)	Pearson correlation	0.996(a)	-0.108	1	-0.745(a)	-0.551(a)	-0.739(a)	0.667(a)	-0.616(a)
	Sig. (two-tailed)	0.000	0.410		0.000	0.000	0.000	0.000	0.000
	n	60	60	60	60	60	60	60	60
TPC	Pearson correlation	-0.764(a)	0.243	-0.745(a)	1	0.515(a)	0.875(a)	-0.732(a)	0.394(a)
	Sig. (two-tailed)	0.000	0.062	0.000		0.000	0.000	0.000	0.002
	n	60	60	60	60	60	60	60	60
TFC	Pearson correlation	-0.559(a)	0.140	-0.551(a)	0.515(a)	1	0.584(a)	-0.605(a)	0.276(b)
	Sig. (two-tailed)	0.000	0.286	0.000	0.000		0.000	0.000	0.033
	n	60	60	60	60	60	60	60	60
FRAP	Pearson correlation	-0.751(a)	0.422(a)	-0.739(a)	0.875(a)	0.584(a)	1	-0.777(a)	0.302(b)
	Sig. (two-tailed)	0.000	0.001	0.000	0.000	0.000		0.000	0.019
	n	60	60	60	60	60	60	60	60
DPPH	Pearson correlation	0.673(a)	-0.404(a)	0.667(a)	-0.732(a)	-0.605(a)	-0.777(a)	1	-0.427(a)
	Sig. (two-tailed)	0.000	0.001	0.000	0.000	0.000	0.000		0.001
	n	60	60	60	60	60	60	60	60
Proline (mg/kg)	Pearson correlation	-0.618(a)	-0.014	-0.616(a)	0.394(a)	0.276(b)	0.302(b)	-0.427(a)	1
	Sig. (two-tailed)	0.000	0.917	0.000	0.002	0.033	0.019	0.001	
	n	60	60	60	60	60	60	60	60

 $^{^{\}mathrm{a}}$ Correlation is significant at the 0.01 level (two-tailed). $^{\mathrm{b}}$ Correlation is significant at the 0.05 level (two-tailed).

affect the color [28]. Our measurements of Hunter a* values (redness) for the samples ranged from 27.94 to 36.94, and b* values (yellowness) ranged from 25.73 to 70.20. Our results show that the honey samples had low L* values, but high a* and b* values. Darkness, redness and yellowness therefore predominated in the honey samples. Color analysis is an important parameter of honey, due to its visual appearance, and is mostly dependent on the nectar source and pollen content. Honey color is also related to the presence of pigments, mainly chlorophylls, carotenoids, flavonoids and polyphenols [29].

Proline contents of the honevs were between 434.09 and 1242.05 mg/kg, and the mean proline value was 649.83 ± 203 mg/kg. The level of proline in honey is associated with many factors, but the source of flora and bees' work performance has a particular influence [30]. Proline is an amino acid that is added by the honey bee during nectar conversion and indicates the degree of honey. It could be thought that the amount of proline in the honey and enzymes such as sucrose and glucose oxidase, produced by honey bees, shows the possibility of honey. In this study, we used a spectrometric method, an assay which shows total free amino acid contents. Interestingly, however, proline was present in the highest quantities, and other amino acids were very low at negligible amounts. Although a minimum proline level of 150 mg/kg is cited in European codices, in Turkish codices this is above 300 mg/kg [31]. Most honey studies have reported proline contents greater than 400 mg/kg in the literature [19, 30]. In general, lower proline values are observed in adulterated honeys, such as those produced by bee colonies fed with sugar syrups [32]. All proline contents were above the levels given in both honey codices. Our study determined quite proline values in oak honeys. The amount of amino acids in honey is approximately 1% (w/w).

Total phenolic and total flavonoid contents

Contents of total phenolics and total flavonoids and 15 individual phenolic components of the samples were analyzed

Figure 1: Rutin, *p*-coumaric acid, protocatechuic acid.

in order to reveal the secondary metabolites deriving from plants. Total phenolic and flavonoid contents in the current study ranged from 40.60 to 98.56 GAE/100 g and from 3.00 to 21.00 mg QE/100 g, respectively (Table 2). Similar results were reported for South European honevdew honey [33, 34]. The secondary metabolites found in honey are related to floral properties and environmental conditions. In general, it is not possible to determine each of the phenolic components; total contents give information about the product [3, 19]. These secondary agents provide biological active features of honeys as well as natural products, such as antioxidant, antimicrobial and anti-inflammatory and immuno-modulatory characteristics [34]. Oak honey TPC has been variously reported at $120 \pm 18 \text{ mg GAE}/100 \text{ g}$ [19] and $132 \pm 30 \text{ mg GAE}/100 \text{ g}$ [4]. Oak honeys are also reported to have higher TPC than many nectar honeys, such as acacia, clover and many heterofloral honeys [17]. As a honeydew honey, oak honey has higher TPC than pine honey samples [2, 17]. Flavonoids are important subgroups of polyphenolic family and are ubiquitously distributed in the plant kingdom. These secondary metabolites are widely represented in bee products, such as honey, pollen and propolis [35]. TFC of the samples ranged from 3.00 to 15.44 mg QE/100 g, with a mean value of 10.14 ± 4.78 mg QE/100 g. They also represented 4-15% of the TPC of the honeys. Similar to our findings, total flavonoid levels of 6.6–13.1 mg QE/100 g has been determined in Spanish honeydew honeys [4]. Oak honey has higher flavonoid contents than pine and some blossom honeys [2, 17].

Antioxidant activity of oak honeys

Many different methods are appropriate for assessing the antioxidant activity of a substance and in most cases it is necessary to use several tests to obtain good reliability [13, 27]. There is no official method for honey antioxidant activity determination. Various tests are in use, each based on different principles and experimental conditions; the FRAP assay, the DPPH method, oxygen radical

Table 4: Phenolic profiles of the oak honeys.

ms (buenouc	ng (pnenotic compound)/g sampte	ample												
Gallic acid	Protocatequic acid	p-OH Benzoic acid	Catechin		Caffeic acid	Syringic acid	Epicatechin	p-Coumaric acid	Ferulic acid	Rutin	Daidzein	t-Cinnamic acid	Luteolin	Quercetin
$0.85\pm0.01^{\rm b}$	3.07±0.47cd	n.d.ª	n.d.ª	n.d.ª	3.16±0.01 ^{cd}	n.d.ª	n.d.ª	1.54±0.01bc	2.33±0.11 ^h	4.80±1.77ab	n.d.ª	0.31±0.01d	n.d.ª	0.02±0.00ab
n.d.ª	n.d.ª	$\textbf{0.45} \pm \textbf{0.05}^c$	n.d.ª	n.d.ª	n.d.ª	n.d.ª	n.d.ª	$1.74\pm0.01^{\rm e}$	$1.76\pm0.02^{\mathrm{e}}$	7.41 ± 0.08^{bc}	n.d.ª	$0.20\pm0.02^{\circ}$	n.d.ª	$\textbf{0.12} \pm \textbf{0.02}^{\text{bc}}$
5.23 ± 0.05^{f}	$4.74\pm0.25^{\rm ef}$	0.12 ± 0.08^{b}	n.d.ª	n.d.ª	$3.96\pm0.48^{\rm g}$	n.d.ª	n.d.ª	$1.62\pm0.01^{\text{cde}}$	$2.03\pm0.02^{\rm g}$	$14.41\pm0.48^{\text{d}}$	n.d.ª	$0.96\pm0.03^{\rm g}$	n.d.ª	0.16 ± 0.04^{d}
6.11 ± 0.26^{g}	$4.77\pm1.15^{\rm ef}$	0.73 ± 0.02^{f}	n.d.ª	n.d.ª	2.54 ± 0.05^{b}	n.d.ª	n.d.ª	$1.52\pm0.01^{\rm bc}$	$1.57\pm0.32^{\mathrm{e}}$	$24.71\pm0.55^{\mathrm{ef}}$	n.d.ª	n.d.ª	n.d.ª	$0.29\pm0.02^{\rm ef}$
$0.44\pm0.01^{\text{ab}}$	5.46 ± 0.09^{f}	n.d.ª	n.d.ª	n.d.ª	2.80 ± 0.04^{bc}	n.d.ª	n.d.ª	$3.40\pm0.02^{\rm g}$	$0.71\pm0.03^{\rm a}$	2.73 ± 0.03^{ab}	n.d.ª	$1.08\pm0.06^{\text{h}}$	n.d.ª	0.03 ± 0.00^{ab}
0.66 ± 0.04^{ab}	$3.22\pm0.57^{\rm cd}$	$1.00\pm0.07^{\text{h}}$	n.d.ª	n.d.ª	2.54 ± 0.13^{b}	n.d.ª	0.12 ± 0.01^{b}	$1.59\pm0.07^{\rm bcd}$	$1.20\pm0.08^{\text{d}}$	3.51 ± 0.10^{ab}	n.d.ª	n.d.ª	n.d.ª	0.04 ± 0.00^{ab}
$\textbf{0.57} \pm \textbf{0.01}^{ab}$	2.68 ± 0.03^{c}	n.d.ª	n.d.ª	n.d.ª	2.80 ± 0.04^{bc}	n.d.ª	n.d.ª	$\boldsymbol{1.27 \pm 0.01^{a}}$	$\textbf{1.01} \pm \textbf{0.01}^c$	$\boldsymbol{3.04 \pm 0.01}^{ab}$	n.d.ª	$\textbf{0.12} \pm \textbf{0.01}^{\text{b}}$	n.d.ª	$\textbf{0.03} \pm \textbf{0.00}^{ab}$
n.d.ª	$3.28\pm0.01^{\mathrm{cd}}$	0.17 ± 0.03^{b}	n.d.ª	n.d.ª	4.06 ± 0.16^{g}	n.d.ª	n.d.ª	$2.86\pm0.02^{\text{f}}$	9.33 ± 0.01^{i}	1.13 ± 0.06^{a}	n.d.ª	0.17 ± 0.03^{bc}	n.d.ª	0.02 ± 0.00^a
0.42 ± 0.02^{ab}	$1.77\pm0.06^{\mathrm{b}}$	$\textbf{0.02} \pm \textbf{0.01}^{a}$	n.d.ª	n.d.ª	$3.44\pm0.22^{\text{def}}$	n.d.ª	n.d.ª	$1.47\pm0.06^{\text{b}}$	$\textbf{0.85} \pm \textbf{0.01}^{abc}$	2.59 ± 0.07^{ab}	n.d.ª	$1.20 \pm 0.04^{\rm i}$	n.d.ª	0.03 ± 0.00^{ab}
n.d.ª	$4.64\pm0.02^{\text{de}}$	0.70 ± 0.01^{f}	n.d.ª	n.d.ª	$3.60\pm0.02^{\mathrm{ef}}$	n.d.ª	n.d.ª	$1.53\pm0.01^{\rm bc}$	$1.56\pm0.02^{\mathrm{e}}$	$25.13\pm0.58^{\mathrm{ef}}$	n.d.ª	$\textbf{0.26} \pm \textbf{0.01}^{\text{a}}$	n.d.ª	$0.31\pm0.04^{\mathrm{ef}}$
n.d.ª	3.89 ± 0.31^{d}	$\textbf{0.17} \pm \textbf{0.01}^{\text{b}}$	n.d.ª	n.d.ª	2.45 ± 0.01^{b}	n.d.ª	6.66 ± 0.07^{d}	$26.55\pm0.10^{\text{n}}$	$\textbf{0.93} \pm \textbf{0.01}^{bc}$	$12.84\pm0.03^{\text{d}}$	n.d.ª	$\textbf{2.42} \pm \textbf{0.04}^{k}$	n.d.ª	0.13 ± 0.01^d
$3.35\pm0.01^{\text{d}}$	$5.01 \pm 0.19^{\mathrm{ef}}$	$\textbf{0.54} \pm \textbf{0.02}^{d}$	n.d.ª	n.d.ª	4.44 ± 0.10^{h}	n.d.ª	$1.24\pm0.02^{\circ}$	$1.63\pm0.02^{\rm cde}$	$2.10\pm0.03^{\rm g}$	$26.37 \pm 0.54^{\dagger}$	n.d.ª	$\textbf{0.27} \pm \textbf{0.01}^{\text{d}}$	n.d.ª	0.32±0.03f
$3.95\pm0.03^{\mathrm{de}}$	10.05 ± 0.15^{h}	$1.28 \pm 0.03^{\circ}$	n.d.ª	n.d.ª	$6.31 \!\pm\! 0.05^{j}$	n.d.ª	n.d.ª	$1.68\pm0.03^{\mathrm{de}}$	3.17 ± 0.01^{i}	$22.40\pm0.20^{\text{d}}$	n.d.ª	$\textbf{1.71} \pm \textbf{0.04}^{\text{j}}$	n.d.ª	0.25 ± 0.01^d
$\boldsymbol{0.07 \pm 0.01^{\text{a}}}$	$19.64\pm1.78^{\mathrm{i}}$	n.d.ª	n.d.ª	n.d.ª	2.66 ± 0.12^b	n.d.ª	n.d.ª	$\boldsymbol{1.24 \pm 0.01}^{a}$	$\textbf{0.81} \pm \textbf{0.01}^{ab}$	4.48 ± 0.07^{ab}	n.d.ª	$\textbf{0.30} \pm \textbf{0.01}^{\text{d}}$	n.d.ª	0.03 ± 0.01^{ab}
$4.18\pm0.20^{\mathrm{e}}$	$11.88 \!\pm\! 0.14^{h}$	$1.03\pm0.11^{\text{h}}$	n.d.ª	n.d.ª	4.95 ± 0.03^{i}	n.d.ª	n.d.ª	8.32 ± 0.05^{i}	$2.41\pm0.10^{\text{h}}$	$14.12\pm0.30^{\text{d}}$	n.d.ª	$0.76\pm0.01^{\mathrm{e}}$	n.d.ª	0.15 ± 0.01^{d}
$7.11\pm1.72^{\text{h}}$	9.45 ± 0.33^{h}	$0.82 \pm 0.06^{\mathrm{g}}$	n.d.ª	n.d.ª	$4.47\pm0.13^{\text{h}}$	n.d.ª	n.d.ª	8.63 ± 0.06^{j}	$2.29\pm0.18^{\text{h}}$	$20.92\pm1.21^{\rm e}$	n.d.ª	$0.77\pm0.04^{\mathrm{e}}$	n.d.ª	$0.22 \pm 0.01^{\rm e}$
	$2.81\pm0.52^{\circ}$	n.d.ª	n.d.ª	n.d.ª	$3.88\pm0.58^{\rm ef}$	n.d.ª	n.d.ª	$26.29\pm0.04^{\text{m}}$	$\boldsymbol{1.01 \pm 0.01^c}$	6.77 ± 0.22^{bc}	n.d.ª	$4.61\pm0.06^{\text{m}}$	n.d.ª	$0.09\pm0.01^{\mathrm{bc}}$
	9.04 ± 0.40^{g}	$0.63 \pm 0.03^{\rm e}$	n.d.ª	n.d.ª	2.45 ± 0.02^{b}	n.d.ª	n.d.ª	5.77 ± 0.07^{h}	1.77 ± 0.06	$10.90\pm0.84^{\rm cd}$	n.d.ª	$0.18\pm0.01^{\mathrm{bc}}$	n.d.ª	$0.10\pm0.01^{\rm cd}$
$1.75 \pm 0.03^{\circ}$	8.05 ± 0.29^{f}	0.31 ± 0.06^{a}	n.d.ª	n.d.ª	$3.77\pm0.08^{\rm efg}$	n.d.ª	n.d.ª	14.92 ± 0.24^{k}	$0.88\pm0.07^{\mathrm{bc}}$	7.74 ± 0.13^{bc}	n.d.ª	0.88 ± 0.05^{f}	n.d.ª	$\boldsymbol{0.08 \pm 0.01}^{\mathrm{bc}}$
	$2.74\pm0.07^{\mathrm{c}}$	n.d.ª	n.d.ª	n.d.ª	$3.60\pm0.38^{\rm efg}$	n.d.ª	n.d.ª	25.87 ± 0.06^{1}	$\boldsymbol{1.00\pm0.01^c}$	6.82 ± 0.13^{bc}	n.d.ª	4.00±0.08	n.d.ª	$0.07\pm0.01^{\rm bc}$
H H H H H H H H H H H H H H H H H H H		Gallic acid 0.85±0.01b n.d. ^a 6.11±0.26s 6.11±0.26s 0.64±0.01ab n.d. ^a 0.42±0.02ab n.d. ^a 3.35±0.03 ^a 6.07±0.01ab 1.11±0.06bc 1.75±0.03 ^a 3.65±0.03 ^a 3.65±0.03 ^a 4.18±0.20e	Gallic acid 0.85±0.01b n.d. ^a 6.11±0.26s 6.11±0.26s 0.64±0.01ab n.d. ^a 0.42±0.02ab n.d. ^a 3.35±0.03 ^a 6.07±0.01ab 1.11±0.06bc 1.75±0.03 ^a 3.65±0.03 ^a 3.65±0.03 ^a 4.18±0.20e	Gallic acid Protocatequic p-OH Benzoic Catechin 0.85±0.01b 3.07±0.47cd n.d.a n.d.a 0.85±0.01b 3.07±0.47cd n.d.a n.d.a 5.23±0.05f 4.74±0.25ef 0.12±0.08b n.d.a 6.11±0.26g 4.77±1.15ef 0.73±0.02f n.d.a 0.64±0.01b 5.46±0.09f n.d.a n.d.a 0.65±0.02ab 3.22±0.57cd 1.00±0.07h n.d.a 0.42±0.02ab 1.77±0.03b n.d.a n.d.a n.d.a 3.28±0.01cd 0.17±0.03b n.d.a n.d.a 4.64±0.02ce 0.70±0.01 n.d.a n.d.a 3.89±0.31c 0.17±0.03b n.d.a n.d.a 4.64±0.02ce 0.70±0.01 n.d.a 3.95±0.03d 1.05±0.15 1.28±0.02 n.d.a 3.95±0.03d 0.65±0.02 n.d.a n.d.a 4.18±0.20e 11.88±0.14h 1.03±0.11h n.d.a 3.55±0.03e 0.45±0.33h 0.82±0.06 n.d.a 4.18±0.20e 0.31±0.06<	Gallic acid Protocatequic p-OH Benzoic Catechin Vanili acid Protocatequic p-OH Benzoic Catechin Vanili acid 0.85±0.01b 3.07±0.47cd n.d.³ n.d.³ n.d.³ n.d.³ 0.45±0.05c n.d.³ n.d.³ n.d.³ 5.23±0.05f 4.74±0.25ef 0.12±0.08b n.d.³ n.d.³ 6.11±0.26s 4.77±1.15ef 0.73±0.02f n.d.³ n.d.³ 0.66±0.04³b 5.26±0.09f n.d.³ n.d.³ n.d.³ n.d.³ 3.28±0.01cd 0.17±0.03b n.d.³ n.d.³ n.d.³ 3.28±0.01cd 0.17±0.03b n.d.³ n.d.³ n.d.³ 4.64±0.02ce 0.02±0.01f n.d.³ n.d.³ n.d.³ 4.64±0.02ce 0.70±0.01f n.d.³ n.d.³ n.d.³ 3.89±0.31d 0.17±0.01b n.d.³ n.d.³ n.d.³ 3.95±0.03c 0.64±0.02c n.d.³ n.d.³ n.d.³ 0.05±0.01f n.d.³ n.d.³ n.d.³ 0.05±0.02f n.d.³ n.d.³ n.d.³	Gallic acid Protocatequic p-OH Benzoic Catechin Vanillic Caffeic acid 0.85 ± 0.01b 3.07 ± 0.47cd n.d.³ n.d.³ n.d.³ 3.16 ± 0.01cd 0.85 ± 0.01b 3.07 ± 0.47cd n.d.³ n.d.³ n.d.³ 3.16 ± 0.01cd 0.85 ± 0.01b n.d.³ n.d.³ n.d.³ n.d.³ 3.16 ± 0.01cd 1.0d.³ n.d.³ n.d.³ n.d.³ 3.96 ± 0.48s 6.11 ± 0.26s 4.77 ± 1.15ed 0.73 ± 0.02f n.d.³ 3.96 ± 0.48s 6.44 ± 0.01b 5.44 ± 0.02f n.d.³ n.d.³ 2.54 ± 0.02b 0.44 ± 0.01b 2.68 ± 0.02f n.d.³ n.d.³ 2.80 ± 0.04s 0.57 ± 0.01b 2.68 ± 0.02f n.d.³ n.d.³ 2.54 ± 0.13b 0.42 ± 0.02b 1.77 ± 0.02b n.d.³ n.d.³ 3.44 ± 0.22c n.d.³ 4.64 ± 0.02d n.d.³ n.d.³ 3.44 ± 0.22c n.d.³ 3.89 ± 0.31d 0.17 ± 0.01b n.d.³ n.d.³ 3.44 ± 0.20c n.d.³ 3.89 ± 0.31d	Gallic acid Protocatequic p-OH Benzoic Catechin Vanillic Caffeic acid 0.85 ± 0.01b 3.07 ± 0.47cd n.d.³ n.d.³ 3.16 ± 0.01cd 0.85 ± 0.01b 3.07 ± 0.47cd n.d.³ n.d.³ n.d.³ 5.23 ± 0.05f n.d.³ n.d.³ n.d.³ 5.11 ± 0.26g 4.74 ± 0.25ef 0.12 ± 0.08b n.d.³ n.d.³ 6.11 ± 0.26g 4.77 ± 1.15ef 0.73 ± 0.02f n.d.³ n.d.³ 3.96 ± 0.48g 6.44 ± 0.01ab 5.46 ± 0.09f n.d.³ n.d.³ n.d.³ 2.54 ± 0.05b 0.66 ± 0.04ab 3.22 ± 0.57cd 1.00 ± 0.07b n.d.³ n.d.³ 2.84 ± 0.05b 0.66 ± 0.04ab 3.22 ± 0.57cd 1.00 ± 0.07b n.d.³ n.d.³ 2.54 ± 0.05b 0.66 ± 0.04ab 3.22 ± 0.07cd n.d.³ n.d.³ 2.84 ± 0.02b 0.65 ± 0.01ab 3.28 ± 0.01cd 0.17 ± 0.03b n.d.³ n.d.³ 3.44 ± 0.22b 0.42 ± 0.02ab 1.77 ± 0.02b 0.70 ± 0.01d n.d.³ 1.44 ± 0.10b 3.85 ±	Gallic acid Protocatequic p-OH Benzoic Catechin Vanillic Caffeic acid Syringic 0.85 ± 0.01b 3.07 ± 0.47cd n.d.³ n.d.³ 3.16 ± 0.01cd n.d.³ 0.85 ± 0.01b 3.07 ± 0.47cd n.d.³ n.d.³ 3.16 ± 0.01cd n.d.³ 1.0d.³ 0.45 ± 0.05c n.d.³ n.d.³ n.d.³ n.d.³ 5.23 ± 0.05f 4.74 ± 0.25cf 0.72 ± 0.08b n.d.³ n.d.³ n.d.³ 6.11 ± 0.26c 4.77 ± 1.15cf 0.73 ± 0.02f n.d.³ n.d.³ 2.54 ± 0.05c n.d.³ 0.44 ± 0.01a 5.46 ± 0.09f n.d.³ n.d.³ 2.80 ± 0.04c n.d.³ 0.66 ± 0.04a 3.22 ± 0.57cf 1.00 ± 0.07c n.d.³ 2.54 ± 0.13c n.d.³ 0.66 ± 0.04a 3.22 ± 0.05cf n.d.³ n.d.³ 2.54 ± 0.13c n.d.³ 0.66 ± 0.04a 3.22 ± 0.05cf n.d.³ n.d.³ 3.64 ± 0.05c n.d.³ 0.66 ± 0.04a 3.22 ± 0.05cf n.d.³ n.d.³ 3.64 ± 0.05c n.d.³	Gallic acid Protocatequic P-OH Benzoic Catechin Vanillic Caffeic acid Syringic Epicatechin acid acid	Gallic acid Protocatequic p-OH Benzoic Catechin Vanillic Caffeic acid Syringic Epicatechin p-Coumaric 0.85±0.01b 3.07±0.47²a n.d.³ n.d.³ 3.16±0.01²a n.d.³ n.d.³ 1.54±0.01²a 0.45±0.05² n.d.³ n.d.³ n.d.³ n.d.³ n.d.³ 1.54±0.01²a 5.23±0.05² 4.74±0.25³ 0.45±0.05² n.d.³ n.d.³ n.d.³ n.d.³ n.d.³ 1.54±0.01²a 6.11±0.26³ 4.77±1.15³ 0.73±0.02¹ n.d.³ n.d.³ n.d.³ n.d.³ n.d.³ 1.54±0.01²a 1.54±0.01²a	Gallic acid Protocatequic Protocateguic Protocateg	Same Participate Partici	Segment Protocatequic p-OH Benzoic Catechin Vanilic Caffei Caid Syringic Epicatechin P-Coumaric Ferulic Caid Rutin Daidzein Syringic Epicatechin P-Coumaric Ferulic Caid Rutin Daidzein Castellic Caid Castellic Caid	Protocatequic Accordance Protocateguic Accor

Different letters in the same column indicate significantly different at the 5% level (p < 0.05) among the results. n.d., not detected.

Table 5: Sugar profiles of the oak honeys.

Sample	Fructose (%)	Glucose (%)	Sucrose (%)	Maltose (%)	Trehalose (%)	Melebiose (%)	Melezitose (%)	F/G
H1	41.85±1.04gh	23.34±0.29°	0.19±0.01 ^b	1.82 ± 0.07 ^b	n.d.ª	1.68 ± 0.07 ^{fg}	n.d.ª	1.79
H2	$39.43\pm0.99^{\text{bcdef}}$	21.05 ± 0.09^{b}	$0.63\pm0.05^{\rm g}$	n.d. ^a	$0.44\pm0.01^{\rm g}$	$2.17\pm0.03^{\text{h}}$	n.d. ^a	1.87
H3	$38.73 \pm 0.97^{\text{abcde}}$	$25.34\pm0.01^\text{de}$	0.32 ± 0.02^{c}	n.d.a	n.d.ª	1.54 ± 0.02^f	0.42 ± 0.09^{c}	1.52
H4	40.68 ± 0.23^{efg}	27.54 ± 0.02^{h}	0.33 ± 0.01^{c}	n.d.ª	n.d.ª	$1.80\pm0.01^{\text{gh}}$	0.37 ± 0.01^{c}	1.48
H5	41.39 ± 2.63^{gh}	$27.81\pm0.07^{\text{h}}$	$0.20\pm0.03^{\text{b}}$	n.d.a	$0.37\pm0.03^{\text{f}}$	$1.60\pm0.02^{\rm f}$	n.d.a	1.49
H6	$41.34\pm0.93^{\text{fgh}}$	$27.07\pm0.16^\text{gh}$	$\boldsymbol{0.47 \pm 0.02^f}$	n.d.a	n.d.a	$2.08\pm0.01^{\text{h}}$	n.d.a	1.53
H7	$39.50 \pm 0.60^{\text{cdef}}$	$25.72 \pm 1.11^\text{def}$	$0.41\pm0.03^{\scriptscriptstyle d}$	n.d. a	0.33 ± 0.01^{e}	$1.61\pm0.02^{\rm f}$	n.d. ^a	1.54
Н8	41.03 ± 0.50^{fg}	$26.07\pm1.10^{\text{efg}}$	$0.46\pm0.01^{\text{ef}}$	n.d. a	$0.24\pm0.01^{\text{b}}$	1.63 ± 0.01^{f}	n.d. ^a	1.57
H9	$40.55 \pm 0.41^{\text{efg}}$	$25.26\pm0.02^\text{de}$	$0.21\pm0.02^{\text{b}}$	n.d. a	n.d.ª	$1.59\pm0.01^{\rm f}$	n.d.a	1.63
H10	$40.08\pm1.26^{\text{defg}}$	24.64 ± 0.05^{d}	$0.40\pm0.03^{\scriptscriptstyle d}$	n.d. a	0.25 ± 0.02^{bc}	$1.60\pm0.04^{\text{f}}$	n.d. ^a	1.63
H11	43.18 ± 0.78^{h}	$25.53 \pm 0.03^\text{def}$	$0.21\pm0.01^{\text{b}}$	n.d. a	$2.13\pm0.01^{\text{h}}$	$0.83 \pm 0.01^{\text{c}}$	n.d.a	1.69
H12	$41.27\pm0.46^{\text{fgh}}$	$24.65 \pm 0.26^{\scriptscriptstyle d}$	0.32 ± 0.01^{c}	n.d. a	n.d.a	$0.43\pm0.01^{\text{b}}$	2.15 ± 0.01^{c}	1.67
H13	$40.57\pm0.44^{\text{efg}}$	$23.43 \pm 0.29^{\circ}$	$0.68\pm0.03^{\text{h}}$	n.d. a	$0.25\pm0.01^{\text{bc}}$	$1.69\pm0.11^{\text{fg}}$	n.d.a	1.73
H14	$38.06\pm0.12^{\text{abc}}$	$26.72\pm0.07^{\text{fgh}}$	0.30 ± 0.03^{c}	n.d. a	$0.29\pm0.02^{\scriptscriptstyle d}$	$1.93\pm0.05^{\text{h}}$	n.d.a	1.42
H15	$40.48\pm0.10^{\text{efg}}$	21.04 ± 0.12^{b}	$\textbf{0.43} \pm \textbf{0.07}^{\text{def}}$	n.d.a	$0.34\pm0.01^{\text{e}}$	$\boldsymbol{1.32 \pm 0.29^e}$	0.37 ± 0.04^{b}	1.92
H16	$39.95 \pm 0.47^{\text{defg}}$	$18.89\pm0.37^{\text{a}}$	$\textbf{0.42} \pm \textbf{0.01}^{\text{de}}$	n.d.ª	$0.27\pm0.01^{\text{c}}$	0.92 ± 0.13^{cd}	0.38 ± 0.01^{b}	2.11
H17	37.53 ± 0.23^{abc}	$25.98 \pm 0.07^{\text{efg}}$	0.33 ± 0.02^{c}	n.d.a	$\textbf{0.27} \pm \textbf{0.01}^c$	$0.99\pm0.03^{\scriptscriptstyle d}$	0.36 ± 0.01^{b}	1.44
H18	37.10 ± 0.91^{a}	21.15 ± 2.14^{b}	$0.39\pm0.01^{\scriptscriptstyle d}$	n.d.a	n.d.a	n.d.a	n.d.a	1.75
H19	$38.00\pm1.80^{\text{abc}}$	$26.78\pm0.43^{\text{fgh}}$	2.60 ± 0.03^{i}	n.d.ª	n.d.a	0.94 ± 0.03^{cd}	n.d.a	1.42
H20	$38.27 \pm 1.80^{\text{abcd}}$	20.33 ± 1.21^{b}	n.d. ^a	$2.63\pm0.01^{\text{c}}$	n.d.ª	n.d. ^a	$2.06\pm0.45^{\text{c}}$	1.88

Different letters in the same column indicate significantly different at the 5% level (p < 0.05) among the results. n.d., not detected.

absorbance capacity (ORAC), superoxide radical-scavenging activity, Trolox equivalent antioxidant activity (TEAC). Antioxidant capacity is an important indicator of honey that influenced many environmental conditions such as floral source, geographical origin and storage conditions [1]. The total antioxidant capacity of honey is determined using the FRAP test. In this assay, higher FRAP values indicate a higher antioxidant capacity. The results are given in Table 2. The values ranged from 410 to 1050 µmol FeSO_{$_{4}$}·7H_{$_{3}$}O/100 g, with a mean value of 677 ± 18.20 µmol FeSO, ·7H, O/100 g. Total antioxidant capacity (FRAP values) was found to be related to the TPC of these honeys (R^2 : 0.875, p<0.05) in Table 3. One study reported that higher FRAP values for oak and chestnut honey FRAP than some blossom honeys, in addition to TPC [2]. In this previous study, oak and chestnut honeys were identified as dark-colored and had higher antioxidant capacities.

In addition to FRAP values, DPPH radical scavenging activity is also an indicator test of free radical scavenging capacity. The radical does not form in living organisms, but is used to model free radical reactions. The result is given as IC_{50} (mg/mL) value, representing scavenging of 50% of DPPH radical in a honey solution. Lower IC_{50} values indicate greater radical scavenging capacity. However, we observed a significant correlation between TPC and DPPH (R^2 : -0.732, p < 0.05). The relation between the two methods for determination of antioxidant activity, FRAP and DPPH, was also significant, with a correlation

coefficient equal to (R^2 : -0.777, p>0.05) in our honey samples (Table 3). The previous study was there was also a significant correlation between the FRAP values and color values (Hunter L) of the honey samples (R^2 : -0.75, p<0.05). These significant correlations indicated that a honey's phenolic content determines its antioxidant potential, and that dark honeys have a higher antioxidant potential [35]. Previous honey studies in the literature have reported that dark honeys have a higher antioxidant capacity, deriving from their phenolic compositions.

Phenolic compounds of oak honeys

As it is impossible to detect all the phenolic compounds present in the honey, the basic phenolic compounds are determined by RP-UV-HPLC. Fifteen phenolic compounds were analyzed in the samples in two different wavelengths (280 and 315) (Figure 1). The results are given in Table 4. Ten phenolic compounds were detected in various concentrations, but five phenolics were not detected in the samples. Interestingly, catechin, vanillic acid, syringic acid, daidzein and luteolin were not detected in any specimens. Protocatechuic acid, rutin and caffeic acid were the major phenolic compounds in all samples, *p*-coumaric, ferulic, gallic and *t*-cinnamic acids and quercetin was detected in low concentrations, and epicatechin was detected only in tree samples. In agreement with our findings, *p*-coumaric,

Table 6: Mineral content of analyzed honeys (mg/kg).

Sample				Macro	Macro minerals µg/mg	MICIOIIIIICIAIS				
	Ж	Са	Mg	Al	Na	Fe	Zn	N	Cu	Mn
H1	2802.25±30.128	65.68 ± 1.19^a	38.22±0.33bcd	9.43±0.21bcd	3.36±0.15bc	1.19±0.11 ^{bc}	0.11 ± 0.00^{a}	0.51±0.06 ^e	0.23 ± 0.00^a	0.20±0.00cdef
H2	2467.56±26.23°	63.17 ± 1.12^{bc}	$38.81\pm0.28^{\text{de}}$	$9.24\pm0.20^{\text{abc}}$	$3.46\pm0.16^{\text{bcd}}$	$1.39 \pm 0.12^{\text{cde}}$	0.11 ± 0.00^a	0.21 ± 0.00^{ab}	0.18 ± 0.00^a	$0.23\pm0.00^{\rm efg}$
H3	2558.82 ± 32.51^d	61.52 ± 0.88^a	37.90 ± 0.35^{ab}	$9.20\pm0.16^{\rm abc}$	$2.81\!\pm\!0.16^{a}$	1.95 ± 0.10^{j}	1.09 ± 0.10^b	$0.52\pm0.07^{\rm e}$	$\textbf{0.24} \pm \textbf{0.01}^{\text{a}}$	0.05 ± 0.00^{a}
H4	2103.30 ± 24.45^{a}	51.13 ± 0.98^{a}	37.50 ± 0.45^{a}	$9.20\pm0.15^{\rm abc}$	$3.70\pm0.14^{\text{d}}$	$0.61\pm0.07^{\rm a}$	$2.01\pm0.18^{\text{f}}$	0.22 ± 0.00^{ab}	2.19 ± 0.23^{b}	$\boldsymbol{0.38 \pm 0.08^{jk}}$
H5	2540.25 ± 20.76^d	$64.16\pm0.78^{\mathrm{bc}}$	37.74 ± 0.42^{ab}	$9.19\pm0.20^{\rm abc}$	3.51 ± 0.17^{cd}	$1.68\pm0.10^{\text{fghi}}$	$0.09\pm0.00^{\rm a}$	$0.45\pm0.06^{\mathrm{e}}$	$0.21\pm0.00^{\text{a}}$	0.15 ± 0.00^{bc}
9Н	$2942.72\pm28.91^{\circ}$	$64.67\pm0.75^{\mathrm{bc}}$	38.63 ± 0.41^{cdef}	9.08 ± 0.26^{ab}	3.41 ± 0.17^{bd}	$1.70\pm0.10^{\rm fghi}$	1.23 ± 0.10^{bc}	0.36 ± 0.04^{d}	2.10 ± 0.22^b	$0.28 \pm 0.03^{\mathrm{gh}}$
Н7	2087.19 ± 21.02^a	$64.09\pm0.46^{\mathrm{bc}}$	$39.23\pm0.22^{\mathrm{ef}}$	$9.21\pm0.32^{\rm abc}$	$3.55 {\pm} 0.15^{\text{cd}}$	1.05 ± 0.09^{b}	$2.11\pm0.13^{\rm g}$	$0.61\pm0.06^{\mathrm{f}}$	2.11 ± 0.20^b	0.37 ± 0.05^{jk}
8H	2696.83 ± 33.69^{ef}	$64.39 \pm 0.66^{\mathrm{bc}}$	39.49 ± 0.40^{f}	9.14 ± 0.25^{ab}	5.15 ± 0.14^{f}	$1.76\pm0.15^{\text{ghij}}$	1.07 ± 0.11^b	0.20 ± 0.00^{ab}	2.10 ± 0.18^b	$0.18\!\pm\!0.01^{\text{cde}}$
Н9	2884.60 ± 36.47^{h}	$64.32\pm0.66^{\mathrm{bc}}$	39.37 ± 0.23^{f}	9.13 ± 0.13^{ab}	3.31 ± 0.16^{bc}	$1.40\pm0.14^{\rm cde}$	n.d.ª	$0.47\pm0.05^{\rm e}$	2.09 ± 0.12^b	0.10 ± 0.00^{ab}
H10	$2469.52 \pm 31.51^{\circ}$	64.24 ± 0.33^{bc}	$38.91\pm0.36^{\rm ef}$	$9.11\pm0.14^{\rm ab}$	3.32 ± 0.17^{bc}	$1.76\pm0.15^{\text{ghij}}$	$1.36\pm0.12^{\rm cd}$	$0.53\pm0.06^{\rm e}$	2.09 ± 0.11^{b}	$0.33 \pm 0.02^{\text{ghij}}$
H11	2507.47 ± 34.10^{cd}	62.50 ± 1.23^{bc}	39.50 ± 0.38^{f}	9.09 ± 0.24^{ab}	5.58 ± 0.20^{g}	$1.60\pm0.16^{\rm efg}$	1.34 ± 0.12^{cd}	0.22 ± 0.00^{ab}	0.26 ± 0.02^{a}	$0.20\pm0.00^{\text{cdef}}$
H12	$2675.30\pm29.19^{\mathrm{ef}}$	$62.92\pm1.14^{\rm bc}$	38.97 ± 0.43^{ef}	9.07 ± 0.21^{ab}	$3.52 {\pm} 0.18^{cd}$	$1.62\pm0.13^{\rm efgh}$	1.22 ± 0.10^{bc}	$\boldsymbol{0.14 \pm 0.00^a}$	$2.11\pm0.16^{\text{b}}$	0.39 ± 0.03^{k}
H13	$2724.65 \pm 26.42^{\dagger}$	$64.00\pm1.10^{\rm bc}$	$38.03\pm0.35^{\rm abc}$	9.07 ± 0.19^{ab}	$3.72\pm0.14^{\text{d}}$	$1.36\pm0.10^{\rm cd}$	$1.51\pm0.14^{\text{de}}$	0.68 ± 0.08^{f}	2.09 ± 0.13^{b}	0.35 ± 0.02^{ijk}
H14	2374.89 ± 22.23^{b}	$63.95\pm1.23^{\mathrm{bc}}$	$39.22\pm0.45^{\text{ef}}$	9.12 ± 0.20^{ab}	$5.55 \pm 0.19~^{\rm g}$	$1.12\!\pm\!0.08^{b}$	1.20 ± 0.10^{bc}	0.20 ± 0.00^{ab}	2.10 ± 0.14^b	0.17 ± 0.00^{cd}
H15	2067.09 ± 23.15^{a}	$62.60\pm1.00^{\mathrm{bc}}$	$39.12\pm0.34^{\mathrm{ef}}$	9.01 ± 0.17^{a}	5.58±0.20 g	$1.96\pm0.18^{\mathrm{j}}$	$1.61\pm0.16^{\rm e}$	$\textbf{0.25} \pm \textbf{0.00}^{bc}$	$\textbf{2.08} \pm \textbf{0.11}^{b}$	$0.31\pm0.02^{\text{hi}}$
H16	2059.30 ± 25.41^{a}	63.20 ± 1.00^{bc}	$39.23\pm0.22^{\mathrm{ef}}$	$9.53\pm0.13^{\rm cde}$	$5.13 \pm 0.21^{\dagger}$	$1.91\pm0.18^{\rm i}$	$1.47\pm0.15^{\mathrm{de}}$	0.68 ± 0.06^{f}	2.10 ± 0.10^b	$0.31\pm0.02^{\text{hi}}$
H17	2405.81 ± 27.12^b	64.19 ± 1.02^{bc}	39.34 ± 0.50^{ef}	$9.85\pm0.10^{\rm e}$	$4.44\pm0.17^{\mathrm{e}}$	$1.84\pm0.18^{\text{hij}}$	1.08 ± 0.10^b	0.77 ± 0.09^{f}	2.11 ± 0.10^b	$\boldsymbol{0.24\pm0.01^g}$
H18	$2646.06\pm39.54^{\rm e}$	68.38±0.99€	39.46 ± 0.49^{f}	$9.72\pm0.12^{\text{de}}$	3.15 ± 0.13^{b}	$1.39\pm0.16^{\text{cde}}$	$1.45\pm0.16^{\text{de}}$	0.21 ± 0.00^{ab}	2.18 ± 0.13^{b}	0.37 ± 0.04^{ji}
H19	2927.07 ± 33.33^{hi}	$64.46\pm1.06^{\mathrm{bc}}$	39.40 ± 0.47^{f}	$9.51\pm0.12^{\text{dc}}$	3.26 ± 0.14^{bc}	$1.52\pm0.12^{\text{def}}$	$1.82\pm0.18^{\rm f}$	0.23 ± 0.00^b	2.11 ± 0.11^{b}	$0.21 \pm 0.00^{\text{def}}$
H20	2521.30 ± 32.26^d	64.34 ± 1.22^{bc}	39.49±0.38 ^f	9.14 ± 0.13^{a}	$3.46\pm0.15^{\text{bcd}}$	1.05 ± 0.11^{b}	$1.55\pm0.15^{\text{de}}$	$0.32\pm0.05^{\rm cd}$	2.12 ± 0.13^{b}	0.82 ± 0.07

ferulic and protocatechuic acids and rutin have been reported as major phenolic compounds in oak honeys [2]. It was reported that quercetin, p-coumaric acid, ferulic acid and cinnamic acid were present in leaves, which confirmed our results [36]. The presence of the three phenolics rutin, ferulic and p-coumaric acid in oak honey and the absence of the five phenolics described above may be used as a marker in distinguishing oak honeys from other honeydew honeys. However, the number of studies of oak honey is very limited. Quercitol or quercetin has been reported as an important marker in oak honeys [6]. In this study, too, quercetin was detected in varying concentrations in all samples. A previous study detected quercetin at 0.382 µg/g in oak honeys [37]. Rutin or rutoside (quercetin-3-0-rutinoside) is a glycoside combined with quercetin. Rutin is a derivative product of quercetin, found particularly in old oak trees. Quercitol has used an important marker for distinguishing oak honey from other honeydew honeys, such as fir and spruce [6].

Sugar content of the honeys

Analysis of the honey sugar profiles performed using HPLC-RID is shown in Table 5. Total sugar contents in honeys in the current study ranged from 58% to 68%. The basic monosaccharides in honey are the reducing sugars fructose and glucose. Our study results confirmed that fructose and glucose are the main sugars present in honey. The sugar values were suitable honey codices. Melibiose is found in all honey samples, ranging from 0.25% to 2.17%. In general, honeydew honeys contain more oligosaccharides than nectar honeys [18]. Melibiose is a disaccharide (galactose and glucose) that is not metabolized by humans, but is metabolized only by enteric and lactic acid bacteria. It is therefore regarded as a probiotic sugar [38]. Although maltose was not detected in the 20 honey samples, melezitose and trehalose were detected at varying levels in some of them. Melezitose, a trisaccharide sugar, was detected at various levels in 10 honey samples. Similarly to melezitose, trehalose was detected in 11 honey samples at levels between 0.25% and 2.30%. The fructose/glucose ratio is an important factor in the characterization of honeys, and affects crystallization. The fructose/glucose ratio in this study ranged from 1.44 to 2.11. When the ratio exceeds 1.50, the honey crystallizes very late. Some studies have reported that honeydew honeys have a higher fructose/ glucose ratio than some blossom honeys, such as acacia and clover [27, 39]. In addition, dark honeys, such as chestnut and heather honeys are reported to have higher fructose/glucose ratios.

Mineral content of oak honevs

Ten different macro and microelements were analyzed in the honey samples in this study. The results are given in Table 6. Potassium, calcium and magnesium were the macro minerals identified; and aluminum, sodium and iron the micro minerals. Many previous honey studies have reported that potassium is the main mineral, its values being highly variable [20, 40, 41]. The highest level of potassium was determined in chestnut honey (5007 µg/mg) and the lowest in blossom honey (564 µg/ mg) in our previous study [41]. Similarly to these findings, potassium, calcium, magnesium and iron have also been reported as the major mineral contents of oak honeys [17]. Potassium levels of 306–480 µg/mg have been determined in Arabian honey [41]. Comparing our study results with those for Saudi Arabian honeys, although oak honey had higher potassium levels, its calcium and magnesium levels were lower [41]. These mineral measurements show that the mineral content of honey depends on botanical origin and geographical structures [20].

Our findings show that physico-chemical properties, phenolic compounds, antioxidant capacity, sugar and mineral contents successfully distinguish the geographical origins of oak honeys. In this study, 20 oak honey samples collected from the Thrace region of Turkey exhibited different honeydew honey characteristics, depending on their physico-chemical properties. The honeys had higher phenolic contents than most blossom honeys, as well as higher antioxidant capacities. These findings supplied will contribute to a more accurate evaluation of oak honey in the literature.

Acknowledgment: We are grateful to the Scientific and Technological Research Council of Turkey (TUBITAK) for its support for the study through its contributions to project No. 114Z370. We also thank to Demirköv honev association for supplied honey samples.

Conflict of interest statement: The authors have no conflict of interest.

References

- 1. Nayik GA, Nanda V. Effect of thermal treatment and pH on antioxidant activity of saffron honey by using response surface methodology. Food Measure 2016;10:64-70.
- 2. Can Z, Yildiz O, Sahin H, Turumtay EA, Silici S, Kolayli S. An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem 2015;180:133-41.

- 3. Meo SA, Al-Asiri SA, Mahesar AL, Ansari MJ. Role of honey in modern medicine. Saudi Journal of Biological Sciences, Article in Press. 2017. http://dx.doi.org/10.1016/j.sjbs.2016.12.010.
- 4. Rodríguez-Flores MS, Escuredo O, Seijo MC. Assessment of physicochemical and antioxidant characteristics of Quercus pyrenaica honeydew honeys. Food Chem 2015;166:101-6.
- 5. Sorkun K. Turkey's nectarine plants, pollen and honeys. Palm Publication, 1. Press/341. Ankara. 2008.
- 6. Simova S, Atanassov A, Shishiniova M, Bankova A. A rapid differentiation between oak honevdew honey and nectar and other honeydew honeys by NMR spectroscopy. Food Chem 2012;134:1706-10.
- 7. Yaltırık F, Efe A. System of herbaceous plants study books, (II. Press) G.Ü. Publication No: 3940, Forestry Faculty Publication. 1998; No: 10, 437-6, 518. Istanbul.
- 8. Louveaux J, Maurizio A, Vorwohl G. Methods of melissopalynologv. Bee World 1978;59:139-57.
- 9. AOAC. Official Methods of Analysis of AOAC International, 16th ed. Association of Official Analytical Chemists. Washington, DC, 1990.
- 10. Ough C. Rapid determination of proline in grapes and wines. J Food Sci 1960;34:228-30.
- 11. Kim KH, Tsao R, Yang R, Cui SW. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem 2006;95:466-73.
- 12. Singleton VL, Rossi JL. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American J Enology Viticult 1965;16:144-58.
- 13. Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 2000;48:3597-604.
- 14. Benzei FF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 1996;239:70-6.
- 15. Molyneux P. The use of the stable free radical diphenylpicrylhyrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Food Sci Technol 2004;26:211-9.
- 16. De Villiers A, Lynen F, Crouch A, Sandra P. Development of a solid phase extraction procedure for the simultaneous determination of polyphenols, organic acids and sugars in wine. Chromatograp 2004;59:403-9.
- 17. Kaygusuz H, Tezcan F, Erim FB, Sahin H, Yıldız O, Can Z, et al. Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis. LWT - Food Sci Technol 2016;68:273-9.
- 18. Bogdanov S, Ruoff K, Persano Oddo L. Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 2004;35:4-17.
- 19. Kolayli S, Can Z, Yildiz O, Sahin H, Alpay Karaoglu S. A comparative study of the antihyaluronidase, antiurease, antioxidant, antimicrobial and physicochemical properties of different unifloral degrees of chestnut (Castanea sativa Mill.) honeys. J Enzyme Inhib Med Chem 2016;31:96-104.
- 20. Karabagias IK, Louppis AP, Karabournioti S, Kontakos S, Papastephanou C, Kontominas MG. Characterization and geographical discrimination of commercial Citrus spp. Honeys produced in different Mediterranean countries based on minerals, volatile compounds and physicochemical parameters, using chemometrics. Food Chem 2017;217:445-55.
- 21. Kolayli S, Küçük M, Duran C, Candan F, Dincer B. Chemical and antioxidant properties of laurocerasus officinalis roem. (Cherry

- Laurel) Fruit grown in the Black Sea region. J Agric Food Chem 2003;51:7489-94.
- 22. Castro-Vázquez L, Díaz-Maroto MC, Pérez-Coello MS. Aroma composition and new chemical markers of Spanish citrus honeys. Food Chem 2007;103:601-6.
- 23. Primorac L, Angelkov BM, Mandić M, Kenjerić D, Nedeljko M, Flanjak I. Comparison of the croatian and Macedonian honeydew honey. J Central Europen Agric 2009;10:263-70.
- 24. Tezcan F, Kolayli S, Sahin H, Ulusoy E, Erim FB. Evaluation of organic acid, saccharide composition and antioxidant properties of some authentic Turkish honeys. J Food Nutrit 2011;50:33-40.
- 25. Anupama D, Bhat KK, Sapna VK. Sensory and physicochemical properties of commercial samples of honey. Food Res Inter 2003;36:183-91.
- 26. Gonzalez-Miret ML, Terrab A, Hernanz D, Fernandez-Recamales MA. Heredia FI. Multivariate correlation between color and mineral composition of honeys and by their botanical origin. J Agric Food Chem 2005;53:2574-80.
- 27. Bertoncelj J, Doberšek U, Jamnik M, Golob T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem 2007;105:822-8.
- 28. Lazaridou A, Biliaderis CG, Bocandritsos N, Sabatini AG. Composition, thermal and rheological behaviour of selected Green honeys. J Food Engineer 2004;64:9-21.
- 29. Cotte JF, Casabianca H, Giroud B, Albert M, Lheritier J, Grenier-Loustalot MF. Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity. Anal Bioanal Chem 2004;378:1342-50.
- 30. Codex Alimentarius Standard for honey Codex Alimentarius commission (pp.1e8). Rome/OMS.2001.
- 31. Guler A, Bakan A, Nisbet C, Yavuz O. Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup. Food Chem 2007;105:1119-25.
- 32. Vela L, De Lorenzo C, Perez RA. Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties. J Sci Food Agric 2007;87:1069-75.
- 33. Álvarez-Suárez JM, Tulipani S, Diaz D, Estevez Y, Romandini S, Giampieri F. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with colour, polyphenol content and other chemical compounds. Food Chem Toxicol 2010;48:2490-9.
- 34. Gómez-Caravaca AM, Gómez-Romero M, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A. Advances in the analysis of phenolic compounds in products derived from bees. J Pharma Biomed Anal 2006;41:1220-34.
- 35. Bueno-Costo FM, Zambiazi RC, Bohmer BW, Chaves FC, da Silva PW, Zanusso TJ. Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT - Food Sci Technol 2016;65:333-40.
- 36. Rasouli H, Farzaei MH, Mansouri K, Mohammadzadeh S, Khodarahmi R. Plant cell cancer: may natural phenolic compounds prevent onset and development of plant cell malignancy? A literature review. Molecules 2016; 21:2-26.
- 37. Haroun MI, Poyrazoglu E, Konar N, Artik N. Phenolic acid flavonoids profile of some Turkish honeydew and floral honeys. J Food Technol 2002;10:39-45.
- 38. Tomita K, Nagura T, Okuhara Y, Nakajima-Adachi H, Shigematsu N, Aritsuka T. Dietary melibiose regulates the cell response and

- enhances the induction of oral tolerance. Biosci Biotechnol Biochem 2007;71:2774-80.
- 39. Manzanares AB, García ZH, Galdón BR, Rodríguez ER, Romero CD. Differentiation of blossom and honeydew honeys using multi variate analysis on the physicochemical parameters and sugar composition. Food Chem 2011;126:664-72.
- 40. Kolayli S, Kongur N, Gündoğdu A, Kemer B, Duran C, Aliyazicioğlu R. Mineral composition of selected honeys from Turkey. Asian J Chem 2008;20:2421-4.
- 41. Alqarni AS, Owayss AA, Mahmoud AA. Mineral content and physical properties of local and imported honeys in Saudi Arabia. J Saudi Chem Society 2014;18:618-25.