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Abstract: The concept of the three-dimensional optical trans-
fer function (3D-TF) has become an increasingly important
tool in understanding and modeling the measurement be-
havior of modern optical surface metrology systems, partic-
ularly in the context of coherence scanning interferometry
(CSI). The 3D-TF enables a comprehensive description of
how spatial frequency components, both lateral and axial,
of electromagnetic fields are transmitted through the optical
system. This opens up a wide range of applications: from
fast simulation of the measurement processes to enhanced
signal analysis and surface reconstruction techniques, and
to the full characterization and calibration of measurement
systems. In this paper we describe our attempts to deter-
mine the 3D-TF, which was already calculated analytically,
also in practice.
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Zusammenfassung: Das Konzept der dreidimensionalen
optischen Transferfunktion (3D-TF) ist zu einem wichti-
gen Werkzeug für das Verständnis und die Modellierung
des Messverhaltens moderner optischer Oberflächenmess-
systeme geworden, insbesondere im Zusammenhang mit
der Kohärenz-Scanning-Interferometrie (CSI). Die 3D-TF
ermöglicht eine umfassende Beschreibung, wie räumliche
Frequenzkomponenten – sowohl lateral als auch axial –
von elektromagnetischen Feldern durch das optische Sys-
tem übertragen werden. Dies eröffnet eine Vielzahl von
Anwendungsmöglichkeiten: von der schnellen Simulation
der Messprozesse über verbesserte Signalanalyse- und Ober-
flächenrekonstruktionsverfahren bis hin zur vollständigen
Charakterisierung und Kalibrierung von Messsystemen. In
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diesem Beitrag beschreiben wir unsere Versuche, die bereits
analytisch berechnete 3D-TF auch experimentell anhand
von Messdaten zu bestimmen.
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fie; Modellierung

1 Introduction

Optical measurement instruments are widely used for fast
and contactless surface topography inspection with appli-
cations in science as well as industry. Coherence scanning
interferometry (CSI) [1, 2], also known as white light inter-
ferometry, is one of the most common techniques to analyze
micro- and even sub-micrometer surface features and stands
out due to its extraordinary axial and diffraction-limited
lateral resolution. Like all optical measurement techniques,
CSI suffers from diffraction effects, aberrations, misalign-
ment etc. causing systematic measurement errors.
In order to understand the mechanisms behind these errors,
several simulation models have been developed in the last
decade [3–12], which differ with respect to accuracy, com-
putation time and physical insight into the measurement
process and thus in their applicability. Recently, progress
has been made in the modeling of CSI instruments consid-
ering the imaging process by a three-dimensional transfer
function (3D-TF) in the 3D spatial frequency domain [7,
8, 13, 14]. Especially the derivation of an analytical expres-
sion of the 3D-TF [14, 15] allows fast simulations with the
so-called universal Fourier optics (UFO) model [9].
In addition, the 3D-TF significantly contributes to an im-
proved understanding of the measurement process, which,
for instance, is used to optimize signal processing [14, 16,
17], analyze misalignment effects [18, 19], compensate for
aberration errors [20], and calibrate measurement instru-
ments [21]. Although the 3D-TF is meanwhile a well-known
concept, its accurate determination is still challenging. In
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this context, it should be noted that the 3D-TF is based
on a theoretical concept for infinitely small point scatterers,
which scatter light homogeneously in the pupil plane of
the microscope objective lens [15]. However, infinitely small
point scatterers are typically not apparent in reality and
are hard to find with regard to technical surfaces. First at-
tempts have been made to obtain the 3D-TF practically by
measuring spheres of a certain radius [20, 21]. However, the
scattering characteristics of spheres with large radii com-
pared to the wavelength of light differ from the assumed
concept of a point scatterer [22]. Moreover, producing ap-
propriate spheres of small radius with the required surface
smoothness is extremely challenging. Note that in addition
to concepts of 3D-TFs based on point scatterers, specular
surfaces are also considered [14].
This study deals with different approaches to obtain the 3D
transfer function for CSI instruments from measurement
data. The concepts are presented theoretically using FEM-
based simulations. Basically, three different concepts are
presented and discussed: measuring a diffraction grating,
tilting a plane mirror, and measuring a sphere.

2 Concept of the optical 3D
transfer function

Three-dimensional transfer functions generally provide a
comprehensive description of the transfer behavior of optical
surface topography measuring instruments in the spatial
frequency domain. Figure 1 presents the general shape and
values of an exemplary 3D-TF, where Fig. 1a) shows how
wave vectors kin of the incident and ks of the scattered
light wave form the q-space according to

q = ks − kin . (1)

The construction of the 3D-TF is based on Ewald spheres,
which provide a geometric framework for visualization of
all possible combinations of incident and scattered wave
vectors according to the numerical aperture of the system
[23]. The red solid lines in Fig. 1a) show the limits of the
transfer function for in-plane scattering. The upper limit is
given by back-scattering with ks = −kin, which results in
q = 2kin. The maximum value of 𝑞𝑧,max = 2𝑘0, with wave
number 𝑘0 = 2𝜋/𝜆0 and light wavelength 𝜆, is reached at
𝑞𝑥 = 𝑞𝑦 = 0, the maximum value of 𝑞𝑥,max = 2𝑘0NA at
𝑞𝑧,min = 2𝑘0

√︀
1− NA2. The red dashed line indicates the

lower limit of the transfer function. The area enclosed by the
dashed line and the bows of the solid lines corresponds to
out-of-plane scattering. The 3D-TF can also be calculated
analytically. This is illustrated in Fig. 1b), which shows a
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Fig. 1: a) Construction of the Ewald limiting sphere defining the
q-space, b) 2D cross section in the 𝑞𝑥, 𝑞𝑧-plane of the monochro-
matic 3D-TF of a microscope of NA = 0.9 for the wavelength
𝜆 = 440 nm.

2D cross section of the normalized 3D-TF 𝐻̂(𝑞𝑥, 𝑞𝑧) in the
𝑞𝑥, 𝑞𝑧-plane for a numerical aperture of NA = 0.9 and a
wavelength of 𝜆 = 440 nm. The analytical expression for
this transfer function is derived in detail in [14]. For further
information on the derivation and the underlying physical
assumptions, we also refer to this work.

3 Practical determination of the
3D transfer function

As mentioned above, a measuring device can be described
by its associated 3D-TF. For its experimental determination
it is necessary that the examined objects evoke spatial fre-
quencies in the same area in frequency space that is covered
by the expected TF. This can be achieved by diffraction or
scattering of the measuring surface. In addition, the inten-
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sity distribution in this region should be as homogeneous
as possible.
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Fig. 2: Slices in the 𝑞𝑥, 𝑞𝑧–plane of Fourier transformed image
stacks of different objects measured with a Linnik interferome-
ter with an NA = 0.9. a) rectangular reflection grating of 6 µm
period length, b) triangular reflection of 8 µm period, c) PTB
chirp standard, d) plane metal mirrors adjusted at different dis-
crete tilt angles and e) plane metal mirror continuously tilted and
readjusted.

A Linnik interferometer [24, 25] with an NA of 0.9 and a
light source with an central wavelength of 𝜆𝑐 = 440 nm and
a full width at half maximum (FWHM) of 20 nm was used as
an exemplary measuring instrument. Various measurement
objects were examined, their image stacks recorded, and
the corresponding 3D Fourier transforms determined. The
results can then be understood as a product of the scattered

field of the measurement objects and the 3D-TF of the
measurement device in the spatial frequency domain. In the
following, we compare several ways of reconstructing the
3D-TF. One option is to obtain the transfer function with as
many scattering orders of a grating as possible. This can be
achieved with gratings with long period lengths where at the
same time several periods (approx. 10) are in the field of view
of the system. With the Linnik interferomter used here, this
can be realized with grating periods in the range of 5 µm to
15 µm. Measurements were carried out with a rectangular
grating with a period length of 6 µm (RSN [26]) and a
triangular grating with a period length of 8 µm (Gr-P 8-35t
[27]). The corresponding intensity distributions in Fourier
space are shown in Figs. 2a) and 2b). The corresponding
diffraction orders can be recognized for both gratings and
are well distributed in the region of the optical transfer
function. With both measurements, however, there is the
problem that there is a concentration of intensity at certain
locations. For the rectangular grating structure, this can
be seen around the zeroth diffraction order of the grating,
while for the triangular grating it appears at higher orders,
corresponding to the slope angles of the surface flanks of
app. 35∘. Other slope angles of the flanks would, therefore,
lead to other intensity concentrations (this observation is
also exploited later for further results). These extremely
uneven distributions of intensity in the different diffraction
orders lead to problems in the further evaluation or analysis
of these measurement series. In Sec. 4, we show an approach
in which a sinusoidal grating is simulated, which provides
a more homogeneous distribution. In addition to lattice
structures with a fixed period length, a PTB chirp standard
[28] was also measured. The basic idea here is that the range
of the TF can be well estimated, due to different spatial
frequencies of the individual sinusoidal surface sections.
Figure 2c) shows that this only works for smaller spatial
frequencies and that there are small gaps in the spectrum.
Higher orders or generally higher frequency components
that enable to determine the edges of the 3D-TF are hardly
available.

Next, plane mirrors were measured, which are tilted by
angles of 0∘, 15∘, 35∘, 40∘, 45∘, 50∘, 55∘, 60∘. The measure-
ments were carried out consecutively. Fourier transformed
image stacks were summed up and the resulting image is
shown in Fig. 2d). For the angle of 0∘ the signal of a plane
mirror is obtained. If the mirror is tilted, a similar signal
appears, but tilted by the angle in frequency space. If this is
repeated for many angles up to the maximum angle related
to the NA, the region of the expected TF can be sampled.
The concept of Fig. 2d) was repeated for a larger number
of tilt angles as shown in Fig. 2e). This leads directly to the
problem with this method: Due to the high number of indi-
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Fig. 3: Slices in the 𝑞𝑥, 𝑞𝑧–plane of Fourier transformed image
stacks of different objects measured with a Linnik interferometer
of NA = 0.9. a) Steel microsphere (6 µm diameter), ruby sphere
with b) 120µm diameter, c) 250µm diameter, and d) 300µm
diameter, respectively.

vidual measurements, the procedure is very time consuming,
which makes it difficult to maintain the same measurement
conditions for all measurements. In this experiment, small
misalignments occurred, which can be recognized by the dis-
continuities in the image shown. Due to this, the approach
is rather inappropriate for determining the TF.

Investigations were also carried out on spherical sur-
faces of high curvature. When illuminating reflecting spheres
or half-spheres with infinitely small radii, it can be assumed
that they behave like point scatterers. These provide the
advantage that, by definition, the intensity distribution is
constant over all scattering angles. The larger the radius
of surface curvature, the less they behave like a point scat-
terer. Figure 3 shows Fourier transformed image stacks of
measurements of different spheres: a) steel sphere of 6 µm
diameter, b), c), and d) ruby spheres of 120 µm, 250µm,
and 300 µm) diameter, respectively. The steel microsphere,
Fig. 3 a), initially shows a good sampling of all frequency

components in the region of the expected 3D-TF. However,
it is also clear that this region does not have a homoge-
neous intensity distribution. Some scattering angles seem
to contribute less than others. This is due to the rough
surface of the sphere. The ruby sphere with a diameter of
120 µm, Fig. 3 b), shows a similar behavior. Here, it can
be assumed that the spheres do not have a perfect surface,
too. Likewise, higher 𝑞𝑥 frequency components, which were
recognizable for the steel microsphere, no longer appear.
This is because larger surface inclination angles are required
for higher spatial frequency components. Although these
are generally present on the sphere’s surface, they can no
longer be recorded by the measuring device due to its lim-
ited field of view. This effect also occurs for spheres with
even larger radii (see Fig. 3 c) and d)). The maximum
achievable scattering angle therefore becomes smaller. For
the larger ruby spheres, however, a better homogeneity of
the scattering field can be seen, which, in comparison to
before, speaks for more smooth and homogeneous surfaces.
In theory, spheres are sufficient to determine the TF via
an analysis in Fourier space. These must be as small as
possible 𝑑sphere ≤ 40 µm and at the same time, they should
be manufactured as perfect as possible. However, even if
this were achieved, the small amount of scattered light is a
problem. Therefore, in the next section a method will be pre-
sented, which theoretically makes it possible to determine
the 3D-TF experimentally.

4 Determination the 3D transfer
function based on sinusoidal
surfaces

In recent sections, approaches are introduced with the aim
of reconstructing the optical 3D-TF from measured data.
These include the use of diffraction gratings, microspheres,
and tilted planar mirrors, each offering distinct advantages
and challenges in terms of spatial frequency coverage and
signal interpretation. While these measurements provide
valuable insights, they are inherently affected by the com-
plex scattering behavior of real objects and potential exper-
imental impacts such as alignment errors or signal distor-
tions. To overcome these limitations and to gain a deeper
understanding of the underlying principles, the following
section focuses on a theoretical investigation of the opti-
cal 3D transfer function. The focus here will again be on
grating structures. Note that even for a sinusoidal phase
grating multiple diffraction orders occur. As shown before,
we need gratings with period lengths of 5 µm to 15µm to
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Fig. 4: a) Slices in the 𝑞𝑥, 𝑞𝑧–plane of the Fourier-transformed
image stack of a simulated sine standard, b) transfer function
at the discrete diffraction orders, c) complete transfer function
calculated by interpolation between the diffraction orders.

get a good coverage of the spatial frequencies in the range
of the expected TF. With respect to the gratings already
investigated, it was found that the intensity distribution of
different diffraction orders is not homogeneous. This can be
changed by choosing the right grating structure. Figure 4a)
shows an FEM simulation [6] for a sinusoidal reflection
grating with a period length of 10 µm and a peak-to-valley
amplitude (PV) of 2.23µm. The CSI instrument is charac-
terized by NA = 0.55, a mean wavelength of 550 nm, and a
FWHM of 10 nm. The amplitude of the sinusoidal surface
is selected in order to achieve a maximum slope angle of
35∘ of the sinusoidal slope, which matches the maximum
possible capture angle of a Mirau objective with NA = 0.55.
This configuration was chosen since steep slope angles of
sinusoidal surfaces are difficult to be produced, but 35∘

is still within the accessible range. When considering the
intensity changes between the individual diffraction orders,
it is noticeable that these are significantly more homoge-
neous for this approach, thus making it easier to extract
the transfer function. For the determination of the 3D-TF,
the scattering field of the sinusoidal surface is determined
via FEM simulation. This allows the 3D-TF to be deter-
mined at the 𝑞𝑥 positions of the different diffraction orders
by dividing the Fourier transformed image stack at these
positions by the corresponding scattered field. The result
is shown in Fig. 4b). The complete transfer function can

now be determined by interpolating the calculated sections
along the 𝑞𝑥-axis (Fig. 4c)).

5 Conclusion

In this work, we present the concept of the three-dimensional
optical transfer function (3D-TF) and discuss its relevance
for modeling and analyzing modern state-of-the-art topog-
raphy measurement systems, particularly in the context
of coherence scanning interferometry. We examine various
experimental approaches to determine the 3D-TF from mea-
sured data. These include the use of diffraction gratings,
tilted planar mirrors, and spherical surfaces of high curva-
ture. For each of these methods specific limitations, such
as inhomogeneous intensity distributions, restricted spa-
tial frequency coverage, or practical challenges in sample
fabrication and alignment, are highlighted. To overcome
these issues, we propose an approach based on the sim-
ulated scattered field of a sinusoidal phase grating. This
method allows us to approximate the transfer function more
uniformly by dividing the measured data by the precom-
puted scattered field at individual diffraction orders. While
this approach has shown promising results, it remains a
theoretical investigation at the moment. Future work will
focus on validating this method experimentally to enable
a reliable reconstruction of the 3D transfer function from
real measurements.
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