Startseite Progressing TDLAS instrumentation for SI-traceable measurements of nitrous oxide in maritime applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Progressing TDLAS instrumentation for SI-traceable measurements of nitrous oxide in maritime applications

  • Denghao Zhu

    Denghao Zhu is an Associate Professor at the School of Energy and Environment, Southeast University (since 2025). He was a Postdoctoral Researcher at the Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt (2021–2024). His research interests include laser spectroscopy, combustion diagnostics and reaction kinetics.

    , Sumit Agarwal , Leopold Seifert , Ajoy Ramalingam , Bo Shu , Ravi X. Fernandes und Zhechao Qu

    Zhechao Qu is a Research Scientist and Project Coordinator (EURAMET MetNH3Energy) at the Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt. His research focuses on gas metrology and laser spectroscopy, with applications in the climate and energy sectors.

    ORCID logo EMAIL logo
Veröffentlicht/Copyright: 8. Juli 2025

Abstract

Nitrous oxide (N2O) is gaining interest in maritime applications for several reasons, primarily related to engine performance enhancement, emissions reduction, and auxiliary power supply. While N2O can enhance combustion efficiency and reduce certain emissions, uncontrolled use could result in increased NO x formation and other pollutants. Effective N2O monitoring is critical in maritime applications for ensuring operational safety, regulatory compliance, and optimal performance. We introduce an innovative first-principles N2O spectrometer designed specifically for maritime applications, such as monitoring emissions during and after combustion processes. This TDLAS based spectrometer targets the P29e line at 4.55 µm spectral band and provides direct absolute mole fraction measurements, eliminating the necessity for prior or routine calibration.

Zusammenfassung

Distickstoffmonoxid (N2O) gewinnt aus mehreren Gründen zunehmend an Bedeutung für maritime Anwendungen, vor allem im Hinblick auf die Leistungssteigerung von Motoren, die Reduzierung von Emissionen und die Bereitstellung von Zusatzenergie. Während N2O die Verbrennungseffizienz verbessern und bestimmte Emissionen verringern kann, könnte ein unkontrollierter Einsatz zu einer erhöhten NOx-Bildung und anderen Schadstoffen führen. Eine effektive Überwachung von N2O ist in maritimen Anwendungen entscheidend, um die Betriebssicherheit, die Einhaltung von Vorschriften und eine optimale Leistung zu gewährleisten. Wir stellen ein innovatives N2O-Spektrometer auf Basis erster Prinzipien vor, das speziell für maritime Anwendungen entwickelt wurde, wie etwa die Überwachung von Emissionen während und nach Verbrennungsprozessen. Dieses auf TDLAS basierende Spektrometer ist auf die P29e-Linie im Spektralbereich von 4,55 µm abgestimmt und ermöglicht direkte, absolute Messungen der Molfraktion, wodurch eine vorherige oder regelmäßige Kalibrierung überflüssig wird.


Corresponding author: Zhechao Qu, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, E-mail:

Current address: Denghao Zhu, School of Energy and Environment, Southeast University, Nanjing, China.


Award Identifier / Grant number: 23IND09 MaritimeMET

About the authors

Denghao Zhu

Denghao Zhu is an Associate Professor at the School of Energy and Environment, Southeast University (since 2025). He was a Postdoctoral Researcher at the Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt (2021–2024). His research interests include laser spectroscopy, combustion diagnostics and reaction kinetics.

Zhechao Qu

Zhechao Qu is a Research Scientist and Project Coordinator (EURAMET MetNH3Energy) at the Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt. His research focuses on gas metrology and laser spectroscopy, with applications in the climate and energy sectors.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: ChatGPT was used to improve language.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: The project (23IND09 MaritimeMET) has received funding from the European Partnership on Metrology, co-financed by the European Union’s Horizon Europe Research and Innovation Programme and by the Participating States.

  7. Data availability: Not applicable.

References

[1] A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, “Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century,” Science, vol. 326, no. 5949, pp. 123–125, 2009. https://doi.org/10.1126/science.1176985.Suche in Google Scholar PubMed

[2] United Nations Environment Programme, The Importance of Nitrous Oxide in Ozone Layer Depletion, Nairobi, UNEP, 2013.Suche in Google Scholar

[3] European Commission, EU Emissions Trading System (ETS) and Maritime Transport, Brussels, Climate Action Policy, 2023.Suche in Google Scholar

[4] European Commission, FuelEU Maritime: Reducing Greenhouse Gas Emissions from Shipping, Brussels, Transport & Environment Policy, 2022.Suche in Google Scholar

[5] International Maritime Organization, 2023 IMO Strategy on Reduction of GHG Emissions from Ships, London, International Maritime Organization (IMO), 2023.Suche in Google Scholar

[6] M. Bucha, D. Lewicka-Szczebak, and P. Wójtowicz, “Simultaneous measurement of greenhouse gases (CH4, CO2 and N2O) using a simplified gas chromatography system,” Atmos. Meas. Tech., vol. 18, no. 4, pp. 897–908, 2025. https://doi.org/10.5194/amt-18-897-2025.Suche in Google Scholar

[7] C. H. Lin, R. H. Grant, A. J. Heber, and C. T. Johnston, “Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields,” Atmos. Meas. Tech., vol. 12, no. 6, pp. 3403–3415, 2019. https://doi.org/10.5194/amt-12-3403-2019.Suche in Google Scholar

[8] Y. Tian, et al.., “Continuous chemiluminescence measurements of dissolved nitric oxide (NO) and nitrogen dioxide (NO2) in the ocean surface layer of the East China Sea,” Environ. Sci. Technol., vol. 55, no. 6, pp. 3668–3675, 2021. https://doi.org/10.1021/acs.est.0c06799.Suche in Google Scholar PubMed

[9] J. Mohn, et al.., “Isotopically characterised N2O reference materials for use as community standards,” Rapid Commun. Mass Spectrom., vol. 36, no. 13, 2022, Art. no. e9296. https://doi.org/10.1002/rcm.9296.Suche in Google Scholar PubMed PubMed Central

[10] X. Bian, S. Zhou, X. Sun, B. Yu, and J. Li, “Continuous measurement of NO2 in flue gas employing cavity-enhanced spectroscopy sensing system,” Measurement, vol. 201, 2022, Art. no. 111729. https://doi.org/10.1016/j.measurement.2022.111729.Suche in Google Scholar

[11] A. Fathy, Y. M. Sabry, I. W. Hunter, D. Khalil, and T. Bourouina, “Direct absorption and photoacoustic spectroscopy for gas sensing and analysis: a critical review,” Laser Photonics Rev., vol. 16, no. 8, 2022, Art. no. 2100556. https://doi.org/10.1002/lpor.202100556.Suche in Google Scholar

[12] F. Shen, et al.., “Real-time monitoring of N2O production in a catalytic reaction process using mid-infrared quantum cascade laser,” J. Quant. Spectrosc. Radiat. Transfer, vol. 221, pp. 1–7, 2018. https://doi.org/10.1016/j.jqsrt.2018.09.022.Suche in Google Scholar

[13] J. B. McManus, et al.., “Recent progress in laser-based trace gas instruments: performance and noise analysis,” Appl. Phys. B, vol. 119, pp. 203–218, 2015. https://doi.org/10.1007/s00340-015-6033-0.Suche in Google Scholar

[14] European Partnership on Metrology, MaritimeMET Project, Metrology for Maritime Emission Measurements, Brussels, European Partnership on Metrology., 2024–2027.Suche in Google Scholar

[15] EURAMET Report, Traceable Infrared Laser-Spectrometric Amount Fraction Measurements, 2010. Available at: https://www.euramet.org/Media/docs/projects/934_METCHEM_Interim_Report.pdf.Suche in Google Scholar

[16] J. A. Nwaboh, Z. Qu, O. Werhahn, and V. Ebert, “Interband cascade laser-based optical transfer standard for atmospheric carbon monoxide measurements,” Appl. Opt., vol. 56, no. 11, pp. E84–E93, 2017. https://doi.org/10.1364/ao.56.000e84.Suche in Google Scholar

[17] D. Zhu, S. Agarwal, L. Seifert, B. Shu, R. Fernandes, and Z. Qu, “An ultra-rapid optical gas standard for dynamic processes: absolute NH3 quantification and uncertainty evaluation,” Measurement, vol. 230, 2024, Art. no. 114559. https://doi.org/10.1016/j.measurement.2024.114559.Suche in Google Scholar

[18] EURAMET Project, Interim Report on Project 934, 2011. Available at: https://www.euramet.org/Media/docs/projects/934_interim_report.pdf.Suche in Google Scholar

[19] I. E. Gordon, et al.., “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer, vol. 277, 2022, Art. no. 107949. https://doi.org/10.1016/j.jqsrt.2021.107949.Suche in Google Scholar

[20] D. Zhu, S. Agarwal, L. Seifert, B. Shu, R. Fernandes, and Z. Qu, “NH3 absorption line study and application near 1084.6 cm-1,” Infrared Phys. Technol., vol. 136, 2024, Art. no. 105058. https://doi.org/10.1016/j.infrared.2023.105058.Suche in Google Scholar

[21] K. Duan, Y. Ji, D. Wen, Z. Lu, K. Xu, and W. Ren, “Mid-infrared fiber-coupled laser absorption sensor for simultaneous NH3 and NO monitoring in flue gases,” Sens. Actuators, B, vol. 374, 2023, Art. no. 132805. https://doi.org/10.1016/j.snb.2022.132805.Suche in Google Scholar

[22] P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B, vol. 102, no. 2, pp. 313–329, 2011. https://doi.org/10.1007/s00340-010-4165-9.Suche in Google Scholar

Received: 2025-03-31
Accepted: 2025-06-11
Published Online: 2025-07-08
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/teme-2025-0039/html?recommended=sidebar
Button zum nach oben scrollen