Grundlagen der Gasfeuchte Teil 3 (Primäre Darstellung von Gasfeuchte)
-
Helmut Mitter
Kurzfassung
In der Gasfeuchte stehen zur messtechnischen Rückführung auf SI-Einheiten an oberster Stelle der Messkette sogenannte Feuchtegeneratoren zur primären bzw. fundamentalen Darstellung eines Referenzwertes. Zumeist werden solche Generatoren in nationalen metrologischen Instituten (NMI) bzw. in von einem NMI beauftragten designierten Institut oder Labor (DI) eingesetzt und ermöglichen die Darstellung von Feuchtereferenzwerten mit den kleinsten technisch realisierbaren Unsicherheiten. Es werden die wichtigsten Möglichkeiten zur fundamentalen Darstellung von Gasfeuchte vorgestellt und von der am häufigsten verwendeten Variante, sogenannten 2-Druck 2-Temperatur Generatoren in verschiedenen Versionen, die wichtigsten Unsicherheitsbeiträge skizziert.
Abstract
In the field of humidity so-called humidity generators with primary or fundamental representation of a reference value are used to establish traceability to SI units on top of the measurement chain. In most cases those generators are used in national metrology institutes (NMIs) or from an NMI designated so-called designated institute or laboratory (DI) and enable the laboratory to realise humidity reference values with the smallest technically possible uncertainties. The most important methods for fundamental representation of humidity are discussed. The mostly used generator type, the two-pressure two temperature generator in different versions, is discussed in detail and the major uncertainty contributions are outlined.
Über den Autor / die Autorin

Dr. techn. Helmut Mitter studierte von 1974 bis 1981 Technischen Physik an der JKU-Linz mit dem Schwerpunkt Halbleiterphysik. Anschließend arbeitete er mit einem Stipendium der Max-Planck-Gesellschaft am Max-Planck-Institut für Festkörperforschung Stuttgart mit Dienstort Hochfeld-Magnetlabor, Grenoble an seiner Dissertation und promovierte 1984 an der JKU-Linz. Seit 1985 arbeitete er bei der E+E Elektronik in Engerwitzdorf und beschäftigte sich mit der Entwicklung von Sensoren in Dünnschichttechnik sowie mit Kalibrierung und hält mehrere Patente. Ab 2005 bis zur Pensionierung 2020 war er Leiter des ’’Designierten Labors für Gasfeuchte und Luftströmungsgeschwindigkeit, BEV/E+E‘‘ im Auftrag des ’’Bundesamt für Eich- und Vermessungswesen, BEV‘‘ und verantwortlich für das nationale Etalon für Gasfeuchte in Österreich. Im Zuge dieser Tätigkeit Mitarbeit in diversen internationalen und nationalen Komitees und Ausschüssen wie dem VDI Ausschuss zur Erstellung der VDI-Richtlinie ’’VDI/VDE 3514 Gasfeuchtemessung‘‘, EURAMET TC-T und BIPM CCT-WG6. Seit 2020 ist er selbstständig und arbeitet als freier Mitarbeiter für E+E Elektronik.
-
Research ethics: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
Literatur
[1] H. Mitter, “Basics of gas humidity part 1 (saturation behavior of water in a carrier gas),” Tech. Mess., vol. 90, no. 1, pp. 5–24, 2023. https://doi.org/10.1515/teme-2022-0016.Search in Google Scholar
[2] H. Mitter, “Basics of gas humidity part 2 (characteristics of gas humidity),” Tech. Mess., vol. 90, no. 1, pp. 25–50, 2023. https://doi.org/10.1515/teme-2022-0016.Search in Google Scholar
[3] VDI-VDE-3514, Blatt 3: “Gasfeuchtemessung, Kalibrierung und Messunsicherheit”, Düsseldorf, VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik, 2021.Search in Google Scholar
[4] G. Scholz, “A standard calibrator for air hygrometers,” Bull. OIML, no. 97, pp. 18–27, 1984.Search in Google Scholar
[5] H. Mitter, “The BEV/E+E Elektronik standard humidity generator,” in Proceedings of the ‘5th International Symposium on Humidity and Moisture ISHM 2006, Brazil, INMETRO, 2006.Search in Google Scholar
[6] H. Mitter, “New BEV/E + E Elektronik low-frost-point/high-pressure generator,” Int. J. Thermophys., vol. 36, no. 7, pp. 2242–2258, 2015, https://doi.org/10.1007/s10765-015-1950-z.Search in Google Scholar
[7] F. Bubser, R. Deschermeier, and V. Ebert, “Konzeption des neuen, primären, thermodynamischen PTB-Feuchtenormals,” Tech. Mess., vol. 90, no. 1, pp. 51–55, 2023. https://doi.org/10.1515/teme-2022-0006.Search in Google Scholar
[8] P. Raab and H. Mitter, “New BEV/E+E Elektronik high pressure dew point generator – design and proof of concept,” in Proceeding of 10th International Temperature Symposium ITS10, Anaheim, CA, 2023, to be published.10.1063/5.0234125Search in Google Scholar
[9] C. W. Meyer, W. Miller, D. C. Ripple, and G. E. Scace, “Performance and validation tests on the NIST hybrid humidity generator,” Int. J. Thermophys., vol. 29, pp. 1606–1614, 2008, https://doi.org/10.1007/s10765-007-0342-4.Search in Google Scholar
[10] C. W. Meyer, W. W. Miller, D. C. Ripple, and G. E. Scace, “Uncertainty budget for the NIST hybrid humidity generator,” Int. J. Thermophys., vol. 33, pp. 1488–1499, 2012, https://doi.org/10.1007/s10765-010-0880-z.Search in Google Scholar
[11] P. J. Gliese, F. Bubser, and R. Deschermeier, “Das Coulometrische Prinzip als Grundlage eines Spurenfeuchtegenerators,” Tech. Mess., vol. 91, no. 11 (in press). https://www.degruyter.com/document/doi/10.1515/teme-2024-0015/html.10.1515/teme-2024-0015Search in Google Scholar
[12] CODATA Values of the Fundamental Physical Constants (2020/12). Available at: https://www.nist.gov/programsprojects/codata-values-fundamental-physical-constants, https://physics.nist.gov/cuu/Constants/index.html.Search in Google Scholar
[13] H. Abe, H. Kitano, N. Matsumoto, and C. Takahashi, “Uncertainty analysis for trace-moisture standard realized using a magnetic suspension balance/diffusion-tube humidity generator developed at NMIJ,” Metrologia, vol. 52, no. 6, pp. 731–740, 2015, https://doi.org/10.1088/0026-1394/52/6/731.Search in Google Scholar
[14] L. Greenspan, “Humidity fixed points of binary saturated aqueous solution,” J. Res. NBS, vol. 81A, no. 1, pp. 89–96, 1977. https://doi.org/10.6028/jres.081a.011.Search in Google Scholar
[15] Bureau international des poids et mesures, “Evaluation of measurement data – guide to the expression of uncertainty in measurement (JCGM 100:2008),” Available at: https://www.bipm.org/ Accessed: Nov. 30, 2021.Search in Google Scholar
[16] M. Heinonen, et al.., “Investigation of the equivalence of national dew-point temperature realizations in the −50 °C to +20 °C range,” Int. J. Thermophys., vol. 33, nos. 8–9, pp. 1–16, 2011. https://doi.org/10.1007/s10765-011-0950-x.Search in Google Scholar
[17] H. Mitter, Patentschrift EP 1 624 356.Search in Google Scholar
[18] H. Mitter, Patentschrift US 7,395,673.Search in Google Scholar
[19] R. Bosma, D. Mutter, and A. Peruzzi, “Validation of a dew-point generator for pressures up to 6 MPa using nitrogen and air,” Metrologia, vol. 49, no. 4, pp. 597–606, 2012, https://doi.org/10.1088/0026-1394/49/4/597.Search in Google Scholar
[20] D. Sonntag, “Important new values of the physical constants of 1986, vapour pressure formulations based on the ITS-90 and psychrometer formulae,” Z. Meteorol., vol. 70, no. 5, pp. 340–344, 1990.Search in Google Scholar
[21] A. Wexler, “Vapor pressure formulation for water in range 0 to 100 °C – A revision,” J. Res. NBS A Phys. Chem., vol. 80A, nos. 5–6, pp. 775–785, 1976, https://doi.org/10.6028/jres.080a.071.Search in Google Scholar
[22] A. Wexler, “Vapor pressure formulation for ice,” J. Res. NBS A Phys. Chem., vol. 81A, no. 1, pp. 5–20, 1977, https://doi.org/10.6028/jres.081a.003.Search in Google Scholar
[23] B. Hardy, “ITS-90 formulations for vapour pressure, frostpoint temperature, dewpoint temperature and enhancement factors in the range −100 °C to 100 °C,” in Third International Symposium on Humidity and Moisture, 1998, pp. 214–221.Search in Google Scholar
[24] R. W. Hyland, “A correlation for second interaction virial coefficients and enhancement factors for moist air,” J. Res. NBS A Phys. Chem., vol. 79A, no. 4, pp. 551–560, 1975, https://doi.org/10.6028/jres.079a.017.Search in Google Scholar
[25] J. Lovell-Smith, “The propagation of uncertainty for humidity calculations,” Metrologia, vol. 46, no. 6, pp. 607–615, 2009, https://doi.org/10.1088/0026-1394/46/6/001.Search in Google Scholar
[26] H. Mitter, “Miniaturized two-pressure generator for relative humidity,” Int. J. Thermophys., vol. 29, pp. 1632–1643, 2008, https://doi.org/10.1007/s10765-008-0432-y.Search in Google Scholar
[27] H. Mitter, Patentschrift EP 0 989 373.Search in Google Scholar
[28] H. Mitter, Patentschrift US 6,299,147.Search in Google Scholar
[29] C. W. Meyer, J. T. Hodges, R. W. Hyland, G. E. Scace, J. Valencia-Rodriguez, and J. R. Whetstone, “The second-generation NIST standard hygrometer,” Metrologia, vol. 47, no. 3, pp. 192–207, 2010, https://doi.org/10.1088/0026-1394/47/3/010.Search in Google Scholar
[30] H. Mitter and R. Kurte, “Determination of water vapour enhancement factors by use of a two pressure humidity generator,” presentation at Tempmeko 2016, Zakopane, Poland, 2016.Search in Google Scholar
[31] C. W. Meyer and A. H. Harvey, “Dew-point measurements for water in compressed carbon dioxide,” AIChE J., vol. 61, no. 9, pp. 2913–2925, 2015. https://doi.org/10.1002/aic.14818.Search in Google Scholar
[32] P. Raab and H. Mitter, “Determination of water vapor enhancement factors in carbon dioxide,” presentation at 10th International Temperature Symposium ITS10, Anaheim, CA, 2023.Search in Google Scholar
[33] Carroll, Natural Gas Hydrates, Oxford, Elsevier Science & Technology, 2009.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial zum Themenheft Gasfeuchte
- Research Article
- ÖTZI – ein gewichtiger Mann: Feuchtetechnische Aspekte der Konservierung der Eismann-Mumie
- Review Articles
- Grundlagen der Gasfeuchte Teil 3 (Primäre Darstellung von Gasfeuchte)
- Das Coulometrische Prinzip als Grundlage eines Spurenfeuchtegenerators
- Research Article
- Fundamental representation of the amount of substance fraction of carbon dioxide in nitrogen according to the dynamic volumetric principle
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial zum Themenheft Gasfeuchte
- Research Article
- ÖTZI – ein gewichtiger Mann: Feuchtetechnische Aspekte der Konservierung der Eismann-Mumie
- Review Articles
- Grundlagen der Gasfeuchte Teil 3 (Primäre Darstellung von Gasfeuchte)
- Das Coulometrische Prinzip als Grundlage eines Spurenfeuchtegenerators
- Research Article
- Fundamental representation of the amount of substance fraction of carbon dioxide in nitrogen according to the dynamic volumetric principle