Home Self-powered synchronous asymmetric voltage flip and charge extraction technique for piezoelectric energy harvesting
Article
Licensed
Unlicensed Requires Authentication

Self-powered synchronous asymmetric voltage flip and charge extraction technique for piezoelectric energy harvesting

  • Zekun Xiao

    Zekun Xiao received the B.E. degree from Qingdao University, Qingdao, China, in 2021, where he is currently an M.S. student in the School of Electrical Engineering, Dalian University of Technology. His research interest is energy harvesting technology.

    , Weijie Dong

    Weijie Dong received the M.S. degree in electrical engineering and Ph.D. degrees in mechatronic engineering from Dalian University of Technology, Dalian, China, in 1994 and 2004, respectively, where she is currently a professor with the School of Electrical Engineering. Her research interests include energy harvesting, vibration monitoring, and precision positioning control.

    EMAIL logo
    , Yongping Xie

    Yongping Xie received the M.S. degrees in electrical engineering from Dalian University of Technology, Dalian, China, in 1991, where he is currently an associate professor with the School of Information and Communication Engineering. His research interests include electronic circuit, mobile network optimization, and wireless sensor networks.

    , Jiahao Zhang ORCID logo , Yunyang Wei and Xu Wang
Published/Copyright: June 19, 2024

Abstract

This paper presents a nonlinear interface circuit for piezoelectric vibration energy harvester (PEH) with Synchronous Asymmetric Voltage Flipping and Charge Extraction process, denoted as SAFCE. SAFCE flips the PEH voltage polarity at positive peak and completely extracting charge at negative peak through LC resonance. The harvested power is independent of load. In theory, the harvested power is 200 % of SECE and 780 % of best impedance-matched SEH due to the energy injection mechanism, which enhances the electromechanical coupling coefficient of PEH. Moreover, a self-powered SAFCE circuit without rectifier bridge is designed, which reduces power consumption and eliminates the need for external power sources. Experimental measurements are carried out to compare with SEH and SECE circuits under the condition of either constant displacement magnitude (0.5 mm) or constant external excitation acceleration (10 m/s2). The experimental results indicate that the power harvested by the SAFCE technique increased by 171 % compared with the SECE method and by 381 % compared with the best impedance-matched SEH method under the same conditions.

Zusammenfassung

In diesem Beitrag wird eine nichtlineare Schnittstellenschaltung für piezoelektrische Vibrationsenergie-Harvester (PEH) mit synchronem, asymmetrischen Spannungsumkehr- und Ladungsextraktionsverfahren (SAFCE) vorgestellt. SAFCE kehrt die Polarität der PEH-Spannung an der positiven Spitze um und extrahiert die Ladung an der negativen Spitze vollständig durch LC-Resonanz. Die gewonnene Leistung ist unabhängig von der Last. Theoretisch beträgt die gewonnene Leistung 200 % der SECE und 780 % der besten impedanzangepassten SEH aufgrund des Energieinjektionsmechanismus, der den elektromechanischen Kopplungskoeffizienten der PEH erhöht. Darüber hinaus wurde eine selbstversorgte SAFCE-Schaltung ohne Gleichrichterbrücke entwickelt, die den Stromverbrauch senkt und den Bedarf an externen Stromquellen eliminiert. Es werden experimentelle Messungen zum Vergleich mit SEH- und SECE-Schaltungen unter der Bedingung einer konstanten Verschiebungsgröße (0,5 mm) oder einer konstanten externen Anregungsbeschleunigung (10 m/s2) durchgeführt. Die experimentellen Ergebnisse zeigen, dass die mit der SAFCE-Technik gewonnene Leistung im Vergleich zur SECE-Methode um 171 % und im Vergleich zur besten impedanzangepassten SEH-Methode unter den gleichen Bedingungen um 381 % gestiegen ist.


Corresponding author: Weijie Dong, School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China, E-mail:

Award Identifier / Grant number: 2019YFB2005900

About the authors

Zekun Xiao

Zekun Xiao received the B.E. degree from Qingdao University, Qingdao, China, in 2021, where he is currently an M.S. student in the School of Electrical Engineering, Dalian University of Technology. His research interest is energy harvesting technology.

Weijie Dong

Weijie Dong received the M.S. degree in electrical engineering and Ph.D. degrees in mechatronic engineering from Dalian University of Technology, Dalian, China, in 1994 and 2004, respectively, where she is currently a professor with the School of Electrical Engineering. Her research interests include energy harvesting, vibration monitoring, and precision positioning control.

Yongping Xie

Yongping Xie received the M.S. degrees in electrical engineering from Dalian University of Technology, Dalian, China, in 1991, where he is currently an associate professor with the School of Information and Communication Engineering. His research interests include electronic circuit, mobile network optimization, and wireless sensor networks.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: This paper is supported by the National Key Research and Development Program of China (2019YFB2005900). Project name: Instrument high-density integration design and module development based on IMC chip. Sub-project: Design and application of key technologies of micro-controller chip for instrument.

  5. Data availability: Not applicable.

References

[1] H. Pan, L. Qi, Z. Zhang, and J. Yan, “Kinetic energy harvesting technologies for applications in land transportation: a comprehensive review,” Appl. Energy, vol. 286, 2021, Art. no. 116518. https://doi.org/10.1016/j.apenergy.2021.116518.Search in Google Scholar

[2] F. He, Y. Liu, J. Pan, X. Ye, and P. Jiao, “Advanced ocean wave energy harvesting: current progress and future trends,” J. Zhejiang Univ. Sci. A, vol. 24, no. 2, pp. 91–108, 2023. https://doi.org/10.1631/jzus.A2200598.Search in Google Scholar

[3] K. T. Prajwal, K. Manickavasagam, and R. Suresh, “A review on vibration energy harvesting technologies: analysis and technologies,” Eur. Phys. J. Special Topics, vol. 231, no. 8, pp. 1359–1371, 2022. https://doi.org/10.1140/epjs/s11734-022-00490-0.Search in Google Scholar

[4] J. Jiang, S. Liu, L. Feng, and D. Zhao, “A review of piezoelectric vibration energy harvesting with magnetic coupling based on different structural characteristics,” Micromachines, vol. 12, no. 4, p. 436, 2021. https://doi.org/10.3390/mi12040436.Search in Google Scholar PubMed PubMed Central

[5] N. Sezer and M. Koç, “A comprehensive review on the state-of-the-art of piezoelectric energy harvesting,” Nano Energy, vol. 80, 2021, Art. no. 105567. https://doi.org/10.1016/j.nanoen.2020.105567.Search in Google Scholar

[6] C. Covaci and A. Gontean, “Piezoelectric energy harvesting solutions: a review,” Sensors, vol. 20, no. 12, p. 3512, 2020. https://doi.org/10.3390/s20123512.Search in Google Scholar PubMed PubMed Central

[7] S. Kote, S. Krishnapillai, and S. Chandramohan, “Electromechanical modelling of piezoelectric vibration energy harvester with a novel dynamic magnifier,” TM – Tech. Mess., vol. 87, no. 9, pp. 575–585, 2020. https://doi.org/10.1515/teme-2020-0030.Search in Google Scholar

[8] G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, “Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 696–703, 2003. https://doi.org/10.1109/TPEL.2003.809379.Search in Google Scholar

[9] A. Badel and E. Lefeuvre, “Nonlinear conditioning circuits for piezoelectric energy harvesters,” in Nonlinearity in Energy Harvesting Systems, E. Blokhina, A. El Aroudi, E. Alarcon, and D. Galayko, Eds., Cham, Springer International Publishing, 2016, pp. 321–359.10.1007/978-3-319-20355-3_10Search in Google Scholar

[10] D. Li, C. Wang, X. Cui, D. Chen, C. Fei, and Y. Yang, “Recent progress and development of interface integrated circuits for piezoelectric energy harvesting,” Nano Energy, vol. 94, 2022, Art. no. 106938. https://doi.org/10.1016/j.nanoen.2022.106938.Search in Google Scholar

[11] Y. Yang, Z. Chen, Q. Kuai, J. Liang, J. Liu, and X. Zeng, “Circuit techniques for high efficiency piezoelectric energy harvesting,” Micromachines, vol. 13, no. 7, p. 1044, 2022. https://doi.org/10.3390/mi13071044.Search in Google Scholar PubMed PubMed Central

[12] E. Lefeuvre, A. Badel, C. Richard, L. Petit, and D. Guyomar, “A comparison between several vibration-powered piezoelectric generators for standalone systems,” Sens. Actuators Phys., vol. 126, no. 2, pp. 405–416, 2006. https://doi.org/10.1016/j.sna.2005.10.043.Search in Google Scholar

[13] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, “High-performance piezoelectric vibration energy reclamation,” in Presented at the Smart Structures and Materials, A. B. Flatau, Ed., San Diego, CA, 2004, p. 379.10.1117/12.532709Search in Google Scholar

[14] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, “Toward energy harvesting using active materials and conversion improvement by nonlinear processing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 4, pp. 584–595, 2005. https://doi.org/10.1109/TUFFC.2005.1428041.Search in Google Scholar

[15] L. Wu, X.-D. Do, S.-G. Lee, and D. S. Ha, “A self-powered and optimal SSHI circuit integrated with an active rectifier for piezoelectric energy harvesting,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 64, no. 3, pp. 537–549, 2017. https://doi.org/10.1109/TCSI.2016.2608999.Search in Google Scholar

[16] M. Zouari, S. Naifar, G. Bouattour, N. Derbel, and O. Kanoun, “Energy management based on fractional open circuit and P-SSHI techniques for piezoelectric energy harvesting,” TM – Tech. Mess., vol. 86, no. 1, pp. 14–24, 2019. https://doi.org/10.1515/teme-2017-0121.Search in Google Scholar

[17] E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, “Piezoelectric energy harvesting device optimization by synchronous electric charge extraction,” J. Intell. Mater. Syst. Struct., vol. 16, no. 10, pp. 865–876, 2005. https://doi.org/10.1177/1045389X05056859.Search in Google Scholar

[18] G. Shi, Y. Xia, X. Wang, L. Qian, Y. Ye, and Q. Li, “An efficient self-powered piezoelectric energy harvesting CMOS interface circuit based on synchronous charge extraction technique,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 65, no. 2, pp. 804–817, 2018. https://doi.org/10.1109/TCSI.2017.2731795.Search in Google Scholar

[19] M. Lallart and D. Guyomar, “Piezoelectric conversion and energy harvesting enhancement by initial energy injection,” Appl. Phys. Lett., vol. 97, no. 1, 2010, Art. no. 014104. https://doi.org/10.1063/1.3462304.Search in Google Scholar

[20] X. Wang, et al.., “A clockless synergistic hybrid energy harvesting technique with simultaneous energy injection and sampling for piezoelectric and photovoltaic energy,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 70, no. 4, pp. 1795–1804, 2023. https://doi.org/10.1109/TCSI.2022.3233111.Search in Google Scholar

[21] P. Becker, E. Hymon, B. Folkmer, and Y. Manoli, “High efficiency piezoelectric energy harvester with synchronized switching interface circuit,” Sens. Actuators Phys., vol. 202, pp. 155–161, 2013. https://doi.org/10.1016/j.sna.2013.04.030.Search in Google Scholar

[22] Y. Wu, A. Badel, F. Formosa, W. Liu, and A. E. Agbossou, “Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction,” J. Intell. Mater. Syst. Struct., vol. 24, no. 12, pp. 1445–1458, 2013. https://doi.org/10.1177/1045389X12470307.Search in Google Scholar

[23] W. Liu, A. Badel, F. Formosa, Q. Zhu, C. Zhao, and G.-D. Hu, “A comprehensive analysis and modeling of the self-powered synchronous switching harvesting circuit with electronic breakers,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3899–3909, 2018. https://doi.org/10.1109/TIE.2017.2762640.Search in Google Scholar

[24] M. Lallart, L. Garbuio, L. Petit, C. Richard, and D. Guyomar, “Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 10, pp. 2119–2130, 2008. https://doi.org/10.1109/TUFFC.912.Search in Google Scholar PubMed

[25] H. Shen, J. Qiu, H. Ji, K. Zhu, and M. Balsi, “Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction,” Smart Mater. Struct., vol. 19, no. 11, 2010, Art. no. 115017. https://doi.org/10.1088/0964-1726/19/11/115017.Search in Google Scholar

[26] H. Wang, D. Shi, and S. Zheng, “Synchronous charge extraction and voltage inversion (SCEVI): a new efficient vibration-based energy harvesting scheme,” Journal of Vibroengineering, vol. 17, no. 2, pp. 1037–1050, 2015.Search in Google Scholar

[27] M. Lallart, W.-J. Wu, Y. Hsieh, and L. Yan, “Synchronous inversion and charge extraction (SICE): a hybrid switching interface for efficient vibrational energy harvesting,” Smart Mater. Struct., vol. 26, no. 11, 2017, Art. no. 115012. https://doi.org/10.1088/1361-665X/aa8d44.Search in Google Scholar

[28] H. Xia, et al.., “A self-powered S-SSHI and SECE hybrid rectifier for PE energy harvesters: analysis and experiment,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1680–1692, 2021. https://doi.org/10.1109/TPEL.2020.3007694.Search in Google Scholar

[29] S. Priya, and D. J. Inman, Eds. Energy Harvesting Technologies, New York, Springer, 2009.10.1007/978-0-387-76464-1Search in Google Scholar

[30] L. Teng, S. Wang, and J. Liang, “A multistep charge extractions and voltage bias-flip (MCEBF) interface circuit for piezoelectric energy harvesting enhancement,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no. 5, pp. 6293–6303, 2022. https://doi.org/10.1109/JESTPE.2022.3170151.Search in Google Scholar

Received: 2023-12-31
Accepted: 2024-05-07
Published Online: 2024-06-19
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2023-0171/html
Scroll to top button