Home Messsystem zur Dehnungsmessung von Faserwerkstoffen basierend auf subjektiven Laser-Speckle-Mustern
Article
Licensed
Unlicensed Requires Authentication

Messsystem zur Dehnungsmessung von Faserwerkstoffen basierend auf subjektiven Laser-Speckle-Mustern

  • Alexander Spaett

    Alexander Spaett received his B.Eng. in mechatronics in 2015 from the DHBW Stuttgart and his M.Sc. in mechatronics in 2017 from the Friedrich-Alexander-University Erlangen-Nürnberg. From 2018 to 2022 he worked as a research and teaching assistant at the Institute for Measurement Technology at the Johannes Kepler University Linz. His research interests are primarily in the fields of optical measurement technology and digital signal processing.

    EMAIL logo
    and Bernhard G. Zagar

    Bernhard G. Zagar received the diploma degree in EE from the Technical University Graz, Austria, in 1983, an MSc degree in computer science from the University of California at Davis, Davis, CA, USA, in 1988, and the Ph.D. degree in electrical engineering from Technical University Graz, in 1988. There he joined the Department of Electrical Engineering, where he was an Associate Professor in Instrumentation and Measurement until 1998. From 1986 to 1987 he was a research assistant and in 1994 a research associate with the Department of Electrical Engineering and Computer Science, University of California at Davis. He was a Full Professor with the Albert-Ludwigs-University, Freiburg, Germany, Department of Microsystem Engineering until 2000. From 2001 until his retirement in 2022, he was a full professor and head of the Institute for Measurement Technology, Johannes Kepler University Linz, Linz, Austria specializing in instrumentation and measurement, digital signal and image processing, sensors, laser-optical systems and magnetic tomography. In 2022 he joined the Montanuniversitaet Leoben, Austria as a full professor for electrical engineering.

    ORCID logo
Published/Copyright: December 25, 2023

Zusammenfassung

Fasern, sowohl Naturfasern als auch technische Fasern finden ihren Einsatz in vielen technischen Anwendungen. Es folgt daher die Notwendigkeit die Fasern zu charakterisieren. Die Charakterisierung umfasst in der Regel auch die Bestimmung des Spannungs-Dehnungs-Diagramms von einzelnen Fasern. Dieser Artikel beschäftigt sich mit einem Messsystem welches zur Messung des Spannungs-Dehnungs-Diagramms, auch unter erschwerten Testbedingungen, wie z. B. die Messung bei hohen und höchsten Temperaturen, geeignet ist. Es erfolgt neben der Präsentation des Messsystems ebenfalls eine Diskussion der optimierten Signalverarbeitung. Betrachtet werden anschließend Ergebnisse der Translation der Oberfläche eines menschlichen Haares, montiert auf einer Linearachse. Aus diesen Verschiebungen lässt sich dann, im Falle der Bestimmung des Spannungs-Dehnungs-Diagramms, die technische Dehnung ableiten. Es wird ein auf einer 4f − Optik basierender Aufbau verwendet. Für diesen erweist sich das Schätzen der Verschiebungen weit unter der Wellenlänge auf Basis des Kreuzleistungsdichtespektrum – unter den untersuchten Methoden – als am zuverlässigsten. Abschließend werden potentielle zukünftige Optimierungen des Gesamtsystems angerissen.

Abstract

Fibers, both natural and technical ones, are used in a plethora of technical applications, leading to the necessity of characterizing them. Material characterization usually involves the determination of the stress-strain curve – which is in the case of materials that are small in at least one dimension a challenging task. This article deals with a measurement system that is suitable for measuring the strain, even under challenging test conditions, such as a high-temperature environment. Additionally to the presentation of the measurement system, a discussion of the signal processing applied is included. Subsequently, the results of a displacement measurement of human hair mounted on a linear displacement stage are examined. In the case of the 4f − optical setup used, the estimation of displacements – and consequently also the strain – based on the cross-power density spectrum proves to be the most reliable option among the digital signal processing methods examined. Finally, potential future optimizations of the overall system are outlined.


Korrespondenzautor: Alexander Spaett, Institut für Elektrische Messtechnik, Johannes Kepler Universität Linz, Linz, Österreich, E-mail:

Über die Autoren

Alexander Spaett

Alexander Spaett received his B.Eng. in mechatronics in 2015 from the DHBW Stuttgart and his M.Sc. in mechatronics in 2017 from the Friedrich-Alexander-University Erlangen-Nürnberg. From 2018 to 2022 he worked as a research and teaching assistant at the Institute for Measurement Technology at the Johannes Kepler University Linz. His research interests are primarily in the fields of optical measurement technology and digital signal processing.

Bernhard G. Zagar

Bernhard G. Zagar received the diploma degree in EE from the Technical University Graz, Austria, in 1983, an MSc degree in computer science from the University of California at Davis, Davis, CA, USA, in 1988, and the Ph.D. degree in electrical engineering from Technical University Graz, in 1988. There he joined the Department of Electrical Engineering, where he was an Associate Professor in Instrumentation and Measurement until 1998. From 1986 to 1987 he was a research assistant and in 1994 a research associate with the Department of Electrical Engineering and Computer Science, University of California at Davis. He was a Full Professor with the Albert-Ludwigs-University, Freiburg, Germany, Department of Microsystem Engineering until 2000. From 2001 until his retirement in 2022, he was a full professor and head of the Institute for Measurement Technology, Johannes Kepler University Linz, Linz, Austria specializing in instrumentation and measurement, digital signal and image processing, sensors, laser-optical systems and magnetic tomography. In 2022 he joined the Montanuniversitaet Leoben, Austria as a full professor for electrical engineering.

  1. Research ethics: Not applicable.

  2. Author contributions: The author(s) have (has) accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author(s) state(s) no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

Literatur

[1] I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object deformation,” Opt. Acta Int. J. Opt., vol. 28, no. 10, pp. 1359–1376, 1981. https://doi.org/10.1080/713820454.Search in Google Scholar

[2] P. Johnson, “Strain field measurements with dual-beam digital speckle photography,” Opt Laser. Eng., vol. 30, nos. 3–4, pp. 315–326, 1998. https://doi.org/10.1016/s0143-8166(98)00021-9.Search in Google Scholar

[3] L. Huang, R. K. Korhonen, M. J. Turunen, and M. A. Finnilä, “Experimental mechanical strain measurement of tissues,” PeerJ, vol. 7, 2019, Art. no. e6545. https://doi.org/10.7717/peerj.6545.Search in Google Scholar PubMed PubMed Central

[4] J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications, 2nd ed. Bellingham, Washington, USA, SPIE Press, 2020.10.1117/3.2548484Search in Google Scholar

[5] R. Schuhmann and T. Thoeniss, “Telezentrische Systeme für die optische Meß- und Prüftechnik,” TM – Tech. Mess., vol. 65, pp. 131–136, 1998. https://doi.org/10.1524/teme.1998.65.4.131.Search in Google Scholar

[6] J. W. Goodman, Introduction to Fourier Optics, 2nd ed, 9. [print.], McGraw-Hill international editions. Electrical engineering series. New York, McGraw-Hill, 2004.Search in Google Scholar

[7] U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr., vol. 91, no. 5, p. 053001, 2016. https://doi.org/10.1088/0031-8949/91/5/053001.Search in Google Scholar

[8] G. C. Carter, “Coherence and time delay estimation,” Proc. IEEE, vol. 75, no. 2, pp. 236–255, 1987. https://doi.org/10.1109/proc.1987.13723.Search in Google Scholar

[9] L. Svilainis, “Review on time delay estimate subsample interpolation in frequency domain,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control, vol. 66, no. 11, pp. 1691–1698, 2019. https://doi.org/10.1109/tuffc.2019.2930661.Search in Google Scholar

[10] H. Zdenek, M. Druckmüller, and S. Habbal, “Iterative phase correlation algorithm for high-precision subpixel image registration,” Astrophys. J. Suppl., vol. 247, no. 1, p. 8, 2020. https://doi.org/10.3847/1538-4365/ab63d7.Search in Google Scholar

[11] J. Hinich and G. Wilson, “Time delay estimation using the cross bispectrum,” IEEE Trans. Signal Process., vol. 40, no. 1, pp. 106–113, 1992. https://doi.org/10.1109/78.157186.Search in Google Scholar

[12] J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, Wiley Series in Probability and Statistics, 4th ed. New York, Wiley, 2010.10.1002/9781118032428Search in Google Scholar

[13] P. Welch, “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust., vol. 15, no. 2, pp. 70–73, 1967. https://doi.org/10.1109/tau.1967.1161901.Search in Google Scholar

[14] J. A. Cadzow and R. Kakarala, “Estimation of phase for noisy linear phase signals,” Int. Conf. Acoust. Speech Signal Process., vol. 3, pp. 1808–1811, 1996.10.1109/ICASSP.1995.480088Search in Google Scholar

[15] A. Hero and S. Schwartz, “A new generalized cross correlator,” IEEE Trans. Acoust. Speech Signal Process., vol. 33, no. 1, pp. 38–45, 1985. https://doi.org/10.1109/tassp.1985.1164515.Search in Google Scholar

[16] C. L. Nikias and A. P. Petropulu, “Higher-order spectra analysis: a nonlinear signal processing framework,” in Prentice Hall Signal Processing Series, Englewood Cliffs, NJ, PTR Prentice Hall, 1999.Search in Google Scholar

[17] H. Schmidt, “Resolution bias errors in spectral density, frequency response and coherence function measurements, IV: time delay bias errors,” J. Sound Vib., vol. 101, no. 3, pp. 405–412, 1985. https://doi.org/10.1016/s0022-460x(85)80138-3.Search in Google Scholar

[18] K. Morimoto and E. Charbon, “High fill-factor miniaturized SPAD arrays with a guard-ring-sharing technique,” Opt. Express, vol. 28, no. 9, p. 13068, 2020. https://doi.org/10.1364/oe.389216.Search in Google Scholar

Erhalten: 2023-10-10
Angenommen: 2023-11-02
Online erschienen: 2023-12-25
Erschienen im Druck: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2023-0148/html
Scroll to top button