Home Combination of optical metrology and non-destructive testing technology for the regeneration of aero engine components
Article
Licensed
Unlicensed Requires Authentication

Combination of optical metrology and non-destructive testing technology for the regeneration of aero engine components

  • Nils Melchert

    Nils Melchert is working as a research associate at the Institute of Measurement and Automatic Control at the Leibniz Universität Hannover.

    EMAIL logo
    , Maximilian K.-B. Weiss

    Maximilian K.-B. Weiss is working as a research associate at the Institute of Materials Science at the Leibniz Universität Hannover.

    , Tim Betker

    Tim Betker is working as a research associate at the Institute of Measurement and Automatic Control at the Leibniz Universität Hannover.

    , Wojciech Frackowiak

    Wojciech Frackowiak is a former research associate at the Institute of Materials Science at the Leibniz Universität Hannover.

    , Renè Gansel

    Renè Gansel is working as a research associate at the Institute of Materials Science at the Leibniz Universität Hannover.

    , Lars Keunecke

    Lars Keunecke is a lecturer for quality management at the Leibniz Universität Hannover.

    , Eduard Reithmeier

    Eduard Reithmeier is the head of the Institute of Measurement and Automatic Control at the Leibniz Universität Hannover.

    , Hans Jürgen Maier

    Hans Jürgen Maier is head of the Institute of Materials Science at the Leibniz Universität Hannover.

    , Markus Kästner

    Markus Kästner is the head of the department for “Production Metrology” at the Institute of Measurement and Automatic Control at the Leibniz Universität Hannover.

    and David Zaremba

    David Zaremba is the head of the department “Nondestructive Testing Methods” at the Institute of Materials Science at the Leibniz Universität Hannover.

    EMAIL logo
Published/Copyright: March 6, 2021

Abstract

The maintenance and repair of jet or gas turbine components has a considerably high share in the overall turbine operating costs. The authors deal with the regeneration process of complex capital goods considering jet engines as an example, with turbine blades being the most important components to be regenerated. In order to decide on a reasonable and economical regeneration path, maintenance approaches typically require detailed knowledge of the shape and wear condition of the components. In order to select suitable repair strategies for each component, the best possible knowledge about geometry, damages and surface topologies is necessary. In order to meet these requirements, a novel combination of non-destructive testing and measuring methods will be presented. Each process can be adapted for inline operation. The presented methods also enable quality control of the regenerated components that have completed their individual regeneration path. Due to the high variety of possible defects on turbine blades, the individually presented methods can be combined to form an inspection sequence. Detailed status monitoring before and after maintenance becomes possible for each component. This provides the basis for further decisions in the regeneration process.

Zusammenfassung

Die Wartung und Reparatur von Strahl- oder Gasturbinenkomponenten hat einen erheblich hohen Anteil an den Gesamtbetriebskosten einer Turbine. Die Autoren beschäftigen sich mit dem Regenerationsprozess von komplexen Investitionsgütern am Beispiel von Strahltriebwerken, wobei die Turbinenschaufeln zu den wichtigsten zu regenerierenden Komponenten gehören. Um über einen sinnvollen und wirtschaftlichen Regenerationspfad zu entscheiden, erfordern Instandhaltungsansätze typischerweise detaillierte Kenntnisse über die Form und den Verschleißzustand der Komponenten. Um geeignete Reparaturstrategien für jedes Bauteil auszuwählen, sind bestmögliche Kenntnisse über Geometrie, Schäden und Oberflächentopologien notwendig. Um diese Anforderungen zu erfüllen, wird eine neuartige Kombination von zerstörungsfreien Prüf- und Messverfahren vorgestellt. Jedes Verfahren kann für den Inline-Betrieb angepasst werden. Die vorgestellten Methoden ermöglichen auch eine Qualitätskontrolle der regenerierten Bauteile, die ihren individuellen Regenerationsweg durchlaufen haben. Aufgrund der hohen Vielfalt möglicher Defekte an Turbinenschaufeln können die einzeln vorgestellten Methoden zu einer Prüfsequenz kombiniert werden. Für jedes Bauteil wird eine detaillierte Zustandsbewertung vor und nach der Wartung möglich. Dies liefert die Grundlage für weitere Entscheidungen im Regenerationsprozess.

Award Identifier / Grant number: SFB 871/3 – 119193472

Funding statement: The authors thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for funding this study within the Collaborate Research Center – SFB 871/3 – 119193472 “Regeneration of complex capital goods”, subproject A1 and A2.

About the authors

Nils Melchert

Nils Melchert is working as a research associate at the Institute of Measurement and Automatic Control at the Leibniz Universität Hannover.

Maximilian K.-B. Weiss

Maximilian K.-B. Weiss is working as a research associate at the Institute of Materials Science at the Leibniz Universität Hannover.

Tim Betker

Tim Betker is working as a research associate at the Institute of Measurement and Automatic Control at the Leibniz Universität Hannover.

Wojciech Frackowiak

Wojciech Frackowiak is a former research associate at the Institute of Materials Science at the Leibniz Universität Hannover.

Renè Gansel

Renè Gansel is working as a research associate at the Institute of Materials Science at the Leibniz Universität Hannover.

Lars Keunecke

Lars Keunecke is a lecturer for quality management at the Leibniz Universität Hannover.

Eduard Reithmeier

Eduard Reithmeier is the head of the Institute of Measurement and Automatic Control at the Leibniz Universität Hannover.

Hans Jürgen Maier

Hans Jürgen Maier is head of the Institute of Materials Science at the Leibniz Universität Hannover.

Markus Kästner

Markus Kästner is the head of the department for “Production Metrology” at the Institute of Measurement and Automatic Control at the Leibniz Universität Hannover.

David Zaremba

David Zaremba is the head of the department “Nondestructive Testing Methods” at the Institute of Materials Science at the Leibniz Universität Hannover.

References

1. M. Macdonald and M. House, “Annual analyses of the eu air transport market 2016,” Mar 2017.Search in Google Scholar

2. E. Uhlmann, M. Bilz, and J. Baumgarten, “MRO – challenge and chance for sustainable enterprises,” Procedia CIRP, vol. 11, pp. 239–244, 2013.10.1016/j.procir.2013.07.036Search in Google Scholar

3. M. Holl, T. Rogge, S. Loehnert, P. Wriggers, and R. Rolfes, “3d multiscale crack propagation using the xfem applied to a gas turbine blade,” Computational Mechanics, vol. 53, no. 1, pp. 173–188, 2014.10.1007/s00466-013-0900-5Search in Google Scholar

4. R. Berger, B. Hofmeister, C. G. Gebhardt, and R. Rolfes, “A two-objective design optimisation approach for blending repairs of damaged compressor blisks,” Aerospace Science and Technology, vol. 105, 106022, 2020.10.1016/j.ast.2020.106022Search in Google Scholar

5. H. Seehausen, P. Gilge, A. Kellersmann, J. Friedrichs, and F. Herbst, “Numerical study of stage roughness variations in a high pressure compressor,” International Journal of Gas Turbine, Propulsion and Power Systems, vol. 11, no. 3, 2020.10.38036/jgpp.11.3_16Search in Google Scholar

6. P. Gilge, A. Kellersmann, J. Friedrichs, and J. R. Seume, “Surface roughness of real operationally used compressor blade and blisk,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 14, pp. 5321–5330, 2019.10.1177/0954410019843438Search in Google Scholar

7. M. Krauss, W. Frackowiak, A. Pösch, M. Kästner, W. Reimche, E. Reithmeier, and H. J. Maier, “Assessment of used turbine blades on and beneath the surface for product regeneration: Generation of a damage model based on reflection, geometry measurement and thermography,” in Lasers and Electro-Optics Europe, p. 1, 2013.10.1109/CLEOE-IQEC.2013.6801205Search in Google Scholar

8. W. Reimche, M. Bernard, S. Bombosch, C. Scheer, F.-W. Bach, W. Reimche, M. Bernard, C. Scheer, and F.-W. Bach, “Nachweis von Anrissen in der Randzone von Hochleistungsbauteilen mit Wirbelstromtechnik und induktiv angeregter Thermografie,” HTM – Journal of Heat Treatment and Materials, vol. 63, no. 5, pp. 284–297, 2008.10.3139/105.100469Search in Google Scholar

9. H. Mooshofer, M. Goldammer, W. Heine, M. Rothenfusser, J. Bass, E. Lombardo, and J. Vrana, “Induktionsthermographie zur automatischen Prüfung von Generatorkomponenten,” DGZfP-Jahrestagung 2009, DGZfP-Berichtsband BB 115, 2009.Search in Google Scholar

10. W. J. G. Bräunling, Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, ideale und reale Kreisprozesse, thermische Turbomaschinen, Komponenten, Emissionen und Systeme. VDI-Buch, Berlin: Springer Vieweg, 4. ed., 2015.10.1007/978-3-642-34539-5Search in Google Scholar

11. T. Cosack, “Schutzschichten auf Turbinenschaufeln im Flugtriebwerk: MTU Aero Engines Publikation,” 2009.Search in Google Scholar

12. W. Reimche, W. Frackowiak, O. Bruchwald, V. Böhm, and F.-W. Bach, “Non-destructive determination of local damage and material condition in high-performance components,” HTM – Journal of Heat Treatment and Materials, vol. 2, no. 68, pp. 59–67, 2013.10.3139/105.110176Search in Google Scholar

13. W. Frackowiak, O. Bruchwald, W. Reimche, F.-W. Bach, and H. J. Maier, “High frequency eddy-current and induction thermography inspection techniques for turbine components,” in Electromagnetic Nondestructive Evaluation (XVII) (K. Capova, L. Udpa, L. Janousek, and B. Rao, eds.), vol. 39, pp. 226–233, Amsterdam: IOS Press, 2014.Search in Google Scholar

14. M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, 2016.Search in Google Scholar

15. M. Krauss, M. Kästner, and E. Reithmeier, “Evaluation of worn surfaces using directional illumination,” in Proc. 5th Int. Conference on Optical Measurement Techniques for Structures & Systems, pp. 195–203, 2012.Search in Google Scholar

16. N. Melchert, M. Kästner, and E. Reithmeier, “Robot-assisted brdf measurement and surface characterization of inhomogeneous freeform shapes,” in Optics and Photonics for Advanced Dimensional Metrology, vol. 11352, 1135209, International Society for Optics and Photonics, 2020.10.1117/12.2555808Search in Google Scholar

17. M. Krauß, Optische Erfassung von Defekten mittels multiskaliger Mess-und Inspektionstechnik. PhD thesis, Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2015.Search in Google Scholar

18. Y. Li, Multiscale and Multimodal Geometric Measurement and Data Fusion Technologies for Robot Guided Surface Metrology. PZH Verlag, 2017.Search in Google Scholar

19. J. Schlobohm, O. Bruchwald, W. Frąckowiak, Y. Li, M. Kästner, A. Pösch, W. Reimche, H. J. Maier, and E. Reithmeier, “Advanced characterization techniques for turbine blade wear and damage,” Procedia CIRP, vol. 59, pp. 83–88, 2017.10.1016/j.procir.2016.09.005Search in Google Scholar

20. J. Schlobohm, Y. Li, A. Pösch, B. Langmann, M. Kästner, and E. Reithmeier, “Multiscale optical inspection systems for the regeneration of complex capital goods,” Procedia CIRP, vol. 22, pp. 243–248, 2014.10.1016/j.procir.2014.07.019Search in Google Scholar

21. W. Frackowiak, S. Barton, W. Reimche, O. Bruchwald, D. Zaremba, J. Schlobohm, Y. Li, M. Kaestner, and E. Reithmeier, “Near-wing multi-sensor diagnostics of jet engine components,” in Turbo Expo: Power for Land, Sea, and Air, vol. 51128, V006T05A026, American Society of Mechanical Engineers, 2018.10.1115/GT2018-76793Search in Google Scholar

22. Y. Li, M. Kästner, and E. Reithmeier, “High-precision surface measurement with an automated multiangle low coherence interferometer,” Applied Optics, vol. 54, no. 6, pp. 1232–1240, 2015.10.1364/AO.54.001232Search in Google Scholar PubMed

23. Y. Li, M. Kästner, and E. Reithmeier, “Vibration-insensitive low coherence interferometer (lci) for the measurement of technical surfaces,” Measurement, vol. 104, pp. 36–42, 2017.10.1016/j.measurement.2017.03.010Search in Google Scholar

24. Y. Li, M. Kästner, and E. Reithmeier, “Development of a compact low coherence interferometer based on GPGPU for fast microscopic surface measurement on turbine blades,” in Optical Measurement Systems for Industrial Inspection IX, vol. 9525, 95250R, International Society for Optics and Photonics, 2015.10.1117/12.2184749Search in Google Scholar

25. Y. Li, M. Kästner, and E. Reithmeier, “Optimization of the GPU-based data evaluation for the low coherence interferometry,” tm - Technisches Messen, vol. 85, no. 11, pp. 680–690, 2018.10.1515/teme-2017-0091Search in Google Scholar

26. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.10.1109/34.888718Search in Google Scholar

27. B. Li and S. Zhang, “Flexible calibration method for microscopic structured light system using telecentric lens,” Opt. Express, vol. 23, pp. 25795–25803, Oct 2015.10.1364/OE.23.025795Search in Google Scholar PubMed

28. Y. An and S. Zhang, “High-resolution, real-time simultaneous 3d surface geometry and temperature measurement,” Opt. Express, vol. 24, pp. 14552–14563, Jun 2016.10.1364/OE.24.014552Search in Google Scholar PubMed

29. P. Chiariotti, M. Fitti, P. Castellini, S. Zitti, M. Zannini, and N. Paone, “Smart quality control station for non-contact measurement of cylindrical parts based on a confocal chromatic sensor,” IEEE Instrumentation & Measurement Magazine, vol. 21, no. 6, pp. 22–28, 2018.10.1109/MIM.2018.8573589Search in Google Scholar

30. B. Denkena, P. Nyhuis, B. Bergmann, N. Nübel, and T. Lucht, “Towards an autonomous maintenance, repair and overhaul process: Exemplary holistic data management approach for the regeneration of aero-engine blades,” Procedia Manufacturing, vol. 40, pp. 77–82, 2019.10.1016/j.promfg.2020.02.014Search in Google Scholar

31. K.-S. Wang, “Towards zero-defect manufacturing (zdm) — a data mining approach,” Advances in Manufacturing, vol. 1, no. 1, pp. 62–74, 2013.10.1007/s40436-013-0010-9Search in Google Scholar

32. A. D. Rocha, R. S. Peres, J. Barata, J. Barbosa, and P. Leitão, “Improvement of multistage quality control through the integration of decision modeling and cyber-physical production systems,” in 2018 International Conference on Intelligent Systems (IS), pp. 479–484, IEEE, 2018.10.1109/IS.2018.8710492Search in Google Scholar

Received: 2020-12-07
Accepted: 2021-02-13
Published Online: 2021-03-06
Published in Print: 2021-04-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2020-0093/html?lang=en
Scroll to top button