Home Impedance analysis of porous electrode structures in batteries and fuel cells
Article
Licensed
Unlicensed Requires Authentication

Impedance analysis of porous electrode structures in batteries and fuel cells

  • André Weber

    André Weber is working as senior scientist (Akademischer Oberrat) at the Institute for Applied Materials (IAM-WET) at Karlsruhe Institute of Technology (KIT), Germany. Actually he is heading two groups related to fuel cells and & electrolyzer and battery research. His research is related to the electrical testing and modeling of fuel cells, electrolyzers and batteries, with a special emphasis on the detailed electrochemical characterization by means of impedance spectroscopy. The experimental and theoretical work of his research groups ranges from fundamental studies on model systems to the analysis of commercial products, aiming at a model based understanding of the complex coupling of electrochemical reactions and transport mechanisms within electrochemical devices. He has co-authored several book chapters, and more than 100 peer-reviewed journal papers on scientific topics related to fuel cells and batteries (https://scholar.google.de/citations?hl=de&user=IGECnVQAAAAJ). Web: http://www.iam.kit.edu/wet/english/mitarbeiter_andre_weber.php.

    EMAIL logo
Published/Copyright: December 19, 2020

Abstract

Today technical electrodes in batteries and fuel cells rely on complex multiphase microstructures that facilitate electronic, ionic and, in case of fuel cells, diffusive gas transport to the active reaction sites distributed in the electrode volume. The impedance of such electrodes can be described by the well-established transmission line model (TLM) approach. In a TLM, transport, charge transfer phenomena and capacitive effects are coupled considering microstructural features of the electrode. Its application for impedance data analysis of technical cells is challenging as the TLM impedance extends over a wide frequency range and quite often a strong overlapping with other contributions takes place.

In this paper the application of the distribution of relaxation times (DRT) to the analysis of technical electrodes in batteries and fuel cells is elucidated. Different examples how to apply the DRT to analyze impedance spectra of solid oxide-, polymer electrolyte- and lithium ion-cells will be discussed. It will be shown that the TLM is usually represented by multiple peaks in the DRT, which might be strongly affected if contributions of different electrode layers overlap in the spectra. Related error sources and countermeasures are illustrated. Approaches how the DRT can be applied for the analysis of measured spectra and how it is able to support CNLS-fitting are presented.

Zusammenfassung

Technische Elektroden in Batterien und Brennstoffzellen beruhen auf komplexen mehrphasigen Mikrostrukturen, die elektronischen, ionischen und Gasphasen-Transport zu den im Elektrodenvolumen verteilten aktiven Reaktionszonen realisieren. Die Impedanz solcher Elektroden kann mit Kettenleitermodellen beschrieben werden. In diesen werden Transportprozesse, Ladungstransferphänomene und kapazitive Effekte unter Berücksichtigung mikrostruktureller Eigenschaften der Elektrode gekoppelt. Ihre Anwendung in der Impedanzanalyse technischer Zellen ist anspruchsvoll, da sich die Kettenleiterimpedanzen über einen weiten Frequenzbereich erstrecken und häufig starke Überlappungen der Impedanzen unterschiedlicher Prozesse in der Zelle vorliegen.

In diesem Beitrag wird die Anwendung der Verteilungsfunktion der Relaxationszeiten (DRT: Distribution of Relaxation Times) in der Analyse technischer Elektroden in Batterien und Brennstoffzellen beleuchtet. Es werden verschiedene Beispiele für die Einsatz der DRT zur Entfaltung der Impedanzspektren von Festoxid-, Polymerelektrolyt- und Lithium-Ionen-Zellen diskutiert. Die Beispiele zeigen, dass die DRT der Impedanz poröser Elektrodenstrukturen häufig mehrere Peaks aufweist, die durch Überlagerung der Beiträge verschiedener Elektrodenschichten beeinflusst werden. Daraus resultierende Fehlerquellen, mögliche Gegenmaßnahmen und Ansätze, wie die DRT für die Analyse gemessener Spektren und den CNLS-Fit von Impedanzdaten eingesetzt werden kann, werden vorgestellt.

Award Identifier / Grant number: 281041241/GRK2218

Award Identifier / Grant number: 03SF0494F

Award Identifier / Grant number: 03ET6101B

Funding statement: The financial support of the Deutsche Forschungsgemeinschaft throughout the project 281041241/GRK2218 “SiMET”, the Bundesministerium für Bildung und Forschung BMBF throughout the project 03SF0494F “SOFC Degradation”, the Bundesministerium für Wirtschaft und Energie BMWi throughout the projects 03ET6101B “KerSOLife100” and 03ETB005E “KOSOS”, the Schaeffler Technologies AG & Co. KG throughout the PhD-project “Modelling of PEM Fuel Cells” and the Friedrich und Elisabeth Boysen-Stiftung throughout the project BOY121 “Determination of charge transfer parameters in lithium ion batteries” is gratefully acknowledged.

About the author

André Weber

André Weber is working as senior scientist (Akademischer Oberrat) at the Institute for Applied Materials (IAM-WET) at Karlsruhe Institute of Technology (KIT), Germany. Actually he is heading two groups related to fuel cells and & electrolyzer and battery research. His research is related to the electrical testing and modeling of fuel cells, electrolyzers and batteries, with a special emphasis on the detailed electrochemical characterization by means of impedance spectroscopy. The experimental and theoretical work of his research groups ranges from fundamental studies on model systems to the analysis of commercial products, aiming at a model based understanding of the complex coupling of electrochemical reactions and transport mechanisms within electrochemical devices. He has co-authored several book chapters, and more than 100 peer-reviewed journal papers on scientific topics related to fuel cells and batteries (https://scholar.google.de/citations?hl=de&user=IGECnVQAAAAJ). Web: http://www.iam.kit.edu/wet/english/mitarbeiter_andre_weber.php.

References

1. W. R. Grove, LXXII. On a gaseous voltaic battery, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 21, pp. 417–420 (1842).10.1080/14786444208621600Search in Google Scholar

2. J. R. Macdonald, Impedance Spectroscopy, New York: John Wiley & Sons (1987).Search in Google Scholar

3. E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, Hoboken NJ: Wiley-Interscience (2005).10.1002/0471716243Search in Google Scholar

4. M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, Hoboken, NJ: John Wiley & Sons, Inc. (2008).10.1002/9780470381588Search in Google Scholar

5. A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, London: Springer (2014).10.1007/978-1-4614-8933-7Search in Google Scholar

6. D. Klotz, A. Weber, E. Ivers-Tiffée, Practical guidelines for reliable electrochemical characterization of solid oxide fuel cells, Electrochim Acta 227, pp. 110–126 (2017).10.1016/j.electacta.2016.12.148Search in Google Scholar

7. B. A. Boukamp, A linear Kronig–Kramers Transform test for immittance data validation, J. Electrochem. Soc. 142, pp. 1885–1894 (1995).10.1149/1.2044210Search in Google Scholar

8. M. Schönleber, D. Klotz, E. Ivers-Tiffée, A method for improving the robustness of linear Kramers-Kronig validity tests, Electrochim Acta 131, pp. 20–27 (2014).10.1016/j.electacta.2014.01.034Search in Google Scholar

9. M. Schönleber, http://www.iam.kit.edu/wet/english/Lin-KK.php (2015).Search in Google Scholar

10. H. Schichlein, A. C. Müller, M. Voigts, A. Krügel, E. Ivers-Tiffée, Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells, Journal of Applied Electrochemistry 32, pp. 875–882 (2002).10.1023/A:1020599525160Search in Google Scholar

11. E. Ivers-Tiffée, A. Weber, Evaluation of electrochemical impedance spectra by the distribution of relaxation times, Journal of the Ceramic Society of Japan 125, pp. 193–201 (2017).10.2109/jcersj2.16267Search in Google Scholar

12. S. Dierickx, A. Weber, E. Ivers-Tiffée, How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells, Electrochim Acta 355, 136764 (2020).10.1016/j.electacta.2020.136764Search in Google Scholar

13. A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, J. Electrochem. Soc. 155, pp. B36–B41 (2008).10.1149/1.2801372Search in Google Scholar

14. J. P. Schmidt et al., Studies on LiFePO4 as cathode material using impedance spectroscopy, J. Power Sources 196, pp. 5342–5348 (2011).10.1016/j.jpowsour.2010.09.121Search in Google Scholar

15. J. Euler, W. Nonnenmacher, Stromverteilung in porösen Elektroden, Electrochim Acta 2, pp. 268–286 (1960).10.1016/0013-4686(60)80025-4Search in Google Scholar

16. J. S. Newman, C. W. Tobias, Theoretical analysis of current distribution in porous electrodes, J. Electrochem. Soc. 109, pp. 1183–1191 (1962).10.1149/1.2425269Search in Google Scholar

17. K. J. Euler, Die Verteilung der Stromdichte über die Dicke von ebenen porösen Gas-Elektroden in elektrochemischen Stromquellen, Ann. Phys. 481, pp. 257–266 (1971).10.1002/andp.19714810402Search in Google Scholar

18. M. Doyle, T. F. Fuller, J. Newman, Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell, J. Electrochem. Soc. 140, pp. 1526–1533 (1993).10.1149/1.2221597Search in Google Scholar

19. T. F. Fuller, M. Doyle, J. Newman, Simulation and optimization of the dual lithium ion insertion cell, J. Electrochem. Soc. 141, pp. 1–10 (1994).10.1149/1.2054684Search in Google Scholar

20. R. M. Darling, J. Newman, Modeling a porous intercalation electrode with two characteristic particle sizes, J. Electrochem. Soc. 144, pp. 4201–4208 (1997).10.1149/1.1838166Search in Google Scholar

21. M. Ender, An extended homogenized porous electrode model for lithium-ion cell electrodes, J. Power Sources 282, pp. 572–580 (2015).10.1016/j.jpowsour.2015.02.098Search in Google Scholar

22. W. G. Bessler, S. Gewies, M. Vogler, A new framework for physically based modeling of solid oxide fuel cells, Electrochim Acta 53, pp. 1782–1800 (2007).10.1016/j.electacta.2007.08.030Search in Google Scholar

23. W. G. Bessler et al., Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells, Phys. Chem. Chem. Phys. 12, pp. 13888–13903 (2010).10.1039/c0cp00541jSearch in Google Scholar PubMed

24. J. R. Wilson et al., Three-dimensional reconstruction of a solid-oxide fuel-cell anode, Nature Materials 5, pp. 541–544 (2006).10.1038/nmat1668Search in Google Scholar PubMed

25. M. Ender, J. Joos, T. Carraro, E. Ivers-Tiffée, Three-dimensional reconstruction of a composite cathode for lithium-ion cells, Electrochemistry Communications 13, pp. 166–168 (2011).10.1016/j.elecom.2010.12.004Search in Google Scholar

26. J. R. Izzo et al., Nondestructive reconstruction and analysis of SOFC anodes using x-ray computed tomography at sub-50 nm resolution, J. Electrochem. Soc. 155, pp. B504–B508 (2008).10.1149/1.2895067Search in Google Scholar

27. M. Ender, J. Joos, A. Weber, E. Ivers-Tiffée, Anode microstructures from high-energy and high-power lithium-ion cylindrical cells obtained by X-ray nano-tomography, J. Power Sources 269, pp. 912–919 (2014).10.1016/j.jpowsour.2014.07.070Search in Google Scholar

28. B. Rüger, A. Weber, E. Ivers-Tiffée, 3D-modelling and performance evaluation of mixed conducting (MIEC) cathodes, ECS Trans. 7, pp. 2065–2074 (2007).10.1149/1.2729320Search in Google Scholar

29. B. Rüger, J. Joos, T. Carraro, A. Weber, E. Ivers-Tiffée, 3D electrode microstructure reconstruction and modelling, ECS Trans. 25, pp. 1211–1220 (2009).10.1149/1.3205650Search in Google Scholar

30. P. R. Shearing et al., Microstructural analysis of a solid oxide fuel cell anode using focused ion beam techniques coupled with electrochemical simulation, J. Power Sources 195, pp. 4804–4810 (2010).10.1016/j.jpowsour.2010.02.047Search in Google Scholar

31. M. Doyle, J. P. Meyers, J. Newman, Computer simulations of the impedance response of lithium rechargeable batteries, J. Electrochem. Soc. 147, pp. 99–110 (2000).10.1149/1.1393162Search in Google Scholar

32. J. P. Meyers, M. Doyle, R. M. Darling, J. Newman, The impedance response of a porous electrode composed of intercalation particles, J. Electrochem. Soc. 147, pp. 2930–2940 (2000).10.1149/1.1393627Search in Google Scholar

33. W. G. Bessler, A new computational approach for SOFC impedance from detailed electrochemical reaction-diffusion models, Solid State Ionics 176, pp. 997–1011 (2005).10.1016/j.ssi.2005.01.002Search in Google Scholar

34. A. Häffelin, J. Joos, M. Ender, A. Weber, E. Ivers-Tiffée, Time-dependent 3D impedance model of mixed-conducting solid oxide fuel cell cathodes, J. Electrochem. Soc. 160, pp. F867–F876 (2013).10.1149/2.093308jesSearch in Google Scholar

35. B. A. Boukamp, A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems, Solid State Ionics 20, pp. 31–44 (1986).10.1016/0167-2738(86)90031-7Search in Google Scholar

36. B. A. Boukamp, A package for impedance/admittance data analysis, Solid State Ionics 18-19, pp. 136–140 (1986).10.1016/0167-2738(86)90100-1Search in Google Scholar

37. J. R. Macdonald, Comparison and application of two methods for the least squares analysis of immittance data, Solid State Ionics 58, pp. 97–107 (1992).10.1016/0167-2738(92)90016-ISearch in Google Scholar

38. A. Jossen, Fundamentals of battery dynamics, J. Power Sources 154, pp. 530–538 (2006).10.1016/j.jpowsour.2005.10.041Search in Google Scholar

39. D. Andre et al., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation, J. Power Sources 196, pp. 5334–5341 (2011).10.1016/j.jpowsour.2010.12.102Search in Google Scholar

40. D. Andre et al., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling, J. Power Sources 196, pp. 5349–5356 (2011).10.1016/j.jpowsour.2010.07.071Search in Google Scholar

41. J. P. Schmidt, P. Berg, M. Schönleber, A. Weber, E. Ivers-Tiffée, The distribution of relaxation times as basis for generalized time-domain models for Li-ion batteries, J. Power Sources 221, pp. 70–77 (2013).10.1016/j.jpowsour.2012.07.100Search in Google Scholar

42. G. J. Brug, A. L. G. van den Eeden, J. H. Sluyters, The analysis of electrode impedance complicated by the presence of a constant phase element, J. Electroanal. Chem. 176, pp. 275–295 (1984).10.1016/S0022-0728(84)80324-1Search in Google Scholar

43. A. Bieberle, L. J. Gauckler, Reaction mechanism of Ni pattern anodes for solid oxide fuel cells, Solid State Ionics 135 pp. 337–345 (2000).10.1016/S0167-2738(00)00462-8Search in Google Scholar

44. R. Barfod et al., Detailed characterization of anode-supported SOFCs by impedance spectroscopy, J. Electrochem. Soc. 154, pp. B371–B378 (2007).10.1149/1.2433311Search in Google Scholar

45. E. Warburg, Über das Verhalten sogenannter unpolarisierbarer Elektroden gegen Wechselstrom, Ann. Phys. 303, pp. 493–499 (1899).10.1002/andp.18993030302Search in Google Scholar

46. J. C. Wang, Realizations of generalized Warburg impedance with RC ladder networks and transmission lines, J. Electrochem. Soc. 134, pp. 1915–1920 (1987).10.1149/1.2100789Search in Google Scholar

47. H. Gerischer, Wechselstrompolarisation von Elektroden mit einem potentialbestimmenden Schritt beim Gleichgewichtspotential I, Zeitschrift für Physikalische Chemie 198, pp. 286–313 (1951).10.1515/zpch-1951-19824Search in Google Scholar

48. N. Wagner, Application of impedance spectroscopy in fuel cell research, TM - Technisches Messen 78, pp. 30–35 (2011).10.1524/teme.2011.0073Search in Google Scholar

49. B. A. Boukamp, H. J. M. Bouwmeester, Interpretation of the Gerischer impedance in solid state ionics, Solid State Ionics 157, pp. 29–33 (2003).10.1016/S0167-2738(02)00185-6Search in Google Scholar

50. S. B. Adler, J. A. Lane, B. C. H. Steele, Electrode kinetics of porous mixed-conducting oxygen electrodes, J. Electrochem. Soc. 143, pp. 3554–3564 (1996).10.1149/1.1837252Search in Google Scholar

51. C. Endler-Schuck, J. Joos, C. Niedrig, A. Weber, E. Ivers-Tiffée, The chemical oxygen surface exchange and bulk diffusion coefficient determined by impedance spectroscopy of porous La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes, Solid State Ionics 269, pp. 67–79 (2015).10.1016/j.ssi.2014.11.018Search in Google Scholar

52. J. Weese, A reliable and fast method for the solution of Fredholm integral equations of the first kind based on Tikhonov regularization, Computer Physics Communications 69, pp. 99–111 (1992).10.1016/0010-4655(92)90132-ISearch in Google Scholar

53. A. Kromp, H. Geisler, A. Weber, E. Ivers-Tiffée, Electrochemical impedance modeling of gas transport and reforming kinetics in reformate fueled solid oxide fuel cell anodes, Electrochim Acta 106, pp. 418–424 (2013).10.1016/j.electacta.2013.05.136Search in Google Scholar

54. C. Endler-Schuck et al., Performance analysis of mixed ionic-electronic conducting cathodes in anode supported cells, J. Power Sources 196, pp. 7257–7262 (2011).10.1016/j.jpowsour.2010.11.079Search in Google Scholar

55. N. Russner, S. Dierickx, A. Weber, R. Reimert, E. Ivers-Tiffée, Multiphysical modelling of planar solid oxide fuel cell stack layers, J. Power Sources 451, 227552 (2020).10.1016/j.jpowsour.2019.227552Search in Google Scholar

56. A. Leonide, B. Rüger, A. Weber, W. A. Meulenberg, E. Ivers-Tiffée, Impedance study of alternative (La,Sr)FeO3-δ and (La,Sr)(Co,Fe)O3-δ MIEC cathode compositions, J. Electrochem. Soc. 157, pp. B234–B239 (2010).10.1149/1.3265473Search in Google Scholar

57. L. Almar, J. Szasz, A. Weber, E. Ivers-Tiffée, Oxygen transport kinetics of mixed ionic-electronic conductors by coupling focused ion beam tomography and electrochemical impedance spectroscopy, J. Electrochem. Soc. 164, pp. F289–F297 (2017).10.1149/2.0851704jesSearch in Google Scholar

58. S. Dierickx, J. Joos, A. Weber, E. Ivers-Tiffée, Advanced impedance modelling of Ni/8YSZ cermet anodes, Electrochim Acta 265, pp. 736–750 (2018).10.1016/j.electacta.2017.12.029Search in Google Scholar

59. M. Heinzmann, A. Weber, E. Ivers-Tiffée, Impedance modelling of porous electrode structures in polymer electrolyte membrane fuel cells, J. Power Sources 444, 227279 (2019).10.1016/j.jpowsour.2019.227279Search in Google Scholar

60. S. Dierickx, T. Mundloch, A. Weber, E. Ivers-Tiffée, Advanced impedance model for double-layered solid oxide fuel cell cermet anodes, J. Power Sources 415, pp. 69–82 (2019).10.1016/j.jpowsour.2019.01.043Search in Google Scholar

61. A. Utz, H. Störmer, A. Leonide, A. Weber, E. Ivers-Tiffée, Degradation and relaxation effects of Ni patterned anodes in H2/H2O atmosphere, J. Electrochem. Soc. 157, pp. B920–B930 (2010).10.1149/1.3383041Search in Google Scholar

62. J. Joos, M. Ender, I. Rotscholl, N. Menzler, E. Ivers-Tiffée, Quantification of double-layer Ni/YSZ fuel cell anodes from focused ion beam tomography data, J. Power Sources 246, pp. 819–830 (2014).10.1016/j.jpowsour.2013.08.021Search in Google Scholar

63. S. Martens et al., A comparison of rotating disc electrode, floating electrode technique and membrane electrode assembly measurements for catalyst testing, J. Power Sources 392, pp. 274–284 (2018).10.1016/j.jpowsour.2018.04.084Search in Google Scholar

64. M. Heinzmann, A. Weber, E. Ivers-Tiffée, Advanced impedance study of polymer electrolyte membrane single cells by means of distribution of relaxation times, J. Power Sources 402, pp. 24–33 (2018).10.1016/j.jpowsour.2018.09.004Search in Google Scholar

65. M. D. Levi, D. Aurbach, Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes, Journal of Physical Chemistry B 101, pp. 4641–4647 (1997).10.1021/jp9701911Search in Google Scholar

66. J. Costard, Einfluss von Mikrostruktur und Materialparametern auf die Leistungsfähigkeit poröser Elektroden für Lithium-Ionen Batterien, Dissertation Karlsruher Institut für Technologie (KIT) (2018).Search in Google Scholar

Received: 2020-11-12
Accepted: 2020-12-05
Published Online: 2020-12-19
Published in Print: 2021-01-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2020-0084/html
Scroll to top button