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Abstract: Autonomous vehicles have to be able to pre-
dict whether a human driver will wait at an unregulated
inner city narrow passage or not to adapt its behaviour
accordingly. To this end, a driving simulator study was
conducted in which participiants were subjected to dif-
ferent cooperation behaviours during their approach to a
narrow passage. They were asked to rate their intention
afterwards. From the recorded trajectories, features which
are specific to the scenario are derived. Therewith, Ran-
dom Forest and Conditional Random Field classifiers for
both intention and behaviour prediction are trained. The
results show that robust prediction of driver intention and
behaviour is possible.

Keywords: Autonomous driving, intention prediction, ma-
chine learning.

Zusammenfassung: Autonome Fahrzeuge müssen vorher-
sagen können, ob ein menschlicher Fahrer an einer inner-
städtischen, nicht regulierten Engstelle warten wird oder
nicht, um ihr Verhalten entsprechend anzupassen. Zu die-
sem Zweck wurde eine Fahrsimulatorstudie durchgeführt,
in welcher die Probanden verschiedenem Kooperationsver-
halten während ihrer Anfahrt auf eine Engstelle ausgesetzt
wurden. Anschließend wurden sie gebeten, ihre Intenti-
on einzustufen. Anhand der aufgezeichneten Trajektori-
en wurden szenariospezifische Merkmale abgeleitet. Mit
diesen wurden Random-Forest- und Conditional-Random-
Field-Klassifikatoren sowohl für die Intention als auch für
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das Verhalten trainiert. Die Ergebnisse zeigen, dass die
robuste Vorhersage der Intention und des Verhaltens eines
Fahrers möglich sind.

Schlüsselwörter: Autonomes Fahren, Intentionsprädikti-
on, maschinelles Lernen.

1 Introduction
In order to safely integrate automated vehicles into traffic,
several challenging tasks are yet to be resolved. One of
these challenges is inner city traffic. In addition to the fact
that there are often many traffic participants with conflict-
ing interests, there are some situations that are not clearly
regulated by law. These situations include symmetrical
narrow passages (see Fig. 1) and unregulated junctions
(right before left applies). In these situations, no one has
the right of way and drivers therefore need to communi-
cate with each other in order to resolve the situation. If
a solution is found while the vehicles involved are still
approaching the situation, it is possible to avoid a block-
age and traffic can flow more efficiently. Situations like
these are especially difficult for automated vehicles. They
have to be able to interpret human communication signals,
decide how to behave and communicate that decision in
time to optimize the overall traffic flow.

Fig. 1: A symmetrical narrow passage.

Phillips et al. [9] use a Long Short-Term Memory Net-
work to predict whether a driver will turn right or left or
go straight at an upcoming intersection. Koide and Miura
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[6] use Hidden Conditional Random Fields to predict if
a pedestrian is aware of an obstacle. Their classifier is
based on the walking trajectory. Hu et al. [2] propose
a Semantic-based Intention and Motion Prediction that
adapts to different scenarios to predict the final location
and the associated timing of surrounding vehicles. Hub-
mann et al. [3] use a Partially Observable Markov Decision
Process to output the optimal acceleration assuming the
intention of the other vehicles as hidden states. Their
model predicts the turning direction of the other vehicles
during the decision making as well. Tran et al. [10] pre-
dict several manoeuvrers including stopping, lane changes
and turning with an Hidden Markov Model. They use
the vehicle trajectory as well as the state of the steering
wheel and the pedals. Lee et al. [8] predict lane change
manoeuvrers with a Convolutional Neural Network. The
prediction is used for motion control of an adaptive cruse
control system.

This work focuses on the intention prediction of hu-
man drivers at a narrow passage. Here intention is defined
as the will to go first or to not go first. The classifiers
are trained with a data set that was generated from a
driving simulator study. This approach allows to generate
a large data set in a controlled environment compared to
observations of real traffic. All participants drove through
the same scenarios, which featured different driving styles
of the other vehicle. Two types of labels are used: The
behaviour, e.g. which driver drove first, and the intention
of the drivers, e.g. what did the participant want to do
while approaching the narrow passage.

The paper is structured as follows: In Section 2 the
data set that has been used for this work is introduced.
In Section 3 the proposed intention prediction algorithm
is described. In Section 4 the prediction performances of
the classifiers when applied to the data set are presented.
Section 5 concludes the paper and gives a summary and
an outlook to future work.

2 Data set
The data set for this work originates from a driving simu-
lator study. The simulator itself consists of the front half
of a passenger vehicle that includes the driver’s and pas-
senger’s seat. The projection screen is curved and extends
to the side windows. It therefore covers the entire field of
view of a person sitting in the driver’s seat.

In the study participants drove through six narrow
passage and five T-junction scenarios. The cooperation
vehicles were set up to arrive at the scenario at the same

Fig. 2: Narrow passage in the driving simulator.

time as the participant. These vehicles (one for the narrow
passage and two in the case of the T-junction) were not
present on the course at all times, instead they were set
to appear and disappear out of sight of the participants.
The vehicles appeared at a set distance, the appearance
was triggered by the participant driving over a trigger
point at the same distance from the scenario. After that
their velocities were synchronised with the participant’s
velocity at regular intervals, thus ensuring a simultaneous
approach.

After the last synchronisation the vehicle’s behaviour
depended on the current script and was either offensive or
defensive. The cooperation vehicles followed their specified
behaviour regardless of the participant’s behaviour. Only
if the participants entered the scenario at the same time
as the cooperation vehicles, an emergency stop of these
vehicles was triggered. The six narrow passage scripts are
described in Table 1. Similar scripts were used for the

Table 1: Narrow passage scripts.

Script Description Category
1 stop distinctively defensive
2 reduce velocity & flash headlights defensive
3 stop distinctively & flash headlights defensive
4 unchanged velocity offensive
5 accelerate offensive
6 decelerate offensive

T-junction. Both the narrow passage and the T-junction
scripts were adapted from an earlier study by Imbsweiler
et al. [4]. Every participant drove through all of the eleven
scripts once in a randomised order. Figure 2 shows a screen
shot of the interaction at the narrow passage, created
by the two stationary yellow vehicles, in the simulator.



H. Weinreuter et al., Intention prediction at a narrow passage S129

After each scenario, they were asked to stop and answer a
questionnaire about their intention during the approach to
the scenario. In total 29 people successfully participated
in the study. In this work only the narrow passage data is
used. The trajectories were recorded with a frame rate of
60 Hz and serve as input data for training and validation
of the classifiers for intention prediction.

3 Intention prediction
In this work the intention is predicted using the driven tra-
jectories ro(𝑡) = [𝑥o(𝑡), 𝑦o(𝑡)]T of the observed vehicle and
the trajectories of the ego vehicle re(𝑡) = [𝑥e(𝑡), 𝑦e(𝑡)]T.
In the context of this paper the observed trajectory al-
ways refers to the participant’s trajectory since only the
intention of the participant is of interest. From these tra-
jectories a feature set is derived. The features were chosen
to include both generic parameters of driving and fea-
tures that are specific to a narrow passage scenario. The
following features are used in this work:

The longitudinal acceleration 𝑎lon,o is the acceleration
of the observed vehicle along the current vehicle heading.
The averaged feature is shown in Figure 3. The features
are plotted separately for the scripts with the vehicle
showing offensive and defensive behaviour.

The distance to scenario 𝑑s,o is the distance from the
current position of the observed vehicle to the front of the
narrow passage along the centre of the lane.

The weighted lateral deviation 𝑑lat,o describes the dis-
tance from the lane centre to the current vehicle position.
This distance is measured along the normal to the lane
centre through the current position. This feature is nor-
malized such that a vehicle whose centre is on edge of
its lane has a lateral deviation of 𝑑lat = ±1. Additionally,
this feature is weighted with the normalised distance to
the narrow passage 𝑑s = 1 − 𝑑s,m

𝑑e
and a scaled logistic

function [5]:

𝑑lat =
𝑑lat,m

0.5 · 𝑤l𝑑s

1
1 + exp (−𝑘1 (𝑑s − 𝑘2)) . (1)

𝑑lat,m is the measured lateral deviation, 𝑑s,m is the mea-
sured distance to the narrow passage, 𝑤l is the lane width,
𝑑e is the evaluation length for this feature, 𝑘1 and 𝑘2 are
the parameters to scale the logistic function. The lateral
deviation is weighted to suppress effects from a curve that
was placed just before one side of the narrow passage in
our simulator set up. This curve was cut by many par-
ticipants which led the classifiers to recognise the scripts
rather than the behaviour or the intention. This effect is
amplified by the fact that all offensive scripts were run
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Fig. 3: Averaged longitudinal acceleration feature of the partici-
pants by defensive (scripts 1 to 3) and offensive (scripts 4 to 6)
behaviour of the simulated vehicle.

such that the simulated car came from the same side. The
weighting parameters were chosen such that the feature
does not differ for offensive and defensive scripts until a
distance of approximately 25 m. This is similar to features
that do not show that phenomenon like the longitudinal
acceleration 𝑎lon (see Fig. 3). At this distance from the
narrow passage the road is straight again.

The velocity quotient 𝑣q is the absolute velocity of the
observed vehicle 𝑣abs,o relative to the absolute velocity of
the ego vehicle 𝑣abs,e:

𝑣q =
𝑣abs,o
𝑣abs,e

. (2)

The features are calculated for each time step, the feature
set F therefore consists of a set of 4 individual feature
vectors f𝑘 of length 𝑇 :

F(𝑡) = {f1, f2, f3, f4} = {alon,o, ds,o, dlat,o, vq}, (3)

f𝑘 = [𝑓𝑘[1], . . . , 𝑓𝑘[𝑇 ]]T . (4)

These features serve as input to the classification algo-
rithms. In this work, two types of algorithms are used:
direct and sequential classifiers.

Direct classifiers require vectors of scalar features as
input. To convert the feature set F into scalar features,
it is split into segments of 0.25 s length. To generate the
vector of scalar features f s, the features of a segment are
averaged over time:

f s = {𝑓 s
1, 𝑓 s

2, 𝑓 s
3, 𝑓 s

4} = {𝑎s
lon,o, 𝑑s

s,o, 𝑑s
lat,o, 𝑣s

q} . (5)

With 𝑓 s
𝑘 being the arithmetic mean over a segment

of the 𝑘-th feature. The models are then trained and
evaluated on the individual segments.

There are several classifiers that fall into that category;
in this work Random Forests (RF) [1] are used. A RF
utilizes several decision trees that are trained with a subset
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of the data set. Additionally, each branch in a tree only
considers a subset of all available features [1].

Sequential classifiers directly use the feature vectors
f𝑘 of the feature set F as input and output a prediction
for every time step. Conditional Random Fields (CRF)
[7] are an example of such a classifier and are used in this
work.

4 Results
From the trajectories obtained by the study, the features
are calculated and used to validate the proposed intention
prediction system. To this end, separate classifiers were
trained for both intention and behaviour.

During the study, participants were asked to rate their
intention during the approach to the scenario on a seven-
valued scale from absolutely want to go first to absolutely
do not want to go first. Due to the small size of the data
set, the intention was sampled down to two answers, want
to go first and do not want to go first. Runs with a neutral
label were omitted from the data set, the remaining runs
were assigned to the closer one of the two labels. In total,
172 runs remained with 71 runs labeled as want to go first.

The behaviour label was obtained from observation
and all runs fell into one of the categories went first and
did not go first. Here, a total of 188 runs could be used
for classification of which 80 were labeled as went first.

Because any prediction has to be performed before the
vehicle enters the narrow passage, the features have to be
cut so that they only include data from the approach prior
to entering. It is also reasonable to assume that a human
driver only makes a decision when the vehicle is close
enough to the scenario. For these reasons, the features are
cut using different start distances 𝑑s = {20 m, 25 m, 30 m}
and end distances 𝑑e = {5 m, 7.5 m, 9 m}.

Using three-fold cross validation, CRF and RF clas-
sifiers are trained for both intention and prediction. The
classifiers were optimized for best performance at the last
segment cut out of the feature sequence (for RF) or at
the last label (for CRF).

The performance is evaluated with the 𝑓 -measure [5]:

𝑓 = 2 𝑝𝑟

𝑝 + 𝑟
, (6)

𝑝 = 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
, 𝑟 = 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
. (7)

With 𝑝 being the precision, 𝑟 the recall and 𝑡𝑝 the true
positive, 𝑓𝑝 the false positive and 𝑓𝑛 the false negative
values.
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Fig. 4: Classifier performance over distance to narrow passage.

The performance of the classifiers for all training in-
tervals is shown in Table 2. Additionally, the archived
accuracy 𝛼 is also given for comparison. Both the inten-
tion and the behaviour can reliably be predicted using
both algorithms. The results in general are better if the
training interval ends close to the narrow passage. It is
evident that the behaviour can be predicted more reliably
than the intention for this data set. The results finally
indicate that RF performs better than CRF, reaching a
𝑓 = 0.984 compared to 𝑓 = 0.973 for the best behaviour
prediction.

To evaluate the performance of the classifiers over
the distance, the best classifiers of each type were further
analysed. The classifiers trained with the features from
30 m to 5 m were used in all cases but for the intention
prediction with RF, in the latter case the classifier trained
with features in the range of 20 m to 5 m was used. For
the evaluation, the distance from 50 m to 5 m was split
into bins with a length of 0.5 m.

Using the selected RF classifier, the predicted feature
segments were then assigned to the bins to obtain the
performance over the distance. The performance of the
CRF was evaluated by applying the trained model to a
feature interval starting at the current bin center. The
interval has the same length as the best learning interval
(in this case 25 m). As before, the last predicted label of
the sequence determined the prediction. The results of
that analysis are shown in Fig. 4.

All classifiers show an improved performance while
approaching the narrow passage. The RF classifiers show
superior performance than the CRF classifiers, however,
since the segments are evaluated individually, their perfor-
mance does not increase steadily as do the CRF versions.
At the smallest distance to the narrow passage, the per-
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Table 2: Prediction accuracy for intention and behaviour with the best performing intervals marked in green and the worst in orange.

Start distance 𝑑s End distance 𝑑e Intention RF Intention CRF Behavior RF Behavior CRF
𝑓 𝛼 𝑓 𝛼 𝑓 𝛼 𝑓 𝛼

20 m 5 m 0.917 0.919 0.874 0.878 0.984 0.984 0.973 0.973
25 m 5 m 0.904 0.907 0.874 0.878 0.978 0.979 0.973 0.973
30 m 5 m 0.894 0.895 0.880 0.884 0.984 0.984 0.973 0.973
20 m 7.5 m 0.894 0.895 0.855 0.860 0.946 0.947 0.928 0.931
25 m 7.5 m 0.859 0.860 0.830 0.837 0.952 0.952 0.917 0.920
30 m 7.5 m 0.876 0.878 0.842 0.849 0.946 0.947 0.912 0.915
20 m 9 m 0.864 0.866 0.836 0.843 0.952 0.952 0.913 0.915
25 m 9 m 0.881 0.884 0.840 0.849 0.941 0.941 0.890 0.894
30 m 9 m 0.876 0.878 0.829 0.837 0.946 0.947 0.895 0.899

formance of both CRF and RF are very similar with the
classifiers for the behaviour outperforming the intention
classifiers. The results are not fully identical with those
shown in Table 2 due to the binning.

5 Summary & outlook
In conclusion, it can be said that it is possible to reliably
predict the behaviour and the intention of a human driver
at a narrow passage. Both CRF and RF show similar
results close to the narrow passage; at greater distances
RF provide more reliable predictions. In all cases the
behaviour is predicted more robustly than the intention.
Several conclusions for including this approach in a de-
cision making algorithm for an autonomous vehicle at a
narrow passage can be drawn from these results. In order
to get reliable classifiers, features with small distances to
the obstacles have to be included in the training interval.
Especially with RF, predictions at greater distances are
possible allowing multiple predictions during the approach.

In future work, a greater data set containing different
narrow passages could be used to further generalize the
classifiers. More features could also be included to make
the prediction more robust. The approach should also be
extended to include more situations that require intention
prediction for autonomous driving, such as unregulated
intersections. Finally, a decision making algorithm can
be equipped with these classifiers for real time tests in a
driving simulator and eventually in a real vehicle.
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