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Abstract: This paper aims to propose a new technique
to extend the performance of the reconfigurable self-x
sensory system for industry 4.0 to efficiently obtain robust
solution even in the presence of uncertainty both in the
input and output stage. Variance measure is employed to
handle the uncertainty in the input stage or search space.
As far as measurement or objective space, uncertainty is
concerned archive-based method applied, and it does not
demand any additional computational resources. The tra-
ditional evolutionary algorithm, i.e., particle swarm opti-
mizer (PSO), has been modified by expanding its selection
process with the proposed solutions. The performance of
the extended algorithm is undertaken to study on three
benchmarking functions in the presence of uncertainties.
The extrinsic evaluation of the proposed algorithm is also
performed on the Miller operational amplifier, which is
a fundamental part of sensory systems for industry 4.0.
Drift due to fabrication process tolerances and aging ef-
fects of the transistors is modeled as input uncertainty
of the operational amplifier, and imperfect observer (sen-
sor or analog to digital converter) is modeled as output
uncertainty. The application confirms the worthiness of
proposed uncertainty handling algorithm for industry 4.0.

Keywords: Reconfigurable Miller operational amplifier,
universal and self-x integrated sensor interface, noise im-

mune robust particle swarm optimizer.

Zusammenfassung: Dieser Beitrag schligt einen neuen
Ansatz und Methode zur Verbesserung rekonfigurierba-
rer Systeme mit Self-x-Eigenschaften fiir Industrie 4.0
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vor. Dabei sollen robuste Loésungen auch bei Présenz
von Unsicherheit in Ein- und Ausgangsstufen des Sys-
tems erhalten werden. Ein Varianzmafl wird eingesetzt
um die eingangsseitige Unsicherheit des Suchraums zu
erfassen. Sofern die Unsicherheit des Mess- bzw. Zielrau-
mes betrachtet wird, wird eine Archiv-basierte Methode
verwendet, die keine zusétzlichen Rechnenresourcen be-
notigt. Ein bewédhrtes Optimierungsverfahren, das soge-
nannte Partikel-Schwarm-Optimierungsverfahren (PSO),
wurde fiir die Ziele dieser Arbeit angepasst, indem der
Selektionsprozess mit der hier vorgeschlagenen Verfahrens-
weise erweitert wurde. Die Tauglichkeit des erweiterten
Verfahrens wurde fiir gegebene Unsicherheiten anhand
von iiblichen Benchmark-Problemen untersucht und be-
stéatigt. Die vorgeschlagene Methode wurde dann an der
extrinsischen Optimierierung bzw. Dimensionierung ei-
nes einfachen Miller-Operationsverstéarkers demonstriert.
Dabei wurde die Wirkung von Herstellungstoleranz und
Alterung der Bauelemente als eingangseitige Unsicher-
heit modelliert, die durch nichtideale Beobachter (Sensor,
ADC) verursachte als ausgangsseitige Unsicherheit. Die
Ergebnisse dieser praxisnahen Anwendung bestdtigten
ebenfalls die Validitat des verfolgten Ansatzes und der
implementierten Methode.

Schliisselworter: Rekonfigurierbarer Miller Operationsver-
stérker, universelle integrierte Sensorschnittstelle mit Self-
x-Eigenschaften, robuster storungsresistenter Schwarm-
optimierer.

1 Introduction and survey

In the past few years, computational intelligence, artificial
intelligence and machine learning have attracted enormous
attention. Even though previously, the focus was the cloud
intelligence and big data analysis, the current focus is the
application of machine learning in the area of IoT and
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Industry 4.0 whose fundamental part is Sensors 4.0 [7].
With the introduction of artificial intelligence besides hav-
ing the self-x (self-calibration, self-healing, etc.) features,
these smart integrated systems will have much-enhanced
uncertainty suppression capabilities. Although there is a
considerable amount of literature [1, 9] about the introduc-
tion of self-x features in the integrated circuits: however
deviation of calibration systems itself is never discussed.
In [2] only one type of deviation, i.e., uncertainty at the
input is considered, which leads to unacceptable system
performance even after the calibration or optimization.
The second type of uncertainty is due to variation in the
operating or environmental conditions. While the third
type of uncertainty that these smart systems have is the
measurement uncertainty (observer uncertainty) due to
uncertainty in sensor measurements or modelling error
in case of indirect measurements. Because of imperfect
observer (sensor or ADC) and it also experiences the
same performance degradation as the main integrated
circuit is facing. State-of-the-art solutions currently have
no answer in which the context of observer uncertainty
addressed for the smart chips while the search space and
the objective space in the presences of noise become highly
unpredictable. This measurement uncertainty can prop-
agate easily in the optimization process and misleading
the optimizer results. So, the primary goal of this research
article is to design noise immune optimizer that can per-
form reliably even in the presence of uncertainty in the
search and objective space for the self-x systems.

For such a scenario, the concept of robust optimization
has the potential to address such problems [10, 12, 13].
As far as selection of optimizer is a concern for practical
applications, the derivative-based optimization techniques
cannot be utilized because the objective space is discon-
tinuous [11, 12]. On the other hand, meta-heuristic opti-
mization algorithms (MHOAS) perform extremely good
even in the presence of discontinuous objective space. For
this reason, particle swarm optimization (PSO) is used in
this paper for robust optimization. Reconfigurable Miller
operational amplifier (opamp) selected as a test vehicle
for extrinsic evolution of proposed optimizer that is the
integral part of sensory electronics 4.0. Whose transistors
widths are serving as tuning knobs and uncertainty at the
output is being analyzed by the robust optimizer for its
online calibration as shown in figure 1. Currently, there
is also ongoing research activity in our institute on the
extension of USIX (universal and self-x integrated sensor
interface) chip [6] for building the hardware platform for
the intrinsic evolution of optimization algorithms.

For tackling the uncertainty of the tuning knobs (fab-
rication process tolerances and aging effects of the tran-
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Fig. 1: Block diagram of the proposed system.

sistors), mostly two different methods are being used in
the literature: Expectation and Variance Measure [3, 10].
These methods inspect the behaviour of neighbours in the
objective space to endorse its robustness. The mathemati-
cal expression for expectation measure is given as

1
E(r) = m/f(y)dy

subject to: z € S

(1)

where Bgy is the number of neighbor solutions around one
possible solution x within the radius §, S represents the
hard constrained feasible region and f(y) is the objective
function. In this method, expectation measure substituted
the objective function and then the expectation value is
optimized. On the other hand, variance measure can be
express mathematically as

|F(z) = f(x)]

Y =)

<n (2)

subject to: x € S

where 7 represent the thresholds value which can be set
manually or adaptively [12] and F'(x) is worst result func-
tion among the selected solutions and f(x) is current
objective function evaluation. In this method, if variance
in the objective function is above the given threshold, then
the objective function will be penalized to stop further
agents to go into that region. It does not require any
further computation.

For output uncertainty, normally archive-based or
surrogate-based techniques are preferred because they do
not require any additional measurement computations.
While the surrogate-based technique introduces one more
level of uncertainty so it is not the part of this article
[3, 10, 14]. Archive-based noise suppression method works
well for the meta-heuristic optimization algorithms due to
enormous exploring capability of search particles during
optimization process at the cost of additional memory
resources. At the start, because exploitation of optimiza-
tion is high, the optimizer might select wrong optimum
solution due to presence of noise, but as exploration goes
up, it quantifies its correctness with the help of archive.
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2 Proposed solution

As already mentioned in the literature review, MHOAs
are right candidate for the real-world optimization prob-
lems. Although the proposed noise immune optimization
is implemented on PSO, but it is applicable for any meta-
heuristic optimization. The basic structure of the PSO is
same as first time presented by Eberhart [5]. The flowchart
for the proposed noise immune robust particle swarm op-
timizer (NIRPSO) is presented in the figure 2. The basic
architecture of NIRPSO is similar to confidence-based
robust optimization presented in [10], but NIRPSO also
take into account the measurement uncertainty.
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Fig. 2: Flow diagram of NIRPSO.

NIRPSO begins with random initialization of velocity
and position of the particles. Then the evolution of cost
function for each particle is performed. Variance of parti-
cles is being evaluated in order to confirm their robustness
within the specified limits of input uncertainty. If the
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variance measure is above the acceptable threshold, then
the objective function is being penalized to stop further
particles exploration in this region. While for the opposite
scenario, the algorithm search in the archive for the similar
solutions for the sake of uncertainty suppression. Due to
explorative nature of MHOASs, archive-based uncertainty
suppression is the most dominating candidate. In case of
better fitness value of the particle than the particle’s per-
sonal or global best, corresponding field is being updated.
At the end, the particle’s velocity and position value is
being amended, and this process continues until the end
of maximum iteration.

The value used for ¢; = co = 2 after varying them
within the specified intervals although it has no signifi-
cant impact on the performance of the optimizer. The
parameters of NIRPSO are as follows
— ¢ = [0.5,2] (Cognitive scaling factor).

- ¢o = [0.5,2] (Social scaling factor).
— W = wmax—currentlteration (%) where

Wmax = 0.9 and wpi, = 0.1 (Inertia).

— Initial velocity = 0.

—  Maximum velocity = 20 % of upper bond of particle
position.

— Phbest is particles personal best.

—  Gbest is Swarm’s best-known position.

3 Results

In order to see the behavior of proposed NIRPSO three
bench marking (BM) functions are selected from the lit-
erature [10]. This experiment was carried out using 30
particles and 150 iterations all other initialization pa-
rameters were kept the same as mentioned in the above
section. In the figure 3 the first column shows the BM
function while the second column shows the convergence
curves. The convergence curve shows the degrading be-
havior over these BM functions. In case of BM3 it takes
below 50 iterations while it takes above 50 iterations for
other two functions. To achieve convergence takes con-
siderable amount of time due to presence of uncertainty.
NIRPSO becomes confident with the passage of iterations
minimizing the uncertainty level for these BM functions
from 10 % to approximately 1.8 % that can be improved
further by increasing number of iterations.

NIRPSO is also applied on Miller opamp for its ex-
trinsic design. The circuit of Miller opamp is implemented
using CMOS 0.35 pm technology from Austriamicrosys-

tems (AMS) and it is shown in figure 4. For this problem

> 10V
— psec’

six main objectives: slew rate (SR) input common
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Fig. 3: Behaviour of NIRPSO on BM1, BM2, BM3.

mode range (ICMR) [-1V,1V], gain > 80 dB, bandwidth
> 10 MHz, phase margin (PM) > 60° and power dissipa-
tion < 2mW are considered. An agglomerative approach
is employed for the multi-objective optimization; details
can be found in our institution’s former research work [8].
For this experiment, the biasing current is supposed to
be 30 pA and biasing transistors @ is also assumed to
be 3 nm in order to provide stable biasing voltage. Fur-
thermore, the length of all transistors are kept constant
to 1 nm for the sake of channel length modulation effects
minimization and NIRPSO only varies the width which
makes total seven parameters. The problem is formulated

as follows:
suppose & = w;, i =1,2,.....,7
out=spec  for minimum search
f(Z) =19 spersout . 3)
pec for maximum search

while & represents the width of transistor and f(Z) is
objective function. More details about it can be found in
[8] because the main focus of this article is the presence
of uncertainty in search and objective space. Spread of
deviation at the input level, i.e., in the widths of transistors
is considered as 1 pm.

From the transistors sizing as illustrated in the figure
4, the performance of non-robust is much better than the
robust solution in terms of area and power dissipation. On
the other hand, if there are any process variations at the
input side (widths of transistors from -1 pm to 1 pm), then
the performance of non-robust deviates considerably from
the nominal value as specified in the table 1. These devia-
tions are illustrated graphically as well in figure 5, where
first column represents the robust solution, and second
column represents the non-robust solution. The deviation

Q. Zaman and A. Kénig, Noise immune self-x integrated sensor circuits

DE GRUYTER OLDENBOURG

* Robust Solution
= Non-Robust Solution

PaN

(16/1)" (16/1)"
. H (227/1)
(3/1)° 4| Q4 as|p (3/1) Q6 > 188/1)°

Vout
30pA
Q2 | (7/2)- (7/2) wi| @3
- "|(s/1)= (s/1)n|“ -
Vin+ Vin-
L (5/2)»

o H (36/1)
obl..| a1l (8/1) Q7| (19/1)°

1

Fig. 4: The schematic of Miller opamp, ratios represent the width
to the length of the transistors and all dimensional are in pm.
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Fig. 5: Plot of error bars for robust and non-robust solution.

for ICMR- is almost 40 % below the acceptable limits
while for gain-bandwidth product it is approximately 26
%. In case of robust solution, the magnitude of deviation is
not too large, and it is always above the desired specifica-
tions except the gain-bandwidth product where deviation
is approximately 8 % of the nominal value.

Table 1: Specification deviation of robust and non-robust solu-
tion.

SR Gain  Bandwidth PM  Power ICMR
() (dB)  (MHz) (o) (mW) V)

Without Perturbation

Robust 15.0 84.1 9.9 67 1.45 [—1.40,1.40]
Non-Robust 22.7 80.0 9.9 62 0.98 [—1.40,1.10]
With Perturbation

Robust (maximum) 18.0 85 10.7 70 1.51  [—1.41,1.41]
Non-Robust (maximum) 25.2 81 10.4 67 1.0 [—1.43,1.20]
Robust (minimum) 12.0 83 9.1 65 1.4 [—1.40, 1.40]
Non-Robust (minimum) 20.1 75 7.3 58 0.9 [—0.60,0.70]

The NIRPSO also reduces the output root mean
square error from 4.24 % to 0.56 % with the help of
archive method. In order to illustrate measurement un-
certainty suppression capabilities of NIRPSO the voltage
response of Miller opamp in unity configuration for robust
particles is also measured. Figure 6 shows the comparison
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between the ideal output signal and the predicted output
signal of NIRPSO along with the noisy output signal due
to observer uncertainty with only five particles and 80
iterations. The NIRPSO recalibrate the self-x system even
in the presence of uncertainty at the input and being
able to reduce the uncertainty level of output and give
us reliable solution. The performance of system can be
improved further by increasing the number of iterations.
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Fig. 6: Comparison of the ideal observer, the noisy observe, and
NIRPSO predicted output.

4 Conclusions

In this article, two types of uncertainties and their solu-
tions for reconfigurable self-x sensory systems of industry
4.0 are discussed. The proposed NIRPSO has the poten-
tial to work reliably even in the presence of the uncer-
tainty at the input and the output. For input uncertainty
variance measure is used to avoid non-robust solution
while for output uncertainty, an archive-based method is
utilized for minimizing the uncertainty level. Although
the proposed scheme is implemented on PSO, it can be
modified easily for any evolutionary algorithm. The per-
formance of NIRPSO is evaluated with three different
single objective BM functions. Finally, the extrinsic op-
timization of NIRPSO is evaluated on the Miller opamp
circuit. The NIRPSO gave us reliable solution even in the
presence of uncertainties besides that it also suppressed
the uncertainty level at the output stage. In the future
work, selection of a threshold for variance measure will be
performed automatically. As far as intrinsic evolution of
NIRPSO is concerned our institute is also working on an
implementation of the reconfigurable sensory self-x system
for industry 4.0. Lastly, the proposed NIRPSO will be
modified by hybrid evolutionary algorithms for handling
multi-objective problem without the need of agglomerative
approach anymore [4].
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