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Abstract: For road maintenance up-to-date information

about road conditions is important. Such information is

currently expensive to obtain. Specially equipped measur-

ing vehicles have to perform surface scans of the road, and

it is unclear how to automatically Ąnd faulty sections in

these scans.

This research solves the problem by stereo vision with

cameras mounted behind the windshield of a moving vehi-

cle so that the system can easily be integrated into a large

number of vehicles. The stereo images are processed into

a depth map of the road surface. In a second step, color

images from the cameras are combined with the depth

map and are classiĄed by a convolutional neural network.

It is shown that the developed system is able to Ąnd de-

fects that require knowledge about surface deformations.

These defects could not have been found on monocular

images. The images are taken at usual driving speed.

Keywords: Pavement distress detection, stereo vision, con-

volutional neural network, fault recognition.

Zusammenfassung: Für die Straßenerhaltung sind aktuel-

le Informationen über den Straßenzustand wichtig. Zurzeit

ist die Beschaffung dieser Informationen jedoch teuer und

zeitaufwendig. Speziell ausgestattete Messfahrzeuge müs-

sen OberĆächenscans des Straßennetzes erstellen und es

ist unklar, wie fehlerhafte Abschnitte in diesen Daten ge-

funden werden können.

Diese Arbeit löst die Aufgabe durch stereoskopische Bild-

verarbeitung von Kameras, die hinter der Windschutz-

scheibe eines Fahrzeugs montiert werden. Dadurch kann

das System leicht in eine große Anzahl von Fahrzeugen

integriert werden. Die stereoskopischen Bilder werden zu

Tiefenbildern der StraßenoberĆäche verarbeitet. In einem

zweiten Schritt werden Farbbilder mit den Tiefenbildern

kombiniert und durch ein faltendes neuronales Netz klas-
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siĄziert.

Das entwickelte System ist in der Lage Fehlstellen zu Ąn-

den, für die Wissen über die OberĆächenverformungen

nötig ist. Auf monokularen Bildern hätten sie nicht ge-

funden werden können. Die Bilder werden bei normalen

Fahrgeschwindigkeiten aufgezeichnet.

Schlüsselwörter: Straßenzustandserkennung, stereoskopi-

sche Bildverarbeitung, faltendes neuronales Netz, Fehler-

erkennung.

1 Introduction

In order to maintain road networks, it is important to

know which sections need attention the most. If developing

defects are found and Ąxed on time, severe damages might

even be prevented. Defects can be divided into two cate-

gories: Those whose detection requires knowledge about

the shape of the surface and those whose detection does

not. Examples for the Ąrst category are surface depres-

sions and rutting. Cracks and potholes fall into the second

category, as cracks are not necessarily accompanied by

surface deformations and potholes can be found without

such information from the shape alone.

In [2] an overview about pavement distress detec-

tion methods is given. Surface defects for whose detec-

tion knowledge about surface deformations are not im-

portant can be detected by analyzing camera images. In

[4] a dataset for the purpose of training deep learning

algorithms is given. By utilizing a deep neural network,

good classiĄcation results for the defects cracks, potholes,

patches and open joints are shown. The images are taken

from cameras that point perpendicularly to the road sur-

face. That eliminates perspective distortion, but requires

external installations to the vehicle.

A common approach to measuring surface deforma-

tions of roads is to use measurement vehicles equipped with

LIDAR and laser triangulation devices [2, 4, 5]. Although

they provide detailed depth maps, the disadvantages are

the high cost and the need for specially equipped vehicles

[7]. The question of how to automatically detect faulty

sections in these depth maps has received little attention

so far.
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This paper focuses on the detection of defects that

require knowledge of surface deformation. Instead of rely-

ing on complex measuring vehicles, two cameras are used

that can be mounted behind the windscreen of any vehicle.

Structured light can be used to extract 3D information

from cameras, as is shown in [9] for the inspection of

free-form metal surfaces. However, this would require an

external light source. By using the cameras as a stereo

pair, detailed depth maps of the road in front of the vehicle

can be extracted. The problem of automatically Ąnding

faulty sections is addressed by a deep convolutional neural

network.

2 Previous work

The review papers [2] and [7] show that a lot of work

has been published on the detection of surface cracks

and potholes by analyzing camera images. For surface

deformations, LIDAR and laser triangulation devices are

widely used to provide depth maps or two-dimensional

surface proĄles. The automatic detection of faulty sections,

however, has received little attention.

In [11] and [12] a depth map is fed into a convolutional

neural network for the purpose of crack detection. In [3]

sequential two-dimensional road proĄles are converted to

piecewise standard deviations of height measurements and

are then concatenated to a two-dimensional array. This

array is then fed into a convolutional neural network in

order to predict the level of road degradation. A classi-

Ącation into types of defects is not carried out. In [10]

the watershed algorithm, which virtually Ąlls depth maps

with water, is used to Ąnd potholes in 3D surface scans.

The classiĄcation is carried out by analyzing the depth

and the size of the covered area. One can assume that

the distinction between potholes and other surface defects,

like depressions, poses a problem. It is also difficult to use

a watershed algorithm if the border of a surface defect is

not clearly visible. In [13] different types of surface defects

are found in surface depth maps by thresholding against

a reconstructed, error-free surface. Connecting regions are

found and depending on the size, the bounding box aspect

ratio and if the part is below or above the mean road

surface, the defective region is classiĄed.

The remainder of this paper is structured as follows: In

Section 3 the setup of the measurement system is described.

The depth map extraction is covered in Section 4 and in

Section 5 the recognition of faulty section in these maps

is shown. Results are presented in Section 6.

Fig. 1: Stereo cameras are installed behind the windshield of the

test vehicle.

3 Measuring system

The measuring system consists of two Basler acA1920-

150uc global shutter color cameras. For easy integrability

they are mounted behind the windshield of the test vehicle

(Fig. 1). For the detection of surface defects in the mil-

limeter range, a measurement with high depth resolution

is necessary. Since in stereo imaging the depth resolution

increases with a wider baseline (i. e. the distance between

camera centers), the baseline should be chosen to be as

wide as possible, which is 1.08 m in this case. To cover a

lane width of 2 m at a distance between 4 m and 11 m in

a single stereo image pair, 25 mm lenses are employed. In

order to increase the intersection of camera views, they

are not aligned in parallel, but inclined towards each other

by 6° each and tilted to the ground by 13°. The cameras

are triggered externally in order to record the pictures as

synchronously as possible.

The image sensors have an optical size of 2/3 inches

and a resolution of 1920 pixel × 1200 pixel. This results

in a depth resolution between approximately 1 mm
pixel

at a

distance of 4 m and 2.5 mm
pixel

at a distance of 11 m above

ground from the cameras.

4 Depth extraction

The task of extracting depth from stereo images can be

summarized to matching pixels between a left and a right

camera image. The distance between the position of match-

ing pixels together with the geometric setup corresponds

to the position of the corresponding object point in 3D

space. In this work, the algorithm that we published in

[1] is utilized for this purpose.

It consists of a neural network that converts stereo-

scopic images of an approximately Ćat surface into a depth

map, as can be seen in Fig. 2. Due to the perspective dis-

tortion of the camera images and thus of the depth maps,
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(a) Right camera view.

(b) Corresponding depth map to the view from (a). The depth is measured
in relation to the mean road surface.

Fig. 2: Asphalt road with rutting.

the same surface defect looks different depending on the

position in the image. For this reason, the depth map and

the color image are converted into a birdŠs-eye view. For

each pixel of the depth map the coordinates are found in

3D space. The x-y plane is arranged in such a way that

it corresponds to the mean road surface. The x and y

coordinates of points are rounded to integer values. They

are used as indices for an array into which the z and RGB

values are copied. The resulting array can be handled as

a regular image.

5 Fault recognition

Although in [13] good results with a handcrafted classiĄ-

cation algorithm are shown, such algorithms tend to fail

in situations that have not been considered during the

design. It is believed that a convolutional neural network

is more suitable for this purpose. The drawback of neural

networks and machine learning algorithms in general is

the need for labelled training data, which is not easy to ac-

Fig. 3: Depth map from Fig. 2b, converted to a bird’s-eye view,

with and without labels. The manual annotation is shown in blue,

the prediction in purple.

quire. Labelling the data is a tedious and time-consuming

task. For that reason, the objective in the design of the

neural network has to be a well utilization of the training

data.

The other aspect in creating the dataset is the la-

belling of surface defects itself. Especially for surface de-

pressions it is difficult to deĄne objective criteria that

decide if a deformation should be classiĄed as such. The

problem can be seen in Fig. 4. A threshold depth value

is unsuitable for marking a surface depression because it

is unclear in relation to what height the depth should be

measured. Usually, the depression does not have a clear

boundary and if it is decided that the deformation is a

depression, the question is where it starts and where it

ends. This consideration also led to the idea of utilizing

a neural network instead of a handcrafted classiĄcation

algorithm.

In [6] a neural network for semantic segmentation

is presented. It is trained on a dataset for urban scene

understanding, consisting of frames of a video sequence.

Only 367 frames were used for training, 101 for validation
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(a) Right camera view.

(b) Corresponding depth map to the view from (a). The depth is measured
in relation to the mean road surface.

Fig. 4: Asphalt road with surface depression.

and 233 for testing. The dataset is not only very small,

sequential images are also very similar, which reduces the

amount of information. Nevertheless, it performs very well.

Therefore, the neural network from [6] is adapted to the

purpose of defect detection.

As input for the neural network, the RGB values are

converted to greyscale and then concatenated with the

green and the depth channels. The network from [6] is

adapted in the following way:

Ű Defects manifest themselves differently in the color

image and in the depth map. Therefore, the output

of the Ąrst convolutional layer does not mix the input

channels.

Ű Different surface defects can occur together. E. g. a

long rut can contain a local deeper depression. To

train a neural network through backpropagation and

gradient decent, it is important that the training data

is not contradictory. In order to avoid contradictions

in the labelled data, every label is classiĄed against

the background. Thus, the network has twice as many

outputs as labels, such that each label has its own

Fig. 5: Depth map from Fig. 4b, converted to a bird’s-eye view,

with and without labels. The manual annotation is shown in blue,

the prediction in purple.

background. The SoftMax function is applied pairwise

on the outputs.

Ű The sum of the pairwise binary cross entropy is used

as a loss function for training.

A morphological opening is applied as a post-processing

step to remove small patches, which are considered noise.

6 Results

Fig. 3 shows the result for a road surface with rutting.

The predicted label is similar to the manual annotation.

Only at the bottom of the picture the prediction differs

from the annotation. Fig. 5 shows the result of a road

with surface depressions. The shapes of the prediction

and annotation differ, but the locations are correct. The

reason is probably an inconsistent labelling of the data.

If one looks at the depth map in Fig. 4b, it is difficult to

decide what the correct size of the depressions should be.
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7 Conclusion and outlook

The developed system covers the entire measurement chain

from recording images, through processing stereo images

into depth maps to segmenting and classifying the data.

The stereo camera setup produces surface measurements of

roads that are comparable to laser scans for the purpose of

pavement distress detection. Tests have been performed at

vehicle speeds of up to 80 km h−1 and higher speeds should

be possible. Thus far, 193 images are used for training, 18

for testing and only two kinds of defects are considered.

Nevertheless, the results look promising. The segmentation

and classiĄcation results show a high consistency with

the annotated data. The system is completely automatic,

which makes it possible to map surface defects of large

road networks.

In order to quantify the results, more images need to

be labelled and more types of defects should be considered.

Since it is often unclear how to label the data, the annota-

tions can be regarded as uncertain. This can be taken into

account during training with cost functions for uncertain

training data, such as shown in [8]. Experiments have to

be carried out to test its effectiveness on the existing data

set.
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