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Abstract: For road maintenance up-to-date information
about road conditions is important. Such information is
currently expensive to obtain. Specially equipped measur-
ing vehicles have to perform surface scans of the road, and
it is unclear how to automatically find faulty sections in
these scans.

This research solves the problem by stereo vision with
cameras mounted behind the windshield of a moving vehi-
cle so that the system can easily be integrated into a large
number of vehicles. The stereo images are processed into
a depth map of the road surface. In a second step, color
images from the cameras are combined with the depth
map and are classified by a convolutional neural network.
It is shown that the developed system is able to find de-
fects that require knowledge about surface deformations.
These defects could not have been found on monocular
images. The images are taken at usual driving speed.

Keywords: Pavement distress detection, stereo vision, con-
volutional neural network, fault recognition.

Zusammenfassung: Fiir die Straflenerhaltung sind aktuel-
le Informationen iiber den StraBenzustand wichtig. Zurzeit
ist die Beschaffung dieser Informationen jedoch teuer und
zeitaufwendig. Speziell ausgestattete Messfahrzeuge miis-
sen Oberfldchenscans des Straflennetzes erstellen und es
ist unklar, wie fehlerhafte Abschnitte in diesen Daten ge-
funden werden koénnen.

Diese Arbeit 16st die Aufgabe durch stereoskopische Bild-
verarbeitung von Kameras, die hinter der Windschutz-
scheibe eines Fahrzeugs montiert werden. Dadurch kann
das System leicht in eine grofie Anzahl von Fahrzeugen
integriert werden. Die stereoskopischen Bilder werden zu
Tiefenbildern der Stralenoberfliche verarbeitet. In einem
zweiten Schritt werden Farbbilder mit den Tiefenbildern
kombiniert und durch ein faltendes neuronales Netz klas-
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sifiziert.

Das entwickelte System ist in der Lage Fehlstellen zu fin-
den, fiir die Wissen iiber die Oberflichenverformungen
notig ist. Auf monokularen Bildern hétten sie nicht ge-
funden werden koénnen. Die Bilder werden bei normalen
Fahrgeschwindigkeiten aufgezeichnet.

Schliisselworter: Straflenzustandserkennung, stereoskopi-
sche Bildverarbeitung, faltendes neuronales Netz, Fehler-
erkennung.

1 Introduction

In order to maintain road networks, it is important to
know which sections need attention the most. If developing
defects are found and fixed on time, severe damages might
even be prevented. Defects can be divided into two cate-
gories: Those whose detection requires knowledge about
the shape of the surface and those whose detection does
not. Examples for the first category are surface depres-
sions and rutting. Cracks and potholes fall into the second
category, as cracks are not necessarily accompanied by
surface deformations and potholes can be found without
such information from the shape alone.

In [2] an overview about pavement distress detec-
tion methods is given. Surface defects for whose detec-
tion knowledge about surface deformations are not im-
portant can be detected by analyzing camera images. In
[4] a dataset for the purpose of training deep learning
algorithms is given. By utilizing a deep neural network,
good classification results for the defects cracks, potholes,
patches and open joints are shown. The images are taken
from cameras that point perpendicularly to the road sur-
face. That eliminates perspective distortion, but requires
external installations to the vehicle.

A common approach to measuring surface deforma-
tions of roads is to use measurement vehicles equipped with
LIDAR and laser triangulation devices [2, 4, 5]. Although
they provide detailed depth maps, the disadvantages are
the high cost and the need for specially equipped vehicles
[7]. The question of how to automatically detect faulty
sections in these depth maps has received little attention
so far.
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This paper focuses on the detection of defects that
require knowledge of surface deformation. Instead of rely-
ing on complex measuring vehicles, two cameras are used
that can be mounted behind the windscreen of any vehicle.
Structured light can be used to extract 3D information
from cameras, as is shown in [9] for the inspection of
free-form metal surfaces. However, this would require an
external light source. By using the cameras as a stereo
pair, detailed depth maps of the road in front of the vehicle
can be extracted. The problem of automatically finding
faulty sections is addressed by a deep convolutional neural
network.

2 Previous work

The review papers [2] and [7] show that a lot of work
has been published on the detection of surface cracks
and potholes by analyzing camera images. For surface
deformations, LIDAR and laser triangulation devices are
widely used to provide depth maps or two-dimensional
surface profiles. The automatic detection of faulty sections,
however, has received little attention.

In [11] and [12] a depth map is fed into a convolutional
neural network for the purpose of crack detection. In [3]
sequential two-dimensional road profiles are converted to
piecewise standard deviations of height measurements and
are then concatenated to a two-dimensional array. This
array is then fed into a convolutional neural network in
order to predict the level of road degradation. A classi-
fication into types of defects is not carried out. In [10]
the watershed algorithm, which virtually fills depth maps
with water, is used to find potholes in 3D surface scans.
The classification is carried out by analyzing the depth
and the size of the covered area. One can assume that
the distinction between potholes and other surface defects,
like depressions, poses a problem. It is also difficult to use
a watershed algorithm if the border of a surface defect is
not clearly visible. In [13] different types of surface defects
are found in surface depth maps by thresholding against
a reconstructed, error-free surface. Connecting regions are
found and depending on the size, the bounding box aspect
ratio and if the part is below or above the mean road
surface, the defective region is classified.

The remainder of this paper is structured as follows: In
Section 3 the setup of the measurement system is described.
The depth map extraction is covered in Section 4 and in
Section 5 the recognition of faulty section in these maps
is shown. Results are presented in Section 6.
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Fig. 1: Stereo cameras are installed behind the windshield of the

test vehicle.

3 Measuring system

The measuring system consists of two Basler acA1920-
150uc global shutter color cameras. For easy integrability
they are mounted behind the windshield of the test vehicle
(Fig. 1). For the detection of surface defects in the mil-
limeter range, a measurement with high depth resolution
is necessary. Since in stereo imaging the depth resolution
increases with a wider baseline (i. e. the distance between
camera centers), the baseline should be chosen to be as
wide as possible, which is 1.08 m in this case. To cover a
lane width of 2m at a distance between 4m and 11m in
a single stereo image pair, 25 mm lenses are employed. In
order to increase the intersection of camera views, they
are not aligned in parallel, but inclined towards each other
by 6° each and tilted to the ground by 13°. The cameras
are triggered externally in order to record the pictures as
synchronously as possible.

The image sensors have an optical size of 2/3 inches
and a resolution of 1920 pixel x 1200 pixel. This results

min
pixel
at a distance of 11 m above

in a depth resolution between approximately 1 at a

min
pixel
ground from the cameras.

distance of 4m and 2.5

4 Depth extraction

The task of extracting depth from stereo images can be
summarized to matching pixels between a left and a right
camera image. The distance between the position of match-
ing pixels together with the geometric setup corresponds
to the position of the corresponding object point in 3D
space. In this work, the algorithm that we published in
[1] is utilized for this purpose.

It consists of a neural network that converts stereo-
scopic images of an approximately flat surface into a depth
map, as can be seen in Fig. 2. Due to the perspective dis-
tortion of the camera images and thus of the depth maps,
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(a) Right camera view.

40

mm

(b) Corresponding depth map to the view from (a). The depth is measured
in relation to the mean road surface.

Fig. 2: Asphalt road with rutting.

the same surface defect looks different depending on the
position in the image. For this reason, the depth map and
the color image are converted into a bird’s-eye view. For
each pixel of the depth map the coordinates are found in
3D space. The x-y plane is arranged in such a way that
it corresponds to the mean road surface. The x and y
coordinates of points are rounded to integer values. They
are used as indices for an array into which the z and RGB
values are copied. The resulting array can be handled as
a regular image.

5 Fault recognition

Although in [13] good results with a handcrafted classifi-
cation algorithm are shown, such algorithms tend to fail
in situations that have not been considered during the
design. It is believed that a convolutional neural network
is more suitable for this purpose. The drawback of neural
networks and machine learning algorithms in general is
the need for labelled training data, which is not easy to ac-
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Fig. 3: Depth map from Fig. 2b, converted to a bird's-eye view,
with and without labels. The manual annotation is shown in blue,
the prediction in purple.

quire. Labelling the data is a tedious and time-consuming
task. For that reason, the objective in the design of the
neural network has to be a well utilization of the training
data.

The other aspect in creating the dataset is the la-
belling of surface defects itself. Especially for surface de-
pressions it is difficult to define objective criteria that
decide if a deformation should be classified as such. The
problem can be seen in Fig. 4. A threshold depth value
is unsuitable for marking a surface depression because it
is unclear in relation to what height the depth should be
measured. Usually, the depression does not have a clear
boundary and if it is decided that the deformation is a
depression, the question is where it starts and where it
ends. This consideration also led to the idea of utilizing
a neural network instead of a handcrafted classification
algorithm.

In [6] a neural network for semantic segmentation
is presented. It is trained on a dataset for urban scene
understanding, consisting of frames of a video sequence.
Only 367 frames were used for training, 101 for validation
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(a) Right camera view.

40

mm

(b) Corresponding depth map to the view from (a). The depth is measured
in relation to the mean road surface.

Fig. 4: Asphalt road with surface depression.

and 233 for testing. The dataset is not only very small,
sequential images are also very similar, which reduces the

amount of information. Nevertheless, it performs very well.

Therefore, the neural network from [6] is adapted to the

purpose of defect detection.

As input for the neural network, the RGB values are
converted to greyscale and then concatenated with the
green and the depth channels. The network from [6] is
adapted in the following way:

— Defects manifest themselves differently in the color
image and in the depth map. Therefore, the output
of the first convolutional layer does not mix the input
channels.

—  Different surface defects can occur together. E.g. a
long rut can contain a local deeper depression. To
train a neural network through backpropagation and
gradient decent, it is important that the training data
is not contradictory. In order to avoid contradictions
in the labelled data, every label is classified against
the background. Thus, the network has twice as many
outputs as labels, such that each label has its own
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Fig. 5: Depth map from Fig. 4b, converted to a bird's-eye view,
with and without labels. The manual annotation is shown in blue,
the prediction in purple.

background. The SoftMax function is applied pairwise
on the outputs.

The sum of the pairwise binary cross entropy is used
as a loss function for training.

A morphological opening is applied as a post-processing
step to remove small patches, which are considered noise.

6 Results

Fig. 3 shows the result for a road surface with rutting.
The predicted label is similar to the manual annotation.
Only at the bottom of the picture the prediction differs
from the annotation. Fig. 5 shows the result of a road
with surface depressions. The shapes of the prediction
and annotation differ, but the locations are correct. The
reason is probably an inconsistent labelling of the data.
If one looks at the depth map in Fig. 4b, it is difficult to
decide what the correct size of the depressions should be.
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7 Conclusion and outlook

The developed system covers the entire measurement chain
from recording images, through processing stereo images
into depth maps to segmenting and classifying the data.
The stereo camera setup produces surface measurements of
roads that are comparable to laser scans for the purpose of
pavement distress detection. Tests have been performed at
vehicle speeds of up to 80 km h~! and higher speeds should
be possible. Thus far, 193 images are used for training, 18
for testing and only two kinds of defects are considered.
Nevertheless, the results look promising. The segmentation
and classification results show a high consistency with
the annotated data. The system is completely automatic,
which makes it possible to map surface defects of large
road networks.

In order to quantify the results, more images need to
be labelled and more types of defects should be considered.
Since it is often unclear how to label the data, the annota-
tions can be regarded as uncertain. This can be taken into
account during training with cost functions for uncertain
training data, such as shown in [8]. Experiments have to
be carried out to test its effectiveness on the existing data
set.
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