9

Review Article

Michael Akcan and David C. Wright*

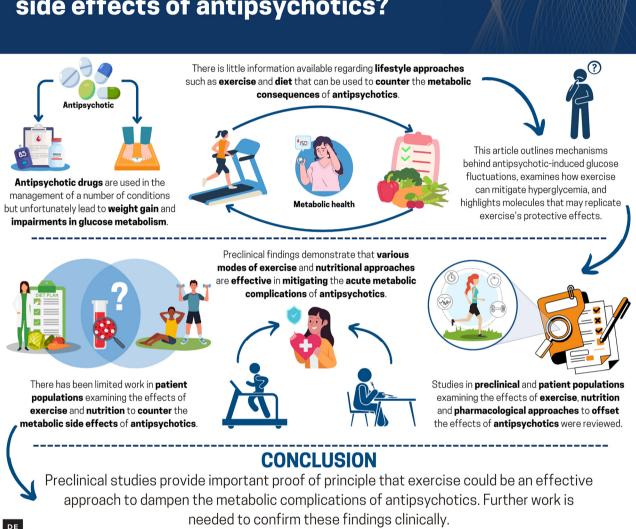
Can we run away from the metabolic side effects of antipsychotics?

https://doi.org/10.1515/teb-2025-0016 Received April 2, 2025; accepted May 22, 2025; published online June 11, 2025

Abstract: Antipsychotic (AP) medications are used to treat schizophrenia and a number off-label conditions. Although effective in reducing psychoses these drugs increase the risk of developing cardiometabolic disease, and are one of the reasons why individuals with schizophrenia live ~15-20 years less than the general population. While weight gain has traditionally been thought to be the primary culprit linked to increases in rates of cardiometabolic disease, there are weight-gain independent effects of antipsychotics. The purpose of the current review was to highlight the acute metabolic complications of antipsychotics and to address the question: are exercise and targeting "exercise-activated" signaling pathways, a viable approach to offset the metabolic complications of APs? The possibility of fibroblast growth factor 21 being a common factor mediating the protective effects of exercise and certain nutritional approaches against the acute metabolic complications of antipsychotics was also discussed. The research highlighted in this narrative review provides evidence, in preclinical models, that exercise and certain exercise-activated pathways, can protect against acute perturbations in glucose metabolism. While promising, further work is needed to confirm these findings in clinical populations prescribed antipsychotics.

Keywords: antipsychotic; mouse; glucose; exercise; AMPK; FGF21

Michael Akcan, School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada


Introduction

Antipsychotic (AP) medications are used in the management of schizophrenia, a disease which impacts ~1% of the population [1]. Additionally, APs are increasingly used in the treatment of a number of off-label conditions including anxiety, dementia, attention deficit, bipolar, depressive and sleep disorders [2-5]. In large part due to offlabel use, the prescription of APs has increased dramatically with recent estimates suggesting ~60 % increase globally between 2014 and 2019 [6]. APs are reported to have serious metabolic side effects that impact ~70 % of individuals taking these drugs [7]. While long term treatment with APs lead to weight gain [8-10], there are also weight gain independent metabolic consequences [11-17] including dysregulated glucose metabolism that occurrs within hours of treatment [12-14]. These combined effects of APs are linked to an increased risk of developing type 2 diabetes [18] and cardiovascular disease [19]. Concerningly, individuals prescribed APs often display reductions in physical activity [20], obesity and impaired glucose homeostasis prior to treatment [21]. These factors, in combination with the metabolic complications of APs, are primary reasons why individuals with schizophrenia die ~15-20 years earlier than the general population [22].

Standard of care in preventing the metabolic consequences of APs is metformin [23], a drug which reduces weight gain and lowers blood glucose [24]. Unfortunately, <20 % of individuals administered APs lose significant weight with metformin [25]. As APs impact multiple organs, and have both short and long-term effects, the design of approaches to lessen the metabolic consequences of these drugs has proven challenging. Adherence to APs is poor and the development of metabolic side effects has been identified as a reason why [26, 27]. The discontinuation of treatment has negative impacts on mental health including relapse and increases in attempted suicide [26] and thus mitigating the metabolic complications of APs has relevance to both the physical and mental well-being of individuals taking these drugs. Within this context, the overall goal of this narrative review is to answer the question: are exercise and targeting "exercise-activated" signaling pathways a viable approach to

^{*}Corresponding author: David C. Wright, PhD, School of Kinesiology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and BC Children's Hospital Research Institute, 950 W.28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada, E-mail: david.wright@ubc.ca. https://orcid.org/0000-0003-3867-8901

Can we run away from the metabolic side effects of antipsychotics?

Figure 1: Graphical representation of this study. Key points: (1) antipsychotics are used in the management of schizophrenia and an increasing number of off label conditions. (2) They have negative metabolic side effects including weight gain and causing transient spikes in blood glucose. (3) Preclinical findings demonstrate that exercise and diet can protect against the metabolic side effects of antipsychotics. Figure created with BioRender.

offset the metabolic complications of APs? We will first provide a brief overview of the potential mechanisms driving AP-induced fluctuations in blood glucose, we will then discuss the utility of various modes of exercise in protecting against AP-induced hyperglycemia and finally examine the potential of several molecules that are increased or activated with exercise, that might be able to recapitulate the protective effects of this intervention. The summary of this article is presented in Figure 1.

TRANSLATIONAL EXERCISE BIOMEDICINE - Akcan & Wright., 2025

Content

Acute, weight gain independent effects of APs on glucose and lipid metabolism

First generation, or typical APs were first used in the 1950's to treat psychosis. While the metabolic consequences of earlier iterations of APs were generally not as severe as current pharmacotherapy options for severe mental illness, and in fact, in some cases have been shown to possess beneficial metabolic effects [28, 29], these drugs are no longer widely prescribed due to the development of movement disorders. Second generation APs antagonize dopamine, serotonin, histamine and muscarinic receptors [30] and are now used in the management of schizophrenia, major depressive and bipolar disorders, amongst others [31]. Olanzapine, risperidone and quetiapine are among the most widely prescribed APs [4], with olanzapine and clozapine, an AP used in the management of treatment refractory schizophrenia, having the greatest metabolic liability [32]. Concerningly even APs considered to be more metabolically neutral (such as aripiprazole) they are still associated with significant weight gain in AP naïve individuals; and APs, regardless of class, confer approximately a 2-4-fold increased risk above schizophrenia alone for development of type 2 diabetes [33].

While AP-induced perturbations in glucose metabolism were initially thought to be due to weight gain, direct effects have been reported [11-17]. In healthy individuals, acute treatment with APs, in the absence of weight gain, causes impaired glucose tolerance [11] and insulin resistance [17] within hours after treatment [12]. Acute effects of APs on glucose metabolism are also seen in rodents where APs cause rapid hyperglycemia [13, 14], an effect that does not dissipate with prolonged use [34] and is exaggerated in conditions of pre-existing metabolic dysfunction [35]. Interestingly, these effects, at least in mice, appear to be sex specific, with females not displaying increases in blood glucose following AP treatment [36]. Repeated hyperglycemic episodes, as could occur following each dose of AP, are harmful and could increase the risk for the development of cardio-metabolic disease. For example, transient blood glucose excursions can be more harmful than chronically elevated blood glucose in reducing endothelial function and increasing oxidative stress [37, 38], factors implicated in the cardiovascular complications of diabetes [39]. Thus, it is important to identify mechanisms driving increases in blood glucose with APs and identify approaches to mitigate these effects.

In preclinical models, acute treatment with APs leads to insulin resistance in skeletal muscle, adipose tissue and liver [35], reductions in insulin secretion [40] and increases in liver glucose production [13, 41]. Excursions in blood glucose with APs are paralleled by indices of sympathetic outflow including increased concentrations of glucagon [36, 42-44] and catecholamines [45, 46], neuroendocrine signals that stimulate liver glucose production [47]. Glucagon is a crucial signal mediating AP-induced impairments in glucose metabolism. We have found that AP-induced hyperglycemia and markers of liver glucose production are absent in mice lacking the glucagon receptor [48]. Similarly, female mice who do not develop hyperglycemia following acute treatment with APs, also do not display increases in serum glucagon following treatment [36].

APs also acutely perturb lipid metabolism as shown by rapid increases in whole body fat oxidation [14, 36, 42], an effect thought to be a compensatory response to reductions in glucose utilization [14]. While not a universal finding [14], we found that acute AP treatment increases indices of adipose tissue lipolysis in mice in the fed state [36, 42]. This effect might be mediated by AP-induced increases in catecholamines [45, 46], stimulators of adipose tissue lipolysis [49], and/or reductions in the ability of insulin to suppress lipolysis. Fatty acids could be linked to AP-induced hyperglycemia as adipose derived metabolites are a source of gluconeogenic substrate for liver glucose production [50]. The mechanisms driving AP-induced increases in lipid utilization and how this could be linked to perturbed glucose metabolism are areas requiring further exploration.

Approaches to mitigate AP-induced metabolic dysfunction

Standard of care in treating the metabolic complications of APs is metformin [23], a widely prescribed glucose lowering agent which also causes weight loss. Though inexpensive, <20 % of individuals taking APs lose appreciable weight with metformin [25]. Although metformin does protect against acute AP-induced liver insulin resistance, it does not protect against peripheral insulin resistance [41]. Recent work [51], including data from our group [42], has highlighted the utility of glucagon like peptide 1 (GLP-1) receptor agonists in protecting against AP-induced hyperglycemia. However, given limited insurance coverage and accessibility issues these drugs have not been widely incorporated into the clinical management of AP-induced metabolic dysfunction. Another potential barrier to treatment is that GLP1 receptor agonists are typically administred by subcutaneous injection, and a pilot study found that fewer than half of patients with schizophrenia reported being comfortable selfadministering injections [52]. Given these issues our goal has been to identify new targets to dampen the metabolic complications of APs.

Exercise

Exercise has profound effects on glucose homeostasis with a single bout of exercise increasing insulin-independent muscle glucose uptake during and for several hours post exercise [53]. As increases in contraction stimulated skeletal

muscle glucose uptake subside, muscle develops an enhanced sensitivity to insulin [54] which can last for a prolonged period of time depending upon the duration and intensity of exercise that was performed. Within this framwork we reasoned that AP-induced increases in blood glucose would be blunted in mice that had previously exercised. We found that a single session of exhaustive (20° incline, initial speed 12 m/min and increased 1 m/min every 10 min, ~75 min in total) but not moderate intensity (~75 % VO₂ max, 75 min) treadmill running immediately before treatment protected against olanzapine induced increases in blood glucose in mice [55]. While these results are promising, the prescription of exhaustive exercise to those being treated with APs is not realistic, as they are a patient population who already exhibit poor adherence to exercise treatment. Given this we repeated these experiments using voluntary wheel running. This approach has several advantages compared to forced treadmill exercise including the pattern of physical activity being similar to the natural running behavior of the animal and the removal of stress due to animals being handled [56]. Similar to what was found with forced treadmill running, olanzapine induced hyperglycemia was attenuated in mice given access to a voluntary running wheel (~5 km of running) the previous night [43]. These protective effects persisted for upwards of 7 h after exercise and were maintained in mice with diet induced obesity, a model which displays an exaggerated increase in the acute blood glucose response to olanzapine [35]. From a mechanistic perspective, protection against hyperglycemia was mirrored by attenuated increases in circulating glucagon and slight improvements in whole body insulin tolerance [35].

Interleukin 6

Forced treadmill and voluntary wheel running provide important proof of principle, in a preclinical model, that exercise can be an effective tool to dampen the excursions in blood glucose that occur following treatment with APs. With this said, the implementation of "lifestyle approaches" would likely be difficult given poor adherence in individuals taking APs [57, 58]. Given this we have been using exercise as an approach to identify potential mechanisms that could be targeted dampen the acute metabolic complications of APs. Our initial studies using forced treadmill running identified a clear intensity dependent effect of exercise on protecting against the rise in blood glucose following treatment with olanzapine in mice. Exercise increases circulating levels of interleukin 6 (IL-6), a signaling molecule that has been postulated to play a role in the effects of exercise on substrate utilization [59]. As prior exhaustive, but not moderate,

exercise protected against olanzapine induced hyperglycemia while at the same time increasing IL-6, we interrogated the potential role of IL-6 in protecting against AP-induced hyperglycemia. We found that acutely treating mice with recombinant IL-6, despite leading to supraphysiological circulating concentrations did not prevent increases in blood glucose with olanzapine treatment [55]. Moreover, the ability of exercise to protect against olanzapine induced hyperglycemia was maintained in IL-6 knockout mice and in mice treated with IL-6 neutralizing antibodies [55]. Collectively, these findings provide evidence that IL-6 is not sufficient nor necessary for the effects of exercise to protect against AP-induced perturbations in glucose homeostasis.

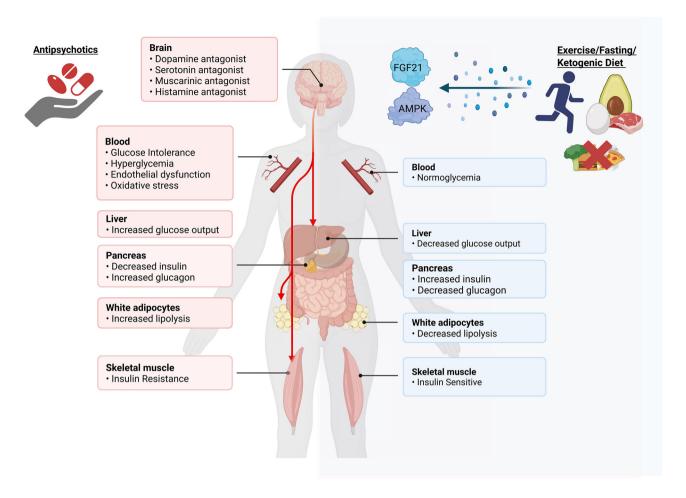
5'AMP activated protein kinase (AMPK)

As IL-6 did not appear to be either sufficient, or necessary for exercise, to dampen olanzapine induced hyperglycemia, we turned our attention to another molecule linked to the metabolic effects of exercise, AMPK. This enzyme is activated in conditions of energetic stress and has been shown to increase insulin-independent skeletal muscle glucose uptake [60], enhance skeletal muscle insulin sensitivity [61] and attenuate liver glucose production [62], processes that would be expected to counter AP-induced increases in blood glucose. As AMPK is activated by exercise in an intensity dependent manner, we interrogated if the pharmacological activation of this enzyme would protect against acute AP-induced increases in blood glucose. The first approach that used was to co-treat mice with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), while being challenged with olanzapine. AICAR is an analog of adenosine that is taken up by tissues, phosphorylated and converted to 5-aminoimidazole-4-carboxamide ribonucleoside 5'-monophosphate (ZMP) [63]. Like increases in AMP, ZMP activates AMPK, though it should be noted that some of the effects of AICAR are likely AMPK-independent [63]. It was found that treatment with AICAR attenuated the rise in blood glucose, the development of insulin resistance and increases in indices of liver glucose production in mice treated with olanzapine [64].

AICAR has AMPK independent effects [63] and thus it is critical to determine if more specific AMPK agonists would have similar protective effects. In this regard A769962, a specific activator of AMPK β1 containing complexes [65], which are found primarily in the liver in mice [66], also attenuated olanzapine-induced increases in blood glucose, whereas the effects of olanzapine on blood glucose were potentiated in AMPK $\beta 1^{-/-}$ mice [67]. These results are consistent with clinical findings highlighting associations between polymorphisms in AMPK subunits and AP-induced weight gain [68]. To date the utility of using AMPK agonists to offset the metabolic complications of APs in clinical populations has not been addressed. With this being said, there have been several studies demonstrating beneficial effects of AMPK agonists on glucose metabolism in human participants [69, 70]. While promising caution is likely needed as treatment with certain AMPK agonists have been reported to cause cardiac hypertrophy in non-human primates [71]. An additional concern is that activation of AMPK in the hypothalamus has been linked to increases in liver glucose production [72], a process that is thought to be involved in mediating acute AP-induced increase in blood glucose [48]. If AMPK were to be targeted to offset the metabolic consequences of APs, then it would be important to design pharmacological agents that do not cross the blood-brain barrier.

An important, and as of yet, unresolved question is if AMPK is required for the protective effects of exercise against AP-induced perturbations glucose metabolism. The data to date would suggest that this is not the case, as the ability of voluntary wheel running to attenuate AP-induced increases in blood glucose were intact in AMPK β1^{-/-} mice [43]. A caveat to these findings however is that an acute bout of voluntary wheel running (~3-5 km/night) might not be a sufficient stimulus to robustly activate AMPK. Moreover, since AMPK β1 containing complexes are primarily found in the liver in mice [66], and given that the protective effects of exercise could be mediated via alterations in cell types besides hepatocytes, then tissue specific AMPK knockout mice, i.e., muscle specific AMPK knockouts, need to be tested.

Fasting and ketogenic diets


In addition to exercise and exercise-activated pathways, there is accumulating evidence that nutritional manipulations can also dampen AP-induced increases in blood glucose. An unappreciated determinant of the acute metabolic response to APs is nutritional state. Ikegami and colleagues [73] measured the blood glucose response to acute olanzapine treatment in mice in the fed state, or following a 16 h fast. While not directly compared, the rise in blood glucose with olanzapine appeared to be markedly dampened in fasted mice [73]. To examine this in more detail we completed similar experiments and directly compared the blood glucose and endocrine response to olanzapine between fed and fasted mice. Similar to the initial work by Ikegami et al. [73] olanzapine-induced increases in blood glucose were blunted in fasted mice and this was paralleled by a reduced ability of olanzapine to increase circulating concentrations of glucagon [44].

Fasting is a robust perturbation that induces a wide range of metabolic adaptations to ensure the adequate provision of

fuel. One of the hallmark features of fasting are increases in whole body fatty acid oxidation and elevations in circulating concentrations of ketone bodies. Interestingly, several groups have shown that ketones, such as beta hydroxybutyrate (BHB) can reduce glucagon secretion from the pancreas [74–76]. Given this we examined if acutely increasing BHB through either injecting mice with the compound, or gavaging them with oral ketone esters, would recapitulate the effects of fasting. Surprisingly, this did not turn out to be the case leading us to postulate that more prolonged increases in circulating ketones might be necessary to protect against AP-induced hyperglycemia [44]. To test this, we fed mice a ketogenic diet for 2 days prior to an acute challenge with olanzapine, and similar to fasting, found that a ketogenic diet blunted the rise in blood glucose and serum glucagon. These findings provide evidence that prolonged increases in circulating ketone bodies are sufficient to protect against olanzapine induced hyperglycemia, and while associative and not causative, might suggest that this could be one potential mechanism through which fasting confers protection against acute AP-induced perturbations in glucose metabolism. Work in preclinical models would appear to have some degree of translational relevance as several studies have recently demonstrated improvements in metabolic and mental health in individuals with schizophrenia and bipolor disorder given ketogenic diets [77–79]. Like many restrictive diets, adherence to a ketogenic diet for a prolonged period of time could prove challenging, particularly in this patient population and thus it will be important to determine the feasibility of adjunctive treatment with ketogenic diets in individuals with severe mental illness.

Could there be a unifying factor mediating the protective effects of exercise, fasting and ketogenic diets?

A single session of exercise [43, 55], fasting [44] or a ketogenic diet [44], all dampen AP-induced hyperglycemia in mice (Figure 2). While these interventions pose unique metabolic challenges it is interesting to speculate if there could be a common, unifying factor, potentially explaining the protection against fluctuations in blood glucose following APtreatment. One candidate molecule could be Fibroblast Growth Factor 21 (FGF21). FGF21 is increased with exercise [80, 81], fasting [82, 83] or the consumption of a ketogenic diet [84, 85]. FGF21 is highly expressed in the liver [86] and pancreas [87] and to a lesser extent in adipose tissue [88], and skeletal muscle [89]. FGF21 signals through a receptor complex consisting of FGF receptors (FGFR1c, FGFR2c, FGFR3c) and a co-receptor named β-Klotho. While FGF receptors are widely expressed, β-Klotho is restricted primarily to adipose, liver, pancreas and the brain [90, 91], and confers specificity for FGF21 signaling. Interestingly, β-Klotho, is expressed in

Figure 2: Schematic representation of the underlying mechansims of how acute treatment with antipsychotics increases blood glucose and how exercise, fasting and ketogenic diets can potentially protect against this.

many of the same tissues that are impacted by APs. For example, FGF21 reduces circulating glucagon [92, 93], a mediator of AP-induced increases in liver glucose production [48], and some [93], but not all [94], have shown that FGF21 directly attenuates glucagon secretion from cultured pancreatic islets. Additionally, treatment with FGF21 reduces liver glucose production and increases liver insulin action in mice [92, 94], processes perturbed with acute AP treatment [35, 36]. Fatty acids are an important substrate for liver glucose production [50], and it has been argued [95] that the glucose lowering effects of FGF21 are linked to decreases in lipolysis. While the potential of FGF21 to mitigate the metabolic consequences of APs has not been empirically tested, there is a strong rationale for exploring this possibility in further detail.

Summary and outlook

The goal of this review was to address the question if exercise, and targeting "exercise-activated" signaling pathways,

is a viable approach to offset the metabolic complications of APs. The work highlighted in this review, though almost exclusively preclinical, provides evidence that this could be the case. While these initial, pre-clinical findings are promising, there are further considerations in regards to clinical translatability that need to be addressed before this question can be fully answered. First, the experiments described in this review utilized otherwise healthy rodents. Schizophrenia is associated with the presence of metabolic dysfunction and this often presents in AP-naïve patients [96– 98]. In rodents this can be modelled using maternal gestational treatment with polyriboinosinic-polyribocytidilic acid (poly [I:C]), a synthetic analog of double stranded RNA that induces pre-natal immune activation and the development of a schizophrenia like condition in the offspring [99, 100]. Given the existence of pre-existing metabolic dysfunction in this model it will be important to determine if exercise, and other interventions discussed above, can protect against acute AP-induced perturbations in glucose metabolism. Somewhat related to this point it will be important to

determine if exercise, or other interventions described in this review, impact the pharmacokinetics of APs, and perhaps by extension, their ability to treat symptoms of severe mental illness. Preliminary findings demonstrate that serum concentrations of olanzapine are not different in fasted compared to fed mice and in mice provided a ketogenic compared to chow diet [44]. These cursory findings might suggest that protection against the metabolic consequences of APs is not occurring secondary to reductions in drug exposure, however this needs to be examined in further detail. Clearly, reductions in the metabolic complications of APs at the expense of attenuated drug effectiveness in managing the underlying mental illness would be contraindicated for patients. Lastly, tightly controlled clinical trials testing the efficacy of exercise and other lifestyle interventions, against both the acute and chronic metabolic complications of APs initiated at the onset of treatment, are needed.

Research ethics: Not applicable. Informed consent: Not applicable.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Use of Large Language Models, AI and Machine Learning

Tools: None declared.

Conflict of interest: The authors state no conflict of interest.

Research funding: None declared. Data availability: Not applicable.

References

- 1. Moreno-Kustner B, Martin C, Pastor L. Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS One 2018;13:e0195687.
- 2. Maher AR, Maglione M, Bagley S, Suttorp M, Hu JH, Ewing B, et al. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: a systematic review and metaanalysis. JAMA 2011;306:1359-69.
- 3. Navari RM, Qin R, Ruddy KJ, Liu H, Powell SF, Bajaj M, et al. Olanzapine for the prevention of chemotherapy-induced nausea and vomiting. N Engl | Med 2016;375:134-42.
- 4. Pringsheim T, Gardner DM. Dispensed prescriptions for quetiapine and other second-generation antipsychotics in Canada from 2005 to 2012: a descriptive study. CMAJ Open 2014;2:E225-32.
- 5. Procyshyn RM, Honer WG, Wu TK, Ko RW, McIsaac SA, Young AH, et al. Persistent antipsychotic polypharmacy and excessive dosing in the community psychiatric treatment setting: a review of medication profiles in 435 Canadian outpatients. J Clin Psychiatry 2010;71:566–73.
- 6. Alabaku O, Yang A, Tharmarajah S, Suda K, Vigod S, Tadrous M. Global trends in antidepressant, atypical antipsychotic, and benzodiazepine use: a cross-sectional analysis of 64 countries. PLoS One 2023;18: e0284389.

- 7. De Hert M, Dekker JM, Wood D, Kahl KG, Holt RI, Moller HJ. Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). Eur Psychiatry 2009;24:412-24.
- 8. Benarroch L, Kowalchuk C, Wilson V, Teo C, Guenette M, Chintoh A, et al. Atypical antipsychotics and effects on feeding: from mice to men. Psychopharmacology (Berl) 2016;233:2629-53.
- 9. Castellani LN, Costa-Dookhan KA, McIntyre WB, Wright DC, Flowers SA, Hahn MK, et al. Preclinical and clinical sex differences in antipsychotic-induced metabolic disturbances: a narrative review of adiposity and glucose metabolism. | Psychiatr Brain Sci 2019;4. https:// doi.org/10.20900/jpbs.20190013.
- 10. Davey KJ, O'Mahony SM, Schellekens H, O'Sullivan O, Bienenstock J, Cotter PD, et al. Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl) 2012;221:155-69.
- 11. Albaugh VL, Singareddy R, Mauger D, Lynch CJ. A double blind, placebo-controlled, randomized crossover study of the acute metabolic effects of olanzapine in healthy volunteers. PLoS One 2011; 6:e22662.
- 12. Hahn MK, Wolever TM, Arenovich T, Teo C, Giacca A, Powell V, et al. Acute effects of single-dose olanzapine on metabolic, endocrine, and inflammatory markers in healthy controls. J Clin Psychopharmacol 2013;33:740-6.
- 13. Ikegami M, Ikeda H, Ohashi T, Ohsawa M, Ishikawa Y, Kai M, et al. Olanzapine increases hepatic glucose production through the activation of hypothalamic adenosine 5'-monophosphate-activated protein kinase. Diabetes Obes Metab 2013;15:1128-35.
- 14. Klingerman CM, Stipanovic ME, Bader M, Lynch CJ. Second-generation antipsychotics cause a rapid switch to fat oxidation that is required for survival in C57BL/6I mice. Schizophr Bull 2014:40:327-40.
- 15. Newcomer JW, Haupt DW, Fucetola R, Melson AK, Schweiger JA, Cooper BP, et al. Abnormalities in glucose regulation during antipsychotic treatment of schizophrenia. Arch Gen Psychiatry 2002; 59:337-45.
- 16. Teff KL, Rickels MR, Grudziak J, Fuller C, Nguyen HL, Rickels K. Antipsychotic-induced insulin resistance and postprandial hormonal dysregulation independent of weight gain or psychiatric disease. Diabetes 2013;62:3232-40.
- 17. Vidarsdottir S, de Leeuw van Weenen JE, Frolich M, Roelfsema F, Romijn JA, Pijl H. Effects of olanzapine and haloperidol on the metabolic status of healthy men. J Clin Endocrinol Metab 2010;95: 118-25.
- 18. Sernyak MJ, Leslie DL, Alarcon RD, Losonczy MF, Rosenheck R. Association of diabetes mellitus with use of atypical neuroleptics in the treatment of schizophrenia. Am J Psychiatr 2002;159:561-6.
- Rojo LE, Gaspar PA, Silva H, Risco L, Arena P, Cubillos-Robles K, et al. Metabolic syndrome and obesity among users of second generation antipsychotics: a global challenge for modern psychopharmacology. Pharmacol Res 2015;101:74-85.
- Vancampfort D, Firth J, Schuch FB, Rosenbaum S, Mugisha J, 20. Hallgren M, et al. Sedentary behavior and physical activity levels in people with schizophrenia, bipolar disorder and major depressive disorder: a global systematic review and meta-analysis. World Psychiatry 2017;16:308-15.
- 21. Allison DB, Fontaine KR, Heo M, Mentore JL, Cappelleri JC, Chandler LP, et al. The distribution of body mass index among individuals with and without schizophrenia. J Clin Psychiatry 1999;60:215-20.

- 22. Hennekens CH, Hennekens AR, Hollar D, Casey DE. Schizophrenia and increased risks of cardiovascular disease. Am Heart J 2005;150:1115-21.
- 23. Fitzgerald I, O'Connell J, Keating D, Hynes C, McWilliams S, Crowley EK. Metformin in the management of antipsychotic-induced weight gain in adults with psychosis: development of the first evidence-based guideline using GRADE methodology. Evid Based Ment Health 2022;
- 24. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med 1995;333:541-9.
- 25. Jarskog LF, Hamer RM, Catellier DJ, Stewart DD, Lavange L, Ray N, et al. Metformin for weight loss and metabolic control in overweight outpatients with schizophrenia and schizoaffective disorder. Am. J Psychiatry 2013;170:1032-40.
- 26. Higashi K, Medic G, Littlewood KJ, Diez T, Granstrom O, De Hert M. Medication adherence in schizophrenia: factors influencing adherence and consequences of nonadherence, a systematic literature review. Therap Adv Psychopharmacol 2013;3:200–18.
- 27. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005;353:1209-23.
- 28. Tabatabaei Dakhili SA, Greenwell AA, Yang K, Abou Farraj R, Saed CT, Gopal K, et al. The antipsychotic dopamine 2 receptor antagonist diphenylbutylpiperidines improve glycemia in experimental obesity by inhibiting Succinyl-CoA:3-Ketoacid CoA transferase. Diabetes 2023; 72:126-34.
- 29. Greenwell AA, Tabatabaei Dakhili SA, Wagg CS, Saed CT, Chan JSF, Yang K, et al. Pharmacological inhibition of succinyl Coenzyme A:3-Ketoacid Coenzyme A transferase alleviates the progression of diabetic cardiomyopathy. J Am Heart Assoc 2024;13:e032697.
- 30. Divac N, Prostran M, Jakovcevski I, Cerovac N. Second-generation antipsychotics and extrapyramidal adverse effects. BioMed Res Int 2014;2014:656370.
- 31. Stogios N, Smith E, Bowden S, Tran V, Asgariroozbehani R, McIntyre WB, et al. Metabolic adverse effects of off-label use of second-generation antipsychotics in the adult population: a systematic review and meta-analysis. Neuropsychopharmacology 2022:47:664-72.
- 32. Raben AT, Marshe VS, Chintoh A, Gorbovskaya I, Muller DJ, Hahn MK. The complex relationship between antipsychotic-induced weight gain and therapeutic benefits: a systematic review and implications for treatment. Front Neurosci 2017;11:741.
- 33. Rajkumar AP, Horsdal HT, Wimberley T, Cohen D, Mors O, Borglum AD, et al. Endogenous and antipsychotic-related risks for diabetes mellitus in young people with schizophrenia: a Danish population-based cohort study. Am J Psychiatry 2017;174:686-94.
- 34. Boyda HN, Procyshyn RM, Tse L, Wong D, Pang CC, Honer WG, et al. Intermittent treatment with olanzapine causes sensitization of the metabolic side-effects in rats. Neuropharmacology 2012;62:1391-400.
- 35. Townsend LK, Peppler WT, Bush ND, Wright DC. Obesity exacerbates the acute metabolic side effects of olanzapine. Psychoneuroendocrinology 2017;88:121-8.
- 36. Medak KD, Townsend LK, Hahn MK, Wright DC. Female mice are protected against acute olanzapine-induced hyperglycemia. Psychoneuroendocrinology 2019;110:104413.
- 37. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002;359:2072-7.

- 38. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003;290:486-94.
- 39. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008:57:1349-54.
- 40. Chintoh AF, Mann SW, Lam L, Giacca A, Fletcher P, Nobrega J, et al. Insulin resistance and secretion in vivo: effects of different antipsychotics in an animal model. Schizophr Res 2009;108:127-33.
- 41. Remington GJ, Teo C, Wilson V, Chintoh A, Guenette M, Ahsan Z, et al. Metformin attenuates olanzapine-induced hepatic, but not peripheral insulin resistance. | Endocrinol 2015;227:71-81.
- 42. Medak KD, Shamshoum H, Peppler WT, Wright DC. GLP1 receptor agonism protects against acute olanzapine-induced hyperglycemia. Am J Physiol Endocrinol Metab 2020;319:E1101-E11.
- 43. Shamshoum H, McKie GL, Medak KD, Ashworth KE, Kemp BE, Wright DC. Voluntary physical activity protects against olanzapineinduced hyperglycemia. J Appl Physiol 2021;130:466-78.
- 44. Shamshoum H, Medak KD, McKie GL, Hahn MK, Wright DC. Fasting or the short-term consumption of a ketogenic diet protects against antipsychotic-induced hyperglycaemia in mice. J Physiol 2022;600: 2713-28
- 45. Boyda HN, Pham M, Huang J, Ho AA, Procyshyn RM, Yuen JWY, et al. Antipsychotic drug-induced increases in peripheral catecholamines are associated with glucose intolerance. Front Pharmacol 2022;13:
- 46. Nagata M, Nakajima M, Ishiwata Y, Takahashi Y, Takahashi H, Negishi K, et al. Mechanism underlying induction of hyperglycemia in rats by single administration of olanzapine. Biol Pharm Bull 2016;39:
- 47. Wasserman DH. Regulation of glucose fluxes during exercise in the postabsorptive state. Annu Rev Physiol 1995;57:191-218.
- 48. Castellani LN, Peppler WT, Sutton CD, Whitfield J, Charron MJ, Wright DC. Glucagon receptor knockout mice are protected against acute olanzapine-induced hyperglycemia. Psychoneuroendocrinology 2017;82:38-45.
- 49. Guilherme A, Rowland LA, Wang H, Czech MP. The adipocyte supersystem of insulin and cAMP signaling. Trends Cell Biol 2022;33: 340-54.
- 50. Boden G, Chen X, Capulong E, Mozzoli M. Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 2001;50:810-6.
- 51. Larsen JR, Vedtofte L, Jakobsen MSL, Jespersen HR, Jakobsen MI, Svensson CK, et al. Effect of liraglutide treatment on prediabetes and overweight or obesity in clozapine- or olanzapine-treated patients with schizophrenia spectrum disorder: a randomized clinical trial. JAMA Psychiatry 2017;74:719-28.
- 52. Siskind DJ, Russell AW, Gamble C, Winckel K, Mayfield K, Hollingworth S, et al. Treatment of clozapine-associated obesity and diabetes with exenatide in adults with schizophrenia: a randomized controlled trial (CODEX). Diabetes Obes Metab 2018;20:1050-5.
- 53. Ivy JL, Holloszy JO. Persistent increase in glucose uptake by rat skeletal muscle following exercise. Am J Physiol 1981;241:C200-3.
- 54. Richter EA, Garetto LP, Goodman MN, Ruderman NB. Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin. J Clin Investig 1982;69:785-93.

- 55. Castellani LN, Peppler WT, Miotto PM, Bush N, Wright DC. Exercise protects against olanzapine-induced hyperglycemia in male C57BL/6J Mice. Sci Rep 2018;8:772.
- 56. Manzanares G, Brito-da-Silva G, Gandra PG. Voluntary wheel running: patterns and physiological effects in mice. Braz J Med Biol Res 2018;52:
- 57. Firth J, Cotter J, Elliott R, French P, Yung AR. A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med 2015;45:1343-61.
- 58. Teasdale SB, Samaras K, Wade T, Jarman R, Ward PB. A review of the nutritional challenges experienced by people living with severe mental illness: a role for dietitians in addressing physical health gaps. | Hum Nutr Diet 2017;30:545-53.
- 59. Kistner TM. Pedersen BK. Lieberman DE. Interleukin 6 as an energy allocator in muscle tissue. Nat Metab 2022;4:170-9.
- 60. Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, et al. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 2004;279:1070-9.
- 61. O'Neill HM, Lally JS, Galic S, Thomas M, Azizi PD, Fullerton MD, et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia (Berl) 2014; 57:1693-702.
- 62. Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, et al. Short-term overexpression of a constitutively active form of AMPactivated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 2005;54:1331-9.
- 63. Hasenour CM, Ridley DE, Hughey CC, James FD, Donahue EP, Shearer J, et al. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. | Biol Chem 2014;289:5950-9.
- 64. Bush ND, Townsend LK, Wright DC. AICAR prevents acute olanzapineinduced disturbances in glucose homeostasis. J Pharmacol Exp Ther 2018:365:526-35.
- 65. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 2006:3:403-16.
- 66. Dzamko N, van Denderen BJ, Hevener AL, Jorgensen SB, Honeyman J, Galic S, et al. AMPK beta1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J Biol Chem 2010;285:115-22.
- 67. Shamshoum H, Medak KD, Townsend LK, Ashworth KE, Bush ND, Halm MK, et al. AMPK beta1 activation suppresses antipsychoticinduced hyperglycemia in mice. FASEB J 2019;33:14010-21.
- 68. Souza RP, Tiwari AK, Chowdhury NI, Ceddia RB, Lieberman JA, Meltzer HY, et al. Association study between variants of AMP-activated protein kinase catalytic and regulatory subunit genes with antipsychotic-induced weight gain. J Psychiatr Res 2012;46:462-8.
- 69. Fouqueray P, Bolze S, Dubourg J, Hallakou-Bozec S, Theurey P, Grouin JM, et al. Pharmacodynamic effects of direct AMP kinase activation in humans with insulin resistance and non-alcoholic fatty liver disease: a phase 1b study. Cell Rep Med 2021;2:100474.
- 70. Steneberg P, Lindahl E, Dahl U, Lidh E, Straseviciene J, Backlund F, et al. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight 2018;3. https://doi.org/10.1172/jci.insight.99114.
- 71. Myers RW, Guan HP, Ehrhart J, Petrov A, Prahalada S, Tozzo E, et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 2017;357:507-11.

- 72. McCrimmon RJ, Fan X, Cheng H, McNay E, Chan O, Shaw M, et al. Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 2006;55:1755-60.
- 73. Ikegami M, Ikeda H, Ishikawa Y, Ohsawa M, Ohashi T, Kai M, et al. Olanzapine induces glucose intolerance through the activation of AMPK in the mouse hypothalamus. Eur J Pharmacol 2013;718:376-82.
- 74. Briant LJB, Dodd MS, Chibalina MV, Rorsman NJG, Johnson PRV, Carmeliet P, et al. CPT1a-dependent long-chain fatty acid oxidation contributes to maintaining glucagon secretion from pancreatic islets. Cell Rep 2018;23:3300-11.
- 75. Kanazawa M, Ikeda J, Sato J, Natoya Y, Ito H, Komeda K, et al. Alteration of insulin and glucagon secretion from the perfused BB rat pancreas before and after the onset of diabetes. Diabetes Res Clin Pract 1988;5:
- 76. Morrison CD, Hill CM, DuVall MA, Coulter CE, Gosey JL, Herrera MJ, et al. Consuming a ketogenic diet leads to altered hypoglycemic counter-regulation in mice. J Diabetes Complicat 2020;34:107557.
- 77. Sethi S, Wakeham D, Ketter T, Hooshmand F, Bjornstad J, Richards B, et al. Ketogenic diet intervention on metabolic and psychiatric health in bipolar and schizophrenia: a pilot trial. Psychiatry Res 2024;335: 115866.
- 78. Danan A, Westman EC, Saslow LR, Ede G. The ketogenic diet for refractory mental illness: a retrospective analysis of 31 inpatients. Front Psychiatry 2022;13:951376.
- 79. Garner S, Barkus E, Kraeuter AK. Positive and negative schizotypy personality traits are lower in individuals on ketogenic diet in a nonclinical sample. Schizophr Res 2024;270:423-32.
- 80. Kim KH, Kim SH, Min YK, Yang HM, Lee JB, Lee MS. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One 2013;8:e63517.
- 81. Hansen JS, Pedersen BK, Xu G, Lehmann R, Weigert C, Plomgaard P. Exercise-induced secretion of FGF21 and follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes. J Clin Endocrinol Metab 2016;101:2816-25.
- 82. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007:5:426-37.
- 83. Foo JP, Aronis KN, Chamberland JP, Paruthi J, Moon HS, Mantzoros CS. Fibroblast growth factor 21 levels in young healthy females display day and night variations and are increased in response to short-term energy deprivation through a leptin-independent pathway. Diabetes Care 2013:36:935-42.
- 84. Watanabe M, Singhal G, Fisher FM, Beck TC, Morgan DA, Socciarelli F, et al. Liver-derived FGF21 is essential for full adaptation to ketogenic diet but does not regulate glucose homeostasis. Endocrine 2020;67: 95-108.
- 85. Weber A, Medak KD, Townsend LK, Wright DC. Ketogenic diet-induced weight loss occurs independent of housing temperature and is followed by hyperphagia and weight regain after cessation in mice. | Physiol 2022;600:4677-93.
- 86. Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000;1492:203-6.
- 87. Adams AC, Coskun T, Cheng CC, Ls OF, Dubois SL, Kharitonenkov A. Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol Metab 2013;2:205-14.
- 88. Mraz M, Bartlova M, Lacinova Z, Michalsky D, Kasalicky M, Haluzikova D, et al. Serum concentrations and tissue expression of a

- novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin Endocrinol 2009;71:369-75.
- 89. Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol 2016;78:223-41.
- 90. Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 2013;19:1147-52.
- 91. Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 2010;24:
- 92. Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 2009;150:4084-93.
- 93. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Investig 2005;115:1627-35.
- 94. Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in

- insulin-resistant mouse models-association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab 2009;297:E1105-14.
- 95. Li X, Ge H, Weiszmann J, Hecht R, Li YS, Veniant MM, et al. Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice. FEBS Lett 2009;583:3230-4.
- 96. Thakore JH, Mann JN, Vlahos I, Martin A, Reznek R. Increased visceral fat distribution in drug-naive and drug-free patients with schizophrenia. Int J Obes Relat Metab Disord 2002;26:137-41.
- 97. Ryan MC, Collins P, Thakore JH. Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry 2003;160:284-9.
- 98. Verma SK, Subramaniam M, Liew A, Poon LY. Metabolic risk factors in drug-naive patients with first-episode psychosis. J Clin Psychiatry 2009;70:997-1000.
- 99. Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010;90:285-326.
- 100. Pacheco-Lopez G, Giovanoli S, Langhans W, Meyer U. Priming of metabolic dysfunctions by prenatal immune activation in mice: relevance to schizophrenia. Schizophr Bull 2013;39:319-29.