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Abstract

Introduction: Consumer wearables increasingly provide
users with Composite Health Scores (CHS) – integrated bio-
metric indices that claim to quantify readiness, recovery,
stress, or overall well-being. Despite their growing adoption,
the validity, transparency, and physiological relevance of
these scores remain unclear. This study systematically evalu-
ates CHS from leading wearable manufacturers to assess their
underlying methodologies, contributors, and scientific basis.
Content: Information was synthesised from publicly avail-
able company documentation, including technical white pa-
pers, user manuals, app interfaces, and research literature
where available. We identified 14 CHS across 10 major wear-
ablemanufacturers, including Fitbit (Daily Readiness), Garmin
(Body Battery™ and Training Readiness), Oura (Readiness and
Resilience), WHOOP (Strain, Recovery, and Stress Monitor),
Polar (Nightly Recharge™), Samsung (Energy Score), Suunto
(Body Resources), Ultrahuman (Dynamic Recovery), Coros
(Daily Stress), and Withings (Health Improvement Score). The
most frequently incorporated biometric contributors in this

catalogue of CHS were heart rate variability (86%), resting
heart rate (79%), physical activity (71 %), and sleep duration
(71 %). However, significant discrepancies were identified in
data collection timeframes, metric weighting, and proprietary
scoring methodologies. None of the manufacturers disclosed
their exact algorithmic formulas, and few provided empirical
validation or peer-reviewed evidence supporting the accuracy
or clinical relevance of their scores.
Summary and outlook: While the concept of CHS represent
a promising innovation in digital health, their scientific
validity, transparency, and clinical applicability remain
uncertain. Future research should focus on establishing
standardized sensor fusion frameworks, improving algo-
rithmic transparency, and evaluating CHS across diverse
populations. Greater collaboration between industry, re-
searchers, and clinicians is essential to ensure these indices
serve as meaningful health metrics rather than opaque
consumer tools.

Keywords: wearable technology; digital health; heart rate
variability; consumer wearables

Introduction

The release of the Fitbit Classic in 2009 was a watershed
moment in the adoption of self-tracking technologies, cat-
alysing a shift from niche interest to widespread main-
stream acceptance [1–4]. Initially embraced by a small
community of enthusiasts [5], wearable devices have since
become a central part of many people’s lives, enabling
users to monitor their physical activity, sleep, and overall
health [4, 6]. This shift reflects broader societal trends to-
ward personalization and data-driven insights in health
and wellness management. In 2024, over half the popula-
tion in many countries owned a wearable device, with
projections suggesting global smartwatch users will exceed
740 million by 2029 [7]. This growth underscores the
increasing demand for accessible, real-time health moni-
toring and the growing role wearables play in bridging the
gap between individual health behaviours and data-driven
insights [8, 9].
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The early iterations of consumer wearables relied on
relatively simple sensing technologies, such as the single
triaxial accelerometer embedded in the Fitbit Classic, which
was used to estimate physical activity (steps taken), energy
expenditure, and sleep patterns [10]. These early devices
provided basic insights that encouraged users to engagewith
their health in novel ways [11]. However, in the ensuing
decade, the capabilities of modern wearables advanced
dramatically, integrating multi-sensor fusion techniques to
capture an extensive array of physiological datawith greater
accuracy and resolution [12]. For instance, international
measurement units (IMUs) containing triaxial accelerome-
ters and gyroscopes allow for the detailed measurement of
spatiotemporal and biomechanical outcomes, facilitating
insights into gait and movement patterns [13, 14]. Bio-
impedance sensors provide estimations of body composi-
tion, including metrics like body fat percentage and
hydration levels [15], while photoplethysmography (PPG)
sensors enable continuous tracking of heart rate, respiratory
rate, and blood oxygen saturation [16]. Electrocardiogram
(ECG) sensors are now a standard feature in many devices,
enabling real-time monitoring of cardiac rhythm [17].

These technological advancements have broadened the
applications of wearables across research, clinical, personal
health, and sporting contexts. In research, wearables are
increasingly used to collect longitudinal health data at scale,
enabling the study of patterns and trends in diverse pop-
ulations [18–21]. Clinically, they provide opportunities for
remote patient monitoring [22–24], predicting patient out-
comes [22, 25–27] and depression [28], and personalising
treatment strategies [29, 30]. For individual users, modern
wearables offer insights into relevant health metrics, facili-
tating changes in behaviour that can lead to increased
physical activity [31], improved fitness [31, 32] and wellness
[33, 34]. In sporting contexts, wearables have been used to
monitor player movements [35], workloads [36], and bio-
metric markers [37, 38].

The implementation of consumerwearables in research
contexts is increasingly being founded on well-established
theoretical principles, with best-practice methodologies to
ensure the robustness of findings [39–42]. However, an
emerging category of wearable derived biometric outcomes
has received comparatively less scientific scrutiny: Com-
posite Health Scores (CHS) [43]. Unlike traditional biometric
measures that directly quantify physiological parameters
such as heart rate or respiratory rate, CHS integratemultiple
data streams using signal fusion techniques to generate
composite indices [43]. These indices are designed to provide
users with a simplified yet comprehensive assessment of
their overall health, recovery, or readiness for activity.
By distilling complex physiological data into an intuitive

format, CHS aim to enhance user engagement and facilitate
health-related decision-making.

CHS have become a prominent feature in several con-
sumer wearables. For example, Fitbit’s Daily Readiness
score integrates sleep patterns, resting heart rate and heart
rate variability to assess physical preparedness [44]. Gar-
min’s Body Battery™ combines stress, recovery, and phys-
ical activity data to estimate energy reserves [45], while
Oura’s Readiness Score leverages sleep quality, heart rate
variability, and activity metrics to provide insights into
recovery [46]. Similarly, WHOOP’s Strain metric focuses on
cardiovascular exertion, ostensibly helping users optimize
performance and avoid overtraining [47]. While these
indices are marketed as user-friendly tools for under-
standing health and performance, important gaps remain
in our understanding of their contributors, calculations,
and scientific validation. The algorithms underpinning
these indices are often proprietary, limiting transparency
regarding which metrics are prioritized, how they are
weighted, and whether the resulting scores align with
physiological realities [43]. Furthermore, it is unclear
whether these indices have undergone rigorous validation
in diverse populations or under varying physiological
conditions, raising concerns about their generalisability
and reliability [43]. Despite these limitations, CHS are now a
common feature in consumer wearables, and many users
rely on them to guide their training and lifestyle decisions
[48].

This review seeks to address these knowledge gaps by
systematically evaluating CHS in consumer wearables. Spe-
cifically, it aims to (1) identify and categorize the biometric
and algorithmic components underpinning these scores,
detailing the physiological signals they incorporate; (2)
assess transparency regarding their methodologies,
including disclosure of calculation processes, metric
weightings, and underlying assumptions; and (3) analyse
their intended purpose and utility, evaluating how manu-
facturers present these scores to users and whether their
implied applications align with established physiological
principles. The summary of this article is presented in
Figure 1.

Content

Study design & integrated health index
selection

This study employed a secondary analysis of data extracted
and synthesized as part of a previously published living
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umbrella review evaluating the accuracy of consumer
wearable devices [43] – primary research studies identified
as part of the living umbrella review were parsed for any
reference to a CHS. This was supplemented by an industry
report identifyingmajor wearable devicemanufacturers [7],
which ranked leading manufacturers of wearable devices

based on global market share. From this list, the top 10
consumer wearable device manufacturers were identified,
representing key stakeholders in the wearable technology
sector with substantial user bases, and their product docu-
mentation was screened for any reference to a CHS as
defined below.

Figure 1: Graphical representation of this study. Key points: (1) composite health scores (CHS) are widely used in consumer wearables but lack
transparency and empirical validation; (2) this review systematically evaluated 14 CHS across 10 manufacturers based on contributors, methodology, and
validation evidence; and (3) findings highlight major inconsistencies in metric integration, limited reproducibility, and the need for standardization.
Figure created with BioRender.
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Inclusion and exclusion criteria

Having first identified the most widely used consumer
wearable devices in the research literature [43] and the
companies with the largest market share [7], next, we
collated a list of the different indices. For the purposes of this
analysis, a CHS was defined as a composite measure derived
from the integration of multiple biometric signals, such as
heart rate variability, sleep metrics, physical activity, and
body temperature, into a single score that reflects general
health, recovery, or readiness for daily functioning.

Our inclusion criteria were as follows: 1) eligible CHS
were required to combine multiple biometric signals,
such as sleep metrics, heart rate variability, physical ac-
tivity, and stress, into a composite score reflecting gen-
eral health or readiness; 2) devices or platforms included
in this study were required to be commercially available,
with sufficient documentation detailing the components
of the CHS; this documentation could include technical
white papers, app screenshots, user manuals, or research
publications; and 3) the CHS were designed for general
health monitoring rather than sport-specific or
performance-focused applications, ensuring relevance to
a broader population.

Exclusion criteria were as follows: 1) single-construct
metrics that only incorporated one biometric contributor
(e.g., heart rate variability) or indices which focused solely
on sleep or physical activity in isolation; 2) metrics explicitly
tied to training load or other sport-specific performance
measures; 3) devices or platforms lacking any publicly
available information relating to CHS calculation or its
contributing metrics; and 4) research-grade devices, pro-
totypes or algorithms exclusively intended for clinical use
and unavailable to the general public.

Procedures for evaluation

The evaluation of CHS was conducted through a systematic
and structured approach designed to assess their contribu-
tors, methodologies, validation, and applicability. Data for
the evaluation were collected from publicly available sour-
ces, including technical white papers, patents, user manuals,
app screenshots and device interfaces, as well as research
studies and validation reports published by manufacturers
or independent investigators. Each index was analysed for
its intended purpose, the metrics it integrates, its calculation
methodology, and any available evidence supporting its
validity. Missing or proprietary information was explicitly
documented, and the implications of such gaps for scientific
and clinical use were synthesized.

Each index was first contextualized with an overview,
detailing its official name, the device or platform offering the
index, and its primary application, such as readiness
assessment, recovery monitoring, or general health evalua-
tion. The contributors to the index were then assessed,
focusing on the biometric signals integrated into the calcu-
lation, such as heart rate variability, sleep quality, physical
activity, and stress levels. For each contributor, the evalua-
tion considered its physiological relevance, the methods
used for data acquisition and processing, and any thresholds
or ranges associated with health outcomes, where available.

The calculation methodology of each index was then
examined to understand how contributors were integrated
into a composite score. This included an assessment of
whether specific weightings or algorithms were disclosed
andwhether the indices incorporated short-term, long-term,
or combinedmetrics. The scoring range and any interpretive
categories, such as readiness levels or energy states, were
documented and evaluated for their clarity and practical
utility.

Whether each index had undergone any internal or
independent validation was then assessed, provided this
information was publicly available. Available evidence
supporting the validity of the indices was synthesized,
including any independent validation studies and their
applicability across diverse populations or physiological
conditions. Practical applications were considered, with an
emphasis on the index’s utility for remote health moni-
toring, personalised health interventions, and general
wellness management.

Finally, the transparency of the index – the extent to
which it could be understood and replicated –was evaluated
by reviewing the availability of technical documentation
and the accessibility of detailed explanations regarding the
construction and interpretation of each index. The degree to
which manufacturers provided guidance to users, including
recommendations based on the scores, was also examined.
For indices with incomplete or proprietary data, the absence
of key details, such as algorithmic weightings or validation
data, was ascertained. The evaluation framework is sum-
marised in Table 1.

Analysis and narrative synthesis

We used the evaluation framework to categorize the indices
based on their primary purpose, the biometric contributors
they integrated, and the methodologies employed for score
calculation. A comparative approach was adopted to assess
the consistency and variation in how indices synthesized
physiological data into guidance or recommendations for
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the user. Particular focus was placed on understanding the
weighting and integration of individual contributors, such as
heart rate variability, sleep metrics, and physical activity,
within the composite scores. The scoring scales and their
interpretive categories were examined to evaluate their
clarity and practical implications for users.

Where information was missing or proprietary, its
absence was explicitly documented, and the potential con-
sequences for usability and scientific credibility were ana-
lysed. For example, indices with undisclosed algorithmic
methodologies were flagged as presenting challenges for
independent validation and reproducibility. Similarly, gaps
in validation data, particularly in diverse populations or
under varying physiological conditions, were noted as po-
tential limitations in the generalizability of the indices.

Evaluation of composite health scores in
consumer wearables

Overview

Fourteen CHS were identified across 10 major consumer
wearable device manufacturers, including Coros (Daily

Stress) [49], Fitbit/Google (Daily Readiness) [44], Garmin
(Body Battery™ and Training Readiness) [45, 50], Oura (Oura
Readiness Score and Resilience) [46, 51], Polar (Nightly
Recharge™) [52], Samsung (Energy Score) [53], Suunto (Body
Resources) [54], Ultrahuman (Dynamic Recovery) [55],
WHOOP (WHOOP Recovery, WHOOP Strain and the Stress
Monitor) [47, 56, 57] and Withings (Health Improvement
Score) [58].

These indices are broadly designed to aggregate
wearable-derived biometric data streams into guidance
or recommendations aimed at optimizing health, phys-
ical activity and mental performance. They variously
provide guidance on recovery, exercise, and rest, sup-
porting users in making lifestyle choices informed by
biometric data related to the cardiovascular system,
sleep, and physical activity. Personalised recommenda-
tions are a common feature of the indices, and are
intended to foster healthier habits and improved long-
term outcomes.

While each index integrates a variety of physiological
and behavioural metrics, none of the companies disclose
specific details about the algorithms or formulae used – nor
the relative weightings of individual metrics within the
overall score. The following sections expand upon the con-
tributors, calculation methodologies, and reproducibility of
these indices.

Contributors to composite health scores

The primary biometric signals incorporated in the
CHS were heart rate (86 % of CHS), heart rate variability
(86 % of CHS), resting heart rate (79 % of CHS), activity
(including, but not limited to, accelerometery derived
motion, step counts and energy expenditure estimates;
71 % of CHS), and sleep quantity (71 % of CHS). These were
followed by sleep quality/architecture (57 % of CHS), body
temperature (29 % of CHS) and respiratory rate (14 % of
CHS). Blood oxygen saturation, body morphology, blood
pressure and heart rhythm (ECG) each contributed once to
the various CHS.

Thus, the two sensing modalities underpinning the
greatest number of biometric signals are PPG –which is used
to capture heart rate, heart rate variability, respiratory rate
and blood oxygen saturation – and accelerometery, which is
used to capture movement, enabling assessment of activity
and sleep.

The sensing modalities and biometric signals
incorporated in the identified CHS are summarised in
Table 2.

Table : The framework used to evaluate the composite health scores.

Domain Description

Index overview General information about the index being
evaluated.

Name of index Official name of the index.
Device/platform Specific device or platform offering the index.
Purpose Intended application of the index (e.g., readiness,

recovery, health evaluation).
Contributors and
metrics

Key biometric contributors to the index and their
roles in the final score.

Calculation
methodology

Details how biometric signals are combined to
generate the index.

Integration of
contributors

Describes the integration process, including
weighting or algorithms, if available.

Time scales used Indicates the type of metrics (short-term, long-
term, or both) used in the calculation.

Score scale Documents the score range and its interpretive
categories.

Validation and
relevance

Evidence supporting the validity and reliability of
the index.

Transparency Assesses transparency in the construction and
documentation of the index.

Public documentation Reviews the availability of technical documents like
white papers or patents.

User guidance Evaluates how the manufacturer communicates
the index’s purpose and use to users.
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Comparative analysis

Calculation methodologies, timescales, and scoring

The calculation methodologies, timescales, and scoring ap-
proaches of the CHS vary across platforms but exhibit
several common features. First, the integration of physio-
logical and behavioural metrics is achieved through pro-
prietary algorithms which dynamically combine inputs to
generate composite scores. Metrics related to heart rate –

primarily resting heart rate and heart rate variability (which
is typically calculated using the root mean square of suc-
cessive differences between normal heartbeats [RMSSD]) –
are central to most calculations, seemingly carrying more
weight than other inputs. These PPG-derived outcomes
related to the cardiovascular system are variously combined
with different measures of accelerometery-derived physical
activity or ‘load’, to provide users with an overall sense of
recovery or readiness to perform or train.

For instance, Garmin’s Training Readiness [50] and
Oura’s Readiness Score [46] incorporate both short-term
metrics (e.g., previous day’s sleep and activity) and long-term
trends (e.g., 7-day heart rate variability averages or 14-day
activity data). Similarly, Polar’s Nightly Recharge™ [52] in-
tegrates heart rate variability and sleep metrics calculated
against a 28-day baseline, focusing on recovery insights over
a medium-term horizon. Fitbit’s Daily Readiness [44] com-
bines heart rate variability and resting heart rate with sleep
data over a 7-day baseline to inform users about how much
physical activity they should undertake that day, while
WHOOP’s Strain [47] integrates cardiovascular (from PPG-
derived heart rate) and muscular (from accelerometery-
derived activity) loads, which are adjusted based on indi-
vidual fitness levels and baseline data. WHOOP’s Recovery
index [57] also integrates heart rate variability, resting heart
rate, sleep quality, and respiratory rate to nominally provide
a daily score that quantifies how prepared an individual’s
body is to adapt to physical and mental stressors (later de-
vices by WHOOP, including the WHOOP 4.0, also in-
corporates blood oxygen levels and skin temperature for
enhanced sensitivity to illness). Withing’s Health Improve-
ment Score combines heart rate, physical activity, body
morphology and sleep data sub-scores to give users a “better
understanding what you can focus on to improve your
overall health score [58]”.

Most indices do not disclose the precise weightings of
their contributors. For example, Polar’s Nightly Recharge™
prioritizes “autonomic nervous system recovery metrics”
(PPG derived heart rate and heart rate variability) over sleep
metrics [52], while Fitbit’s Daily Readiness emphasizes heart
rate variability and sleep more than resting heart rate [44].

Similarly, Garmin’s Body Battery™ [45] and Samsung’s En-
ergy Score [53] highlight heart rate variability and stress
(typically extrapolated from heart rate and activity) as pri-
mary contributors but provide no specific details regarding
the exact interplay of these metrics.

The timescales used to calculate each score reflects both
short-term data and long-term trends. For example, short-
term data such as daily heart rate variability and the pre-
vious night’s sleep hold greater weighting in Ultrahuman’s
Dynamic Recovery [55] and Suunto’s Body Resources [54]
indices. Long-term trends, including rolling averages (e.g.,
7-day heart rate variability in Garmin’s Training Readiness
[50] or 28-day baselines in Polar’s Nightly Recharge™) [52],
provide context for variations froman established ‘baseline’.
WHOOP reports that their strain [47] and recovery [57] al-
gorithms prioritize immediate physiological responses,
reset scores with sleep cycles, and offer dynamic updates
throughout the day.

All of the scores are normalized to interpretable scales,
typically ranging from 0 to 100 (e.g., Fitbit Daily Readiness,
Garmin Training Readiness, Ultrahuman Dynamic Recov-
ery). WHOOP’s Strain Score uses a logarithmic scale of 0–21
[47], where higher strain values are progressively harder to
achieve, whereas Polar’s Nightly Recharge™ [52] Score cat-
egorizes recovery into six levels on a scale from −10 to +10
based on “autonomic nervous system charge” – calculated
through heart rate, heart rate variability (using RMSSD), and
breathing rate during the early sleep period – and “sleep
charge”. Interpretive categories such as “Optimal,” “Fair,”
and “Pay Attention” (Oura Readiness Score) or “Prime,”
“Moderate,” and “Poor” (Garmin Training Readiness) pro-
vide insights to help users adjust activity levels or prioritize
recovery. These interpretive categories are often color-
coded or accompanied by textual explanations, to aid us-
ability and understanding.

Transparency and validation

The proprietary nature of these algorithms significantly
limits transparency in how metrics are integrated and
weighted, raising challenges for scientific evaluation and
user trust. For example, Fitbit’s Daily Readiness Score [44]
does not disclose the relative contributions of HRV, sleep,
and resting heart rate, making it difficult for users or re-
searchers to understand its rationale. Garmin’s Body Bat-
tery™ [45] provides user-facing guidance on metrics like
stress and sleep but offers no detailed insights into its algo-
rithmic interactions, restricting independent validation.
Polar’s Nightly Recharge™ [52] and Oura’s Readiness Score
[46] include some white papers and/or validation frame-
works (theoretical, not empirical) for individual components
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such as heart rate variability or sleep detection algorithms
but lack comprehensive, independent assessments of their
composite readiness scores. For example, Polar’s Nightly
Recharge™ white paper states “there is no gold standard
method for assessing recovery […] however, Nightly
Recharge™ is based on up-to-date scientific knowledge of
stress and recovery, and it utilizes generally accepted tools

for measuring autonomic nervous system functioning and
nightly sleep in real-life settings” [59] – however, no citations
to any primary research are provided. Similarly, Ultrahu-
man’s Dynamic Recovery [55] leverages multiple inputs,
including heart rate variability, resting heart rate, and
“stress”, but its proprietary algorithm also lacks published
validation studies, limiting scientific scrutiny. This reflects a
broad trend among CHS, where theoretical underpinnings
are emphasized over empirical validation.

Finally, a number of CHS can only be accessed by paying
an app subscription fee, including Oura (for their Resil-
ience), WHOOP (WHOOP Recovery, WHOOP Strain and the
Stress Monitor) andWithings (for their Health Improvement
Score).

The different approaches employed by the companies to
calculate resting heart rate and heart rate variability are
displayed in Table 3.

The full comparison between the CHS is presented in
Table 4.

Discussion

Overview of composite health scores and key
contributors

This study sought to evaluate the design, contributors, and
validity of consumer wearable CHS, aiming to clarify their
construction and scientific basis. Our search of the scientific
literature and of leading device manufacturers, including
the available company documentation, identified 14 indi-
vidual CHS: Coros’ Daily Stress [49], Fitbit’s Daily Readiness
[44], Garmin’s Body Battery™ [45] and Training Readiness
[50], Oura’s Readiness [46] and Resilience [51] Scores, Polar’s
Nightly Recharge™ [52], Samsung’s Energy Score [53],
Suunto’s Body Resources [54], Ultrahuman’s Dynamic Re-
covery [55], WHOOP’s Recovery [57], Strain [47] and Stress
Monitor [56] and Withings’s Health Improvement Score
[58]. Through a systematic analysis of the methodologies
employed by these 10 manufacturers across their 14 indices,
we identified consistent trends in how these tools integrate
temporal biometric data streams – such as physical activity,
cardiovascular function, and sleep – into a composite score.

Our findings reveal that CHS incorporate diverse physi-
ological signals, including physical activity, bodymorphology,
blood oxygen saturation, blood pressure, heart rhythm (ECG),
heart rate, heart rate variability, resting heart rate, respira-
tory rate, sleep duration and quality, and body temperature.
However, while all of the CHS ostensibly transform different
variations of these complex physiological data into a discrete

Table : Approaches to heart rate variability (HRV) and resting heart rate
(RHR) calculation across consumer wearables.

Company HRV calculation RHR calculation

Coros rMSSD; manual – coros rec-
ommends “taking your HRV
measurement between :
and : in themorning” and
provides a series of steps to do
so.

Manual input or lowest
value recorded during sleep

Fitbit rMSSD; longest sleep
period > h in past  h

During sleep or periods of
wakeful inactivity with no
steps detected

Garmin rMSSD; continuous during
sleep, averaged across entire
sleep period with -min
windows

Lowest -min average in a
-h period

Oura rMSSD; mean of all -min
samples throughout sleep,
also reports maximum HRV

Average and lowest values
during sleep, sampled every
min

Polar rMSSD; -h window starting
min post-sleep onset

Average over -h period
starting min post-sleep
onset

Samsung Unspecified; continuous
monitoring available but un-
clear methodology

Measured throughout the
day during inactive periods;
methodology unspecified

Suunto rMSSD; continuous moni-
toring during sleep

Manual input or lowest
value recorded during sleep

Ultrahuman rMSSD; filters out motion pe-
riods during sleep, trends
emphasized over absolute
values

Measured during sleep; no
further details provided

WHOOP rMSSD; weighted towards last
slow-wave sleep period each
night

Weighted towards last slow-
wave sleep period each
night

Withings As of January , Withings
has not yet implemented HRV
measurement in their devices.

Manual reading or average
values during sleep.

HRV, heart rate variability; RHR, resting heart rate; rMSSD, root mean
square of successive differences; PPG, photoplethysmography. Footnote:
heart rate (HR) refers to the number of times the heart beats per minute
(bpm) and can fluctuate widely based on physical activity, stress, and other
factors throughout the day. In contrast, resting heart rate (RHR) represents
the heart rate during periods of complete rest, typically measured during
sleep or prolonged inactivity. Unlike HR, RHR is used as a baseline indicator
of cardiovascular fitness and overall health, with lower values generally
indicating better aerobic fitness and heart efficiency. For most composite
health scores (CHSs), RHR is calculated using data from sleep or wakeful
inactivity, filtered to exclude periods of movement or physiological stress.
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numerical value, the validity and robustness of their ap-
proaches is unclear. These tools are marketed as supporting
health monitoring, optimising performance, and promoting
recovery [44–47, 49–58] – and although specific metrics, such
as heart rate variability for stress monitoring [60], or actig-
raphy for sleep onset detection [61, 62], are underpinned by
robust empirical evidence, the composite indices themselves
have undergone little to no validation in the peer-reviewed
scientific literature [63, 64]. This is concerning given their
popularity among users [48], and their intended applicability
across diverse populations and physiological conditions. The
reliance on opaque algorithms also presents significant bar-
riers to independent scrutiny, hindering reproducibility and
raising concerns about the robustness of the outputs [65, 66].

Physiological rationale for resting heart rate
and heart rate variability

Findings from this analysis revealed that heart rate vari-
ability and resting heart rate were two of the most common
contributors to the different CHS; 86 % and 79 % of indices
incorporated resting heart rate and heart rate variability in
their calculations, respectively. This prominence reflects
their physiological significance; resting heart rate reflects
the intrinsic pace-making activity of the sinoatrial node,
which ismodulated by the balance between sympathetic and
parasympathetic inputs [67]. Under resting conditions,
parasympathetic dominance reduces the sinoatrial node’s
intrinsic firing rate (∼100 beats per minute) to typical values
of 50–70 beats per minute in the general population [67].
Higher resting heart rate is associated with lower cardiore-
spiratory fitness and less parasympathetic tone, while low-
ered values often indicate reduced sympathetic activity or
increased cardiovascular efficiency [68]. The inclusion of
resting heart rate in CHS is therefore well-justified, as it
provides a measure of baseline cardiovascular function
[68, 69].

However, resting heart rate alone is less sensitive to
acute physiological changes, such as an acute training
‘stress’, limiting its ability to capture dynamic autonomic
fluctuations [70, 71]. In contrast, heart rate variability
provides a more nuanced view of autonomic balance by
quantifying fluctuations in the time intervals between
successive heartbeats (RR intervals) [72]. Heart rate
variability directly reflects rapid, millisecond-scale ad-
justments in parasympathetic tone, particularly vagal
modulation during the respiratory cycle [71]. High heart
rate variability at rest indicates robust parasympathetic
activity and physiological adaptability, whereas low heart
rate variability is associated with stress, fatigue, and poor

health outcomes [70, 73] – although it should be noted that
what represents “high” and “low” are unique to the indi-
vidual [73]. Among the indices analysed, heart rate vari-
ability – more accurately termed pulse rate variability
because it is derived from PPG in wearables [74] – was
predominantly calculated using the root mean square of
successive differences (rMSSD) between heartbeats, a
standard method for capturing parasympathetic-driven
variability [71]. This approach is widely recognized for its
ecological validity over short- and ultra-short measure-
ment intervals (1–5 min), although not all popular con-
sumer wearables have adopted this approach [74].

The complementarity of resting heart rate and heart
rate variability underpins their integration into composite
indices. Resting heart rate captures slower, cumulative
changes in autonomic tone, such as those resulting from
chronic stress or shifts in fitness [68–70], while heart rate
variability provides a dynamic indicator of acute autonomic
responses [67, 71–73]. For example, heart rate variability
typically recovers more rapidly than resting heart rate
following intense exercise, reflecting transient physiological
states [71]. This temporal distinction supports the use of
heart rate variability as an indicator of readiness or recov-
ery, with resting heart rate providing context for longer-
term trends.

Variability in measurement protocols across
manufacturers

The measurement protocols for these metrics, however,
varied significantly across different companies and indices.
Some companies sample their heart rate data during
specific sleep periods to minimise confounding factors,
but differences in timing, duration, and algorithmic ap-
proaches were identified. For example, Fitbit’s Daily
Readiness Score calculates heart rate variability using the
longest period of sleep that exceeds 3 h [44], while Garmin’s
Training Readiness metric averages 5-minute heart rate
variability windows throughout a full night of sleep [50].
Oura’s Readiness Score computes heart rate variability as
the mean of all 5-minute samples across the entire sleep
period [46], whereas Polar’s Nightly Recharge™ focuses on
a 4-hour window beginning 30 min after sleep onset [52].
WHOOP’s Recovery and Stress Scores measure heart rate
variability during the final slow-wave sleep period [47, 56,
57], however the classification accuracy of WHOOP’s
actigraphy-derived sleep stage identification is unclear – it
is widely acknowledged that the accuracy of consumer
wearables for measuring sleep is poor [43]. In contrast,
Samsung’s Energy Score is based on continuous heart rate
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variability monitoring [53], but details on its integration
and calculation remain opaque; similarly, Ultrahuman’s
Dynamic Recovery Score detects deviations from user-
specific ‘baselines’ rather than absolute values [55] – but
the specific formulae and sampling periods were unclear.

Challenges with continuous monitoring and
signal validity

Compounding this issue is the fact that heart rate varia-
bility’s physiological link to parasympathetic activity is
only valid under specific conditions, typically at rest, and
artifacts introduced by daily activities such as swallowing,
talking, or drinking water can “break” this relationship
when heart rate variability is measured continuously [75,
76]. This makes composite metrics derived from 24/7 heart
rate variability data, such as stress and recovery scores,
scientifically questionable without proper contextualisa-
tion or validation.

The approach to calculating resting heart rate among
the different manufacturers was similarly inconsistent. Fit-
bit derives resting heart rate from data collected during
sleep or periods of inactivity throughout the day [44]. Gar-
min calculates resting heart rate as the lowest 30-min
average within a 24-h period [50], while Oura combines
nightly averages with the lowest resting heart rate sampled
every 10 min [46]. Polar’s Nightly Recharge™ incorporates
resting heart rate from a 4-hour window after sleep onset
which is similar to their approach to measuring heart rate
variability [52]. WHOOP, again calculates resting heart rate
during the same actigraphy-derived slow-wave sleep stage
as their heart rate variability calculation [47, 56, 57]. Sam-
sung measures resting heart rate continuously during pe-
riods of inactivity but does not disclose thresholds or
protocols [53], while Suunto allows users to input resting
heart rate manually or rely on the lowest value recorded
during sleep [54]. Taken together, the variability in algo-
rithms, for measuring heart rate variability and resting
heart rate bely any meaningful comparison between their
outputs; differences in sampling protocols, timing, and
integration strategies across platforms limit direct compa-
rability between the composite indices.

Concerns regarding scientific robustness
and real-world alignment

These discrepancies underscore broader uncertainties
regarding the validity, interpretability, and real-world impact
of each CHS. While marketed as objective indicators of

readiness, recovery, or stress, the inconsistencies in their
calculation methodologies – particularly in how and when
physiological signals such as heart rate variability, resting
heart rate, and activity levels are integrated – raise concerns
about their scientific robustness. The research in this field is
sparse, but the available studies highlight potential discon-
nects between CHS outputs and real-world physiological or
psychological states.

For example, a 2023 study of elite swimmers investi-
gated the relationship between wearable-derived physio-
logical metrics and metabolic and psychological stress
markers [63]. The study found a moderate positive correla-
tion between heart rate variability and relative resting
metabolic rate (r=0.448, p=0.032), suggesting that increased
heart rate variability may reflect some aspects of metabolic
function. However, no correlation was found between heart
rate variability and thyroid hormone levels or the resting
metabolic rate ratio, indicating that this wearable-derived
measure does not consistently alignwith broadermarkers of
energy availability. Furthermore, WHOOP’s recovery score
showed no correlation with metabolic suppression when
analyzing all participants together, and its relationship with
the resting metabolic rate ratio was only significant in male
swimmers (r=0.653, p=0.041), but not in females. The same
study also explored the relationship between wearable-
derived CHS metrics and self-reported stress levels. Heart
rate variability was negatively correlated with sport-specific
stress (r= −0.462, p=0.026) and total stress (r= −0.459,
p=0.028), supporting its role as a sensitive marker of auto-
nomic stress. However, WHOOP’s recovery score showed no
significant correlation with self-reported stress or recovery
measures in either sex, raising concerns about whether such
CHS outputs provide meaningful insights into psychological
stress or autonomic recovery.

Similarly, a 2025 study on Dutch police officers assessed
the relationship between wearable-derived stress scores
(including Garmin’s “Body Battery” metric) and subjective
stress perception [64]. The study found that wearable-based
stress metrics did not consistently align with users’ self-
reported experiences of stress and recovery. While using a
CHS-equipped wearable led to small but statistically signif-
icant improvements in stress awareness, self-efficacy, and
well-being (Hedges’ g=0.25–0.46, p<0.05), many participants
struggled to interpret their wearable-derived stress scores.
Some perceived their stress levels as high despite their CHS
metrics suggesting otherwise, and vice versa. Additionally,
while CHS use increased awareness of physiological trends,
this did not necessarily translate to significant behavioural
changes, reinforcing concerns that CHS alone may be
insufficient for guiding meaningful adaptations in stress
regulation or recovery behaviours.
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Multicollinearity and redundancy in CHS
calculations

Taken together, these findings emphasize the need for in-
dependent validation of CHS to determine whether they
provide physiologically and psychologically relevant in-
sights or whether their outputs may mislead users due to
misalignment with subjective experiences and established
physiologicalmarkers. Indeed, when considered in isolation,
a primary limitation of the CHS concept lies in the inherent
interdependence of the core metrics that contribute to their
overall scores. Many CHS exhibit an inherent bias due to
multicollinearity among their input metrics, such as sleep
duration and heart rate variability, which are often inter-
dependent. For instance, a poor night’s sleep typically results
in reduced heart rate variability, yet penalizing ‘readiness’
twice – once for low sleep quality and again for reduced
heart rate variability – introduces redundancy and amplifies
the negative score disproportionately. Conversely, if heart
rate variability remains within normal ranges despite poor
sleep, it suggests the user’s body has effectivelymitigated the
physiological impact of sleep disruption, making an addi-
tional penalty for poor sleep unnecessary. Such over-
penalization creates a false perception of precision but
often obscures the actual physiological response to stressors.
This limitation highlights a deeper issue in the design of CHS:
the tendency to conflate behavioural data with physiological
outcomes, resulting in outputs that are not wholly reflective
of the body’s actual state. Seventy-one percent of the indices
integrated physical activity and ‘stress’ (inferred based on
fluctuations in baseline heart rate taken throughout the
day), and 71 % integrated some construct of sleep – often
without adequately accounting for how an individual’s
physiology responds to these factors. For instance, if a user
undertakes a high-intensity workout, their physiological
readiness for subsequent activity should ideally be assessed
through a single measure like heart rate variability, which
reflects how well the body has assimilated the stressor [71,
73]. Penalizing readiness solely on the basis of high activity
data from the previous day, regardless of physiological re-
covery, undermines the purpose of measuring these signals.
By relying on behavioural data to infer physiological states,
CHSmay fail to capture the nuanced variability in individual
responses, limiting their utility for personalised health rec-
ommendations. Granted, several of the indices integrate
‘baseline’ measurements to contextualize short-term fluc-
tuations – Fitbit, Garmin, Oura, Polar, Ultrahuman and
WHOOP all incorporate user-specific baselines into their
calculations – but the lack of consistency in defining and
calculating baselines across platforms undermines our

ability to compare indices or draw meaningful conclusions
about their utility.

Lack of standardization and terminological
ambiguity

Ultimately, our synthesis cannot shed light on many of these
unknowns – and this reflects the primary limitation of this
work, and the field in general: the lack of transparency and
standardization among the CHS we evaluated. Despite their
widespread adoption and growing role in consumer health
monitoring [48, 65], the manufacturers provided limited
details about the algorithms underpinning these tools, how
often they change these algorithms, the rationale behind
their contributors, or the validity of their outputs in diverse
populations. Much of the data available for analysis was
derived from publicly accessible resources, such as user
manuals, white papers, and app interfaces, none of which
offered the level of detail necessary to fully evaluate the
scientific integrity of these indices.

A symptom of this lack of standardization is the ambi-
guity surrounding the terminology used in the different
indices. For example, while multiple manufacturers –

including Garmin, Fitbit, and Oura – use variations of the
term “readiness”, their calculation methodologies and
contributing metrics differ significantly. For instance, Fit-
bit’s Daily Readiness Score integrates heart rate variablity,
resting heart rate, sleep quantity, and sleep architecture,
whereas Garmin’s Training Readiness includes activity
levels and recent training load, and Oura’s Readiness Score
extends further to incorporate body temperature. Despite
their terminological similarity, these indices are not meth-
odologically equivalent, making direct comparisons difficult.
Users may reasonably assume that readiness scores from
different devices reflect comparable physiological con-
structs, yet differences in data sources, weightings, and
interpretation frameworks introduce inconsistencies that
challenge their scientific and practical applicability.

The net result of the lack of transparency it that key
questions about how the different contributors are
weighted, how composite scores are calculated, whether
any given score can be considered superior in terms of
validity, transparency, or scientific rigor, and whether
these scores align with physiological realities remain
unanswered. This lack of transparency has significant im-
plications for the scientific reproducibility and clinical
applicability of CHS. Without access to proprietary algo-
rithms or validation datasets, researchers and clinicians
cannot independently assess whether the scores produced
by CHS are meaningful, reproducible, or generalizable.
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This is particularly concerning given the inherent vari-
ability in physiological responses among individuals and
across populations. For example, metrics like heart rate
variability are highly sensitive to factors such as age, sex,
fitness level, and circadian rhythms [73], yet no evidence
was found to suggest that these factors are consistently
accounted for in the indices we reviewed. Similarly, the
reliance on fixed baselines for assessing deviations in
metrics like resting heart rate or heart rate variability may
not adequately capture the dynamic, context-dependent
nature of physiological responses, further limiting the
utility of these tools.

The absence of rigorous validation in diverse pop-
ulations also raises concerns about the equity of CHS. While
some indices may perform well in the demographic groups
most commonly represented in validation studies – typically
young, healthy, and predominantly male participants [77,
78] – there is little evidence to suggest that these tools are
reliable or accurate in populations with different charac-
teristics. For instance, older adults, individuals with chronic
conditions, and those from diverse racial or ethnic back-
grounds may exhibit physiological patterns that differ from
the normative baselines assumed by these algorithms.
Without targeted validation efforts, CHS risk perpetuating
biases that could undermine their utility for underserved
populations, further exacerbating health inequities in digital
health.

Implications for clinical, personal, and public
health use

These limitations have significant implications for the clin-
ical, telehealth, and personal utility of CHS. In remote health
monitoring and telemedicine, where CHS could serve as
potential digital biomarkers for assessing patient status,
their lack of validation across diverse populations in-
troduces risks of misclassification and inappropriate
decision-making. Cliniciansmay be reluctant to rely on these
scores for decision-making if the underlying methodologies
are unclear or if the indices have not been validated across a
sufficiently broad population. Moreover, without robust
evidence to support the accuracy and reliability of CHS, their
use in telehealth-based personalized health interventions or
disease prevention programs may lead to inconsistent or
inaccurate insights, potentially undermining trust among
users and healthcare providers alike. Fromapersonal health
perspective, CHS have the potential to empower individuals
by providing insights into their recovery, readiness, and
overall health status. However, the utility of these tools is
compromised when the outputs are overly complex,

insufficiently validated, or fail to alignwith the user’s unique
physiological profile. For example, indices that rely heavily
on behavioural data may penalize individuals who deviate
from normative patterns (e.g., athletes or shift workers),
despite maintaining adequate physiological recovery. To
maximize their utility, CHS must evolve to incorporate
individualized baselines and adaptive algorithms that ac-
count for user-specific responses to stress, recovery, and
activity. Future advancements in CHS may benefit from in-
dependent validation frameworks, industry-wide certifica-
tion standards, or structured regulatory oversight to ensure
their reliability and applicability without compromising
proprietary algorithms.

Summary and outlook

The core concept of a CHS – offering wearable device users
simplified interpretations of complex physiological data to
inform health-related decisions – is a promising innovation.
However, this analysis underscores significant gaps in the
transparency, standardization, and validation of consumer
wearable CHS. While metrics such as resting heart rate and
heart rate variability are well-supported by empirical evi-
dence, the proprietary algorithms underpinning CHS and
the lack of methodological disclosure hinder reproducibility
and independent scrutiny. Furthermore, the absence of
rigorous validation across diverse populations raises critical
concerns about generalizability and equity. The variability
inmeasurement protocols and integration strategies further
complicates comparability and reliability, ultimately
limiting both scientific and clinical confidence in these tools.
This lack of standardization undermines the scientific basis
of CHS and limits their long-term potential for clinical
adoption, personalized health management, and public
health applications. If CHS are to evolve beyond opaque
consumer-facing features into scientifically validated health
metrics, the field must shift from merely evaluating
industry-led innovations to defining best practices for their
development and deployment.
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