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Abstract: A topological group is strongly realcompact if it is topologically isomorphic to a closed subgroup of
a product of separable metrizable groups. We show that if H is an invariant Čech-complete subgroup of an
ω-narrow topological group G, then G is strongly realcompact if and only if G/H is strongly realcompact. Our
proof of this result is based on a thorough study of the interaction between the P-modification of topological
groups and the operation of taking quotient groups.
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1 Introduction
The concepts of strong realcompactness and strong Dieudonné completeness arise as an adaptation of the
well-known topological notions of realcompactness and Dieudonné completeness. We say that a topological
group G is strongly realcompact if it is topologically isomorphic to a closed subgroup of a product of second
countable topological groups. Similarly, G is strongly Dieudonné complete if it is topologically isomorphic to
a closed subgroup of a product of metrizable topological groups (see [5, 8]).

It is clear that strongly Dieudonné complete groups are ω-balanced, while strongly realcompact groups
are ω-narrow. Also, strong realcompactness implies strong Dieudonné completeness. Evidently, any discrete
group is metrizable and hence strongly Dieudonné complete, but it is strongly realcompact if and only if it is
countable. Therefore uncountable discrete groups are examples of strongly Dieudonné complete groups that
fail to be strongly realcompact. Let us note that both classes of topological groups are productive and stable
with respect to taking closed subgroups.

In this paper we analyze whether the classes of strongly realcompact or strongly Dieudonné complete
groups are closedwith respect to taking quotients and P-modifications. Our arguments are based on the study
of the question of when the P-modification of a quotient group G/H is naturally equivalent to the quotient
groupGω/Hω corresponding to the P-modifications of the groupsG andH. It turns out that the groups (G/H)ω
and Gω/Hω are topologically isomorphic provided that H is completely metrizable (Lemma 4.3) or if G is ω-
balanced and H is Čech-complete (Theorem 5.2).

It is shown in Theorem 4.5 that both classes of topological groups contain quotients with respect to Čech-
complete subgroups. In fact, we prove a more symmetric result: If G is an ω-narrow (ω-balanced) topolog-
ical group and H is an invariant Čech-complete subgroup of G, then G is strongly realcompact (strongly
Dieudonné-complete) if and only if the quotient group G/H is strongly realcompact (strongly Dieudonné-
complete). We also show in Example 4.6 that an extension of a compact group by a separable metrizable
group can fail to be strongly realcompact or even Dieudonné complete. It turns out that there exists a pseu-
docompact non-compact Abelian topological group G containing a closed separable metrizable subgroup H
such that the quotient group G/H is compact.
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In Section 5 we present conditions on a topological group G implying that every closed metrizable in-
variant subgroup H of G such that (G/H)ω ∼= Gω/Hω is completely metrizable, i.e. the completeness of H
in Lemma 4.3 is necessary provided H is metrizable. In particular we show in Corollary 5.5 that if H is a
closed, invariant, metrizable subgroup of a pseudocompact group G, then (G/H)ω ∼= Gω/Hω if and only if H
is compact. We also prove that the topological isomorphism (G/H)ω ∼= Gω/Hω holds true provided a closed
invariant subgroup H of G is either Čech-complete or pseudocompact (see Theorem 5.2 and Corollary 5.6).

2 Notation and terminology
We use I for the unit interval [0, 1], T for the unit circle, N for the set of positive integers, Z for the integers,
Q for the rational numbers, and R for the set of real numbers.

Let X be a space. As usual, we denote by w(X), nw(X), χ(X), ψ(X), d(X) the weight, network weight,
character, pseudocharacter, and density of X, respectively.

The boolean two-element group is denoted by Z2, while ω and c stand for the cardinality of N and R,
respectively.

Let G be a topological group with identity element e. We denote by NG(e) the family of open sets U in G
with e ∈ U. We use ϱG to denote the Răıkov completion of G. The union of a family of Gδ-sets in G is said
to be Gδ-open. A Gδ-closed set is the complement to a Gδ-open set. We denote by clδ(A) the Gδ-closure of a
subset A of X, i.e. the set of all x ∈ X such that every Gδ-open set in X containing x intersects A. We say that a
subset A of a space X is Gδ-dense in X if clδ(A) = X. The Gδ-closure of a topological group G in ϱG is denoted
by ϱωG. Clearly ϱωG is a subgroup of ϱG.

Let (X, τ) be a topological space. The topology on X generated by Gδ-subset of (X, τ) is denoted by τω.
The space Xω = (X, τω) is known as the P-modification of X.

We say that a propertyP is a three space property if for every topological group G and every closed invari-
ant subgroup H of G such that H and G/H have P, the group G also has P.

3 P-modifications of strongly realcompact and strongly Dieudonné
complete groups

Many topological properties are not preserved under taking the P-modification. As examples we canmention
density, cellularity, compactness, connectedness, and so on. However it is proved in [4, Theorem 8] that the
P-modification of a Răıkov complete topological group is again Răıkov complete. In this section we charac-
terize strong realcompactness and strong Dieudonné completeness of topological groups in terms of their
P-modifications.

Let us start with a lemma.

Lemma 3.1. Let G beanω-balanced topological group. Then the group Gω, the P-modification of G, is balanced.

Proof. Let U be an open neighborhood of the identity element e in Gω. We can assume that U =
⋂︀
n∈ω Un,

where Un is an open subset of G, for each n ∈ ω. As G is ω-balanced, for each n ∈ ω there is a countable
family 𝛾n of openneighborhoods of e inG such that for each x ∈ G one canfindO ∈ 𝛾n satisfying xOx−1 ⊂ Un.

Let Vn =
⋂︀

𝛾n. For each n ∈ ω, Vn is a Gδ-set in G with the property that for every x ∈ G, xVnx−1 ⊂ Un.
Let V =

⋂︀
n∈ω Vn. It is clear that V is a Gδ-set in G containing e. Hence V is an open neighborhood of e in Gω

satisfying xVx−1 ⊂ U for each x ∈ G. Thus the group Gω is balanced.

Let us note that there exists a topological group G such that Gω is balanced, but G fails to be ω-balanced.
Indeed, Pestov in [6] presents an example of a groupG of countablepseudocharacterwhich is notω-balanced.
Clearly the P-modification of G is discrete and hence balanced.
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It was proved in [4, Theorem 8] that if a topological group X is Răıkov complete, then Xω is also Răıkov
complete. In the lemma belowwe describe the Răıkov completion of the P-modification of a given topological
group.

Lemma 3.2. Let X be a topological group. Then ϱ(Xω) is topologically isomorphic to the P-modification of the
Gδ-closure of X in ϱX, i.e. ϱ(Xω) ∼= (ϱωX)ω.

Proof. It is clear that X is Gδ-dense in ϱωX and ϱωX is Gδ-closed in ϱX. Hence Xω is dense in (ϱωX)ω while
the latter group is closed in (ϱX)ω.

According to [4, Theorem 8] the group (ϱX)ω is Răıkov complete, and so is (ϱωX)ω. As Xω is dense in
(ϱωX)ω, we conclude that ϱ(Xω) = (ϱωX)ω.

The next two results show that the Răıkov completeness of Gω is an essential component in our characteri-
zations of strongly Dieudonné complete and strongly realcompact groups G.

Theorem 3.3. An ω-balanced group X is strongly Dieudonné complete if and only if Xω is Raı̆kov complete.

Proof. Suppose that X is strongly Dieudonné complete. By [8, Theorem 3.3], the equality X = ϱωX is valid. It
follows from Lemma 3.2 that ϱ(Xω) ∼= (ϱωX)ω = Xω. Hence the group Xω is Răıkov complete.

Conversely, if Xω is Răıkov complete, then Xω = ϱ(Xω) = (ϱωX)ω, whence it follows that X = ϱωX. Finally,
as X is ω-balanced, [8, Theorem 3.3] implies that X is strongly Dieudonné complete.

Unlike the case of ω-balancedness, the P-modification of an ω-narrow group can fail to be ω-narrow. The
topological group R with the usual topology is ω-narrow, but Rω is an uncountable discrete group, so it is
not ω-narrow.

The proof of the following fact is very similar to the proof of Theorem 3.3 and hence is omitted.

Theorem 3.4. An ω-narrow topological group X is strongly realcompact if and only if Xω is Raı̆kov complete.

It was proved in [8, Theorem 3.16] that an R-factorizable topological group G is strongly realcompact if and
only if G is a realcompact space. Since R-factorizable groups are ω-narrow and precompact groups are R-
factorizable [1, Corollary 8.1.17], Theorem 3.4 implies the following corollaries.

Corollary 3.5. An R-factorizable group G is realcompact if and only if the P-modification of G is Raı̆kov com-
plete.

Corollary 3.6. For every precompact topological group G, the following conditions are equivalent:
(i) G is realcompact.
(ii) The P-modification of G is Raı̆kov complete.

4 Quotients of strongly realcompact and strongly Dieudonné
complete groups

It is shown in [1, Corollary 7.6.19] that any topological group is a quotient of a zero-dimensional topological
group with countable pseudocharacter. Since every ω-balanced topological group of countable pseudochar-
acter is strongly Dieudonné complete [8, Theorem 3.4], we see that the properties of being strongly Dieudonné
complete or strongly realcompact are not invariant under taking quotient groups.

It turns out that quotients with respect to compact subgroups inherit both properties. According to [8,
Theorem 3.17], if H is a compact invariant subgroup of a topological group G, then G is strongly realcompact
(strongly Dieudonné complete) if and only if G/H is strongly realcompact (strongly Dieudonné complete).
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Our aim in this section is to extend this result to Čech-complete subgroups H. This requires several auxiliary
facts.

Our first lemma is evident and its proof is omitted.

Lemma 4.1. If H is an arbitrary subgroup of a topological group G, then the identity mapping of Hω onto the
corresponding subgroup of Gω is a topological isomorphism.

The next result is a key fact for the proof of Lemma 4.3.

Lemma 4.2. Let H be an invariant completely metrizable subgroup of a topological group G with identity e. Let
also {Vn : n ∈ ω} be a local base for H at e and {Un : n ∈ ω} a sequence of open symmetric neighborhoods
of e in G such that U2

n+1 ⊆ Un and Un ∩ H ⊆ Vn for each n ∈ ω. Then the subgroup P =
⋂︀
n∈ω Un of G satisfies

the equality PH =
⋂︀
n∈ω UnH.

Proof. It follows from the properties of the sequence {Un : n ∈ ω} that P =
⋂︀
n∈ω Un is a subgroup of G. It is

also clear that PH ⊂
⋂︀
n∈ω UnH. So it suffices to verify the inverse inclusion.

Take an arbitrary element x ∈
⋂︀
n∈ω UnH. For every n ∈ ω, choose elements yn ∈ Un and hn ∈ H such

that x = ynhn. We claim that {hn : n ∈ ω} is a Cauchy sequence in H. Indeed, let V be an open neighborhood
of e in H. There exists N ∈ ω such that VN ⊆ V. Takem, n ∈ ωwithm > N and n > N. We can assumewithout
loss of generality that n ≤ m. It follows from ymhm = x = ynhn that

y−1n ym = hnh−1m ∈ H ∩ U−1n Um = H ∩ UnUm ⊆ H ∩ U2
n ⊆ H ∩ Un−1 ⊆ VN .

Since H is invariant in G, a similar argument shows that ymy−1n ∈ VN provided thatm, n > N. This proves our
claim.

As the group H is completely metrizable, it follows from [1, Theorem 4.3.7] that H is Răıkov complete.
Hence the sequence {hn : n ∈ ω} converges in H, i.e. there exists h* ∈ H such that hn → h* for n → ∞.
Therefore, the elements yn = xh−1n converge to xh−1* . Since yk ∈ Un whenever k ≥ n, we conclude that xh−1* ∈
Un for each n ∈ ω, whence it follows that xh−1* ∈

⋂︀
n∈ω Un =

⋂︀
n∈ω Un = P. We have thus proved that

x ∈ Ph* ⊂ PH, which implies the required equality.

The following lemma prepares ground for the proof of Theorem 4.5.

Lemma 4.3. Let H be an invariant completely metrizable subgroup of a topological group G. Then the identity
mapping of Gω/Hω onto (G/H)ω is a topological isomorphism.

Proof. Denote by φ the identity mapping of Gω/Hω onto (G/H)ω. It is clear that φ is continuous, so it suf-
fices to verify that φ is open. Let π : G → G/H be the quotient homomorphism. The same homomorphism
considered as a mapping of Gω onto Gω/Hω will be denoted by πω. Clearly π and πω are continuous open
homomorphisms. Then p = φ ∘ πω is a continuous homomorphism of Gω onto (G/H)ω. The conclusion of
the lemma will follow if we prove that p is open since the latter means that φ is open as well. To this end it
suffices to present a local baseB at the identity e of the group Gω such that p(W) is open in (G/H)ω for each
W ∈ B.

Let {Vn : n ∈ ω} be a local base at the identity e in H. Take an arbitrary open set Q in Gω containing
e. Then there exists a sequence {On : n ∈ ω} of open neighborhoods of e in G such that

⋂︀
n∈ω On ⊂ Q. It

is easy to define by induction a sequence {Un : n ∈ ω} of symmetric open neighborhoods of e in G such
that U2

n+1 ⊂ Un ⊂ On and Un ∩ H ⊂ Vn for each n ∈ ω. Then P =
⋂︀
n∈ω Un ⊂ Q and Lemma 4.2 implies

that PH =
⋂︀
n∈ω UnH. The set R =

⋂︀
n∈ω π(Un) is an open neighborhood of the identity in (G/H)ω. We have

that p−1(R) =
⋂︀
n∈ω p

−1(π(Un)) =
⋂︀
n∈ω UnH = P, whence it follows that R = p(P). Hence p(P) is open in

(G/H)ω. We have thus proved that for every open neighborhood Q of e in Gω, the image p(Q) contains an
open neighborhood of the identity in (G/H)ω. Therefore the homomorphism p is open and φ is a topological
isomorphism, as claimed.

Combining Lemma 4.3 and several results from [7, 8] we prove the following theorem:
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Theorem 4.4. Let G be an ω-balanced (ω-narrow) group and H a completely metrizable invariant subgroup
of G. Then G is strongly Dieudonné complete (strongly realcompact) if and only if G/H is strongly Dieudonné
complete (strongly realcompact).

Proof. It suffices to prove the theorem in the case of strong Dieudonné completeness, the argument in the
case of strong realcompactness is almost the same. So we assume that that the group G is ω-balanced. Then
the quotient group G/H is also ω-balanced. According to [8, Theorem 3.3] we have to verify that if one of the
groups G or G/H is Gδ-closed in its Răıkov completion, then so is the other.

Let φ : ϱG → (ϱG)/H be the quotient homomorphism. If G/H is Gδ-closed in (ϱG)/H then G = φ−1(G/H)
is Gδ-closed in ϱG and, by [8, Theorem 3.3], G is strongly Dieudonné complete.

Now assume that G is Gδ-closed in ϱG. It follows from Lemma 3.2 that ϱ(Gω) = (ϱωG)ω = Gω, so the
group Gω is Răıkov complete. SinceH is metrizable, the groupHω is discrete and hence Čech-complete. By [7,
Theorem 11.18], the quotient group Gω/Hω is also Răıkov complete. Hence Lemma 4.3 implies that (G/H)ω ∼=
Gω/Hω is Răıkov complete and, therefore, the group G/H is strongly Dieudonné complete by Theorem 3.3.
The latter means that G/H is Gδ-closed in ϱ(G/H) ∼= (ϱG)/H.

Theorem 4.5. Let X be an ω-balanced (ω-narrow) group and H aČech-complete invariant subgroup of X. Then
X is strongly Dieudonné complete (strongly realcompact) if and only if so is X/H.

Proof. As in the proof of Theorem 4.4 we consider only the case of strong Dieudonné completeness. Let φ
be the canonical homomorphism of ϱX onto (ϱX)/H. Since H is Čech-complete, the quotient group (ϱX)/H is
Răıkov complete [7, Theorem 11.18]. So (ϱX)/H is the Răıkov completion of X/H. If X/H is strongly Dieudonné
complete, then it is Gδ-closed in (ϱX)/H by [8, Theorem 3.3] and hence X = φ−1(X/H) is Gδ-closed in ϱX. So
the same theorem implies that X is strongly Dieudonné complete.

Conversely, assume that X is Gδ-closed in ϱX. Since the group H is Čech-complete, it follows from [1,
Corollary 4.3.5] that there exists a compact subset C of H with a countable neighborhood base in H which
contains the identity element e of H. Let {On : n ∈ ω} be a family of open neighborhoods of e in X such that
{On ∩ H : n ∈ ω} is a base for C in H. Then C = H ∩

⋂︀
n∈ω On. Since X is ω-balanced, every neighborhood of

the identity e in X contains a closed invariant subgroup of type Gδ in X (see [1, Theorem 3.4.18]). Therefore, for
every n ∈ ω, there exists a closed invariant subgroup Pn of typeGδ in X satisfying Pn ⊂ On. Then P =

⋂︀
n∈ω Pn

is a closed invariant subgroup of type Gδ in X with P ∩ H ⊂ C.
It is clear that P∩H is a closed Gδ-set in H and in C. Since both C and its closed subset P∩H are compact,

the set P ∩ H has a countable neighborhood base in C. By the transitivity of character in Hausdorff spaces
we conclude that the compact subgroup N = P ∩ H of H has a countable neighborhood base in H. Since H
and P are invariant subgroups of X, so is the subgroup N. Hence the quotient group H/N is metrizable by [1,
Lemma 4.3.19].

The quotient homomorphism ofH ontoH/N is a perfectmapping, while perfectmappings preserve Čech-
completeness according to [2, Theorem 3.9.10]. Hence the group H/N is Čech-complete. Since the space H/N
is metrizable, we conclude that it is completely metrizable.

The quotient group X/N is strongly Dieudonné complete by [8, Theorem 3.17], and H/N is an invariant
completely metrizable subgroup of X/N. Hence Theorem 4.4 implies that the group X/H ∼= (X/N)/(H/N) is
strongly Dieudonné complete.

Suppose that η = {Gα : α ∈ A} is a family of topological groups and Πη =
∏︀
α∈A Gα is the topological product

of the family η. Then the Σ-product of η, denoted by ΣΠη, is the subgroup ofΠη consisting of all points g ∈ Πη
such that |{α ∈ A : πα(g) ≠ eα}| ≤ ω, where πα : Πη → Gα is the natural projection of Πη onto the factor Gα
and eα is the neutral element of Gα, for every α ∈ A. Similarly, the σ-product of η, denoted by σΠη, is the
subgroup of Πη consisting of all points g ∈ Πη such that |{α ∈ A : πα(g) ≠ eα}| < ω. It is easy to see that both
ΣΠη and σΠη are dense subgroups of Πη. A description of properties of these subgroups can be found in [1,
Section 1.6].

The following example shows that the properties of being strongly realcompact or strongly Dieudonné
complete are not three spaces properties.
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Example 4.6. There exists a pseudocompact non-compact topological Abelian group G containing a closed
separable metrizable subgroup H such that the quotient group G/H is compact. Hence G fails to be strongly
realcompact.

Proof. Let X be the group Zc
2, where c = 2ω, and let Y be the group Zω2 . Denote by [c]≤ω the family of all non-

empty countable subsets of c. It is clear that |[c]≤ω| = c. For every A ∈ [c]≤ω and u ∈ ZA2 , let C(A, u) = π−1A (u),
where πA : Zc

2 → ZA2 is the natural projection. Observe that the family E = {C(A, u) : A ∈ [c]≤ω , u ∈ ZA2 }
is of cardinality c. Let F be the product E × Y. It is clear that any point of Y is a Gδ-set and that |F| = c. Let
{(Eα , yα) : α < c} be an enumeration of F. By recursion on α < cwe define a subset {xα : α < c} of X such that
the following conditions hold for each α < c:
(i) xα ∈ Eα;
(ii) xα ∉ ⟨{xβ : β < α}⟩.

Condition (ii) is possible because |Eα| = 2c. For any y ∈ Y, the cardinality of the set {α : yα = y} is equal
to c. Let X̃ = {xα : α < c}. Define a mapping f : X̃ → Y by f (xα) = yα for each α < c. The set X̃ is linearly
independent by (ii), sowe can extend f to a homomorphism g of ⟨X̃⟩ to Y. Since every subgroup of the Boolean
group X is a direct summand in X, g extends to a homomorphism φ : X → Y.

Let P = {(x, φ(x)) : x ∈ X}. Observe that P is a Gδ-dense subgroup of X × Y. Indeed, let U be a non-empty
Gδ-subset of X×Y. Then there exist y ∈ Y, A ∈ [c]≤ω, and u ∈ Zω2 such that C(A, u)×{y} ⊂ U. There exists α < c

such that (Eα , yα) = (C(A, u), y). Then (i) implies that (xα , yα) ∈ U and, by our definition of φ, φ(xα) = yα,
whence (xα , yα) ∈ U ∩ P.

Let us put Z = σZω2 and H = {e}×Z, where e is the identity element of X. ThenH is a separablemetrizable
subgroup of X × Y. We define a subgroup G of X × Y as the sum G = P + H. Let p be the restriction to G of the
natural projection of X × Y onto the first factor X. Observe that G∩ ({e} × Y) = H, so H is a closed subgroup of
G. In particular G is a proper subgroup of X × Y. Since H is dense in {e} × Y, p is an open homomorphism of
G onto X (see [3, Lemma 1.3]). Therefore, the quotient group G/H is topologically isomorphic to the compact
group X.

As P is a Gδ-dense subgroup of the compact group X ×Y, we see that P is pseudocompact. Since P ⊂ G ⊂
X × Y, the group G is also pseudocompact. Finally, a pseudocompact space is realcompact iff it is compact,
so the group G cannot be either realcompact or strongly realcompact.

5 Quotients and P-modifications
It was shown in Lemma 4.3 that for any invariant completely metrizable subgroup H of a topological group
G, the quotient groups (G/H)ω and Gω/Hω are naturally isomorphic as topological groups. In this sections
we are going to extend this result to the case when H is Čech-complete.

We start with considering the case of a compact subgroup H of G.

Lemma 5.1. If K is a compact invariant subgroup of a topological group G, then the identity isomorphism of
Gω/Kω onto (G/K)ω is a topological isomorphism.

Proof. As in the proof of Lemma 4.3 it suffices to show the canonical homomorphism of Gω onto (G/K)ω, say,
p is open. Clearly p coincides pointwise with the quotient homomorphism π : G → G/K.

Let Q be a Gδ-set in G containing the identity e in G, say, Q =
⋂︀
n∈ω On, where On is open in G for each

n ∈ ω. We define by induction a sequence {Un : n ∈ ω} of symmetric open neighborhoods of e in G such
that U2

n+1 ⊂ Un ⊂ On for each n ∈ ω. Then C =
⋂︀
n∈ω Un is a closed subgroup of G satisfying C ⊂ Q. We claim

that p(C) =
⋂︀
n∈ω p(Un). Indeed, the inclusion p(C) ⊂

⋂︀
n∈ω p(Un) is evident. Conversely, take an arbitrary

element y ∈ p(
⋂︀
n∈ω Un). Then p

−1(y) ∩ Un ≠ ∅ for each n ∈ ω. Since K is compact, so is the fiber p−1(y).
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Clearly Un+1 ⊆ Un for each n ∈ ω, so p−1(y) ∩
⋂︀
n∈ω Un ≠ ∅ or, equivalently, p−1(y) ∩

⋂︀
n∈ω Un ≠ ∅. We

conclude that y ∈
⋂︀
n∈ω p(Un), whence our claim follows.

It follows from
⋂︀
n∈ω p(Un) = p(C) ⊂ p(Q) that the image p(Q) contains the open neighborhood⋂︀

n∈ω p(Un) of the identity in (G/H)ω, so the homomorphism p is open. This proves the lemma.

Theorem 5.2. Let H be an invariant Čech-complete subgroup of an ω-balanced topological group G. Then the
identity mapping of Gω/Hω onto (G/H)ω is a topological isomorphism.

Proof. The argument that follows is close to the proof of Theorem 4.5. Since the groupH is Čech-complete, we
can apply [1, Corollary 4.3.5] to find a compact subset C of H with a countable neighborhood base in H which
contains the identity element e of H. Let {On : n ∈ ω} be a family of open neighborhoods of e in G such that
{On ∩ H : n ∈ ω} is a base for C in H. Then C = H ∩

⋂︀
n∈ω On. Since G is ω-balanced, every neighborhood of

the identity e in G contains a closed invariant subgroup of type Gδ in G (see [1, Theorem 3.4.18]). Therefore, for
every n ∈ ω, there exists a closed invariant subgroup Pn of typeGδ inG satisfying Pn ⊂ On. Then P =

⋂︀
n∈ω Pn

is a closed invariant subgroup of type Gδ in G with P ∩ H ⊂ C.
It is clear that P∩H is a closed Gδ-set in H and in C. Since both C and its closed subset P∩H are compact,

the set P ∩ H has a countable neighborhood base in C. By the transitivity of character in Hausdorff spaces
we conclude that the compact subgroup K = P ∩ H of H has a countable neighborhood base in H. Since the
subgroups H and P of G are invariant in G, so is the subgroup K. Hence the quotient group H/K is metrizable
[1, Lemma 4.3.19]. The quotient homomorphism of H onto H/K is a perfect mapping, while perfect mappings
preserve Čech-completeness according to [2, Theorem 3.9.10]. Hence the group H/K is Čech-complete. Since
the space H/K is metrizable, we conclude that it is completely metrizable.

The final step in our argument is to apply the Second Isomorphism Theorem for topological groupswhich
implies that G/H ∼= (G/K)/(H/K). Since the subgroup K of G is compact, the identity mapping of Gω/Kω onto
(G/K)ω is a topological isomorphism, by Lemma 5.1. Similarly, the groups (H/K)ω and Hω/Kω are topologi-
cally isomorphic. Let H* = H/K and G* = G/K. Using this notation we have that G/H ∼= G*/H*, H*ω ∼= Hω/Kω
and G*ω ∼= Gω/Kω. We now apply Lemmas 4.3 and 5.1 along with the Second Isomorphism Theorem to con-
clude that

(G/H)ω ∼= (G*/H*)ω ∼= (Gω/Kω)/(Hω/Kω) ∼= Gω/Hω .

Thus the groups (G/H)ω and Gω/Hω are topologically isomorphic.

In Lemmas 4.3 and 5.1 the corresponding subgroups H and K of a topological group G are Răıkov complete. It
is also known that every Čech-complete group is Răıkov complete [1, Theorem 4.3.7]. Hence the subgroup H
of G in Theorem 5.2 is Răıkov complete as well. However, the natural equivalence of the groups (G/H)ω and
Gω/Hω does not imply the Răıkov completeness of H, even if H is separable and metrizable:

Proposition 5.3. If H and K are arbitrary topological groups and G = H × K, then the identity mapping of
Gω/Hω onto (G/H)ω is a topological isomorphism.

Proof. It is clear that G/H ∼= K, so (G/H)ω ∼= Kω. Since Gω ∼= Hω ×Kω, we see that Gω/Hω ∼= (Hω ×Kω)/Hω ∼=
Kω. Therefore the groups Gω/Hω and (G/H)ω are topologically isomorphic.

Under certain circumstances, the Răıkov completeness of a closed invariant subgroup H of a topological
group G becomes a necessary condition for the validity of the equivalence Gω/Hω ∼= (G/H)ω. In the following
proposition we show that this is the case when the group G is locally pseudocompact.

Proposition 5.4. Let H be a closed metrizable invariant subgroup of a locally pseudocompact topological
group G. Then the identity mapping of Gω/Hω onto (G/H)ω is a topological isomorphism if and only if the group
H is locally compact.

Proof. First we note that a locally compact metrizable group is completely metrizable. So the sufficiency part
of the propostion follows from Lemma 4.3, even without the assumption that G is locally pseudocompact.
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Hence we assume that the groups Gω/Hω and (G/H)ω are topologically isomorphic, where the subgroup H
of G is metrizable. The Răıkov completion of G, ϱG, is a locally compact group. Since the group ϱH is topo-
logically isomorphic to the closure of H in ϱG and this closure is an invariant subgroup of ϱG, we see that the
canonical embedding of G/H to ϱG/ϱH is a topological isomorphism from G/H onto its image (see [1, Theo-
rem 1.5.16]). Notice that the group ϱH is metrizable and locally compact, so it is completely metrizable. Hence
Lemmas 4.1 and 4.3 imply that (G/H)ω is a topological subgroup of the group (ϱG/ϱH)ω ∼= (ϱG)ω/(ϱH)ω.
Since the groups Gω/Hω and (G/H)ω are topologically isomorphic, we see that the natural embedding of
Gω/Hω to (ϱG)ω/(ϱH)ω is a topological isomorphism from Gω/Hω onto its image or, equivalently, the restric-
tion to Gω of the quotient homomorphism πω : (ϱG)ω → (ϱG)ω/(ϱH)ω, say, φ is an openmapping of Gω onto
the subgroup πω(Gω) of (ϱG)ω/(ϱH)ω and πω(Gω) ∼= Gω/Hω.

Finally, the locally pseudocompact group G meets every non-empty Gδ-set in ϱG (see [1, Problem 3.7.J]),
i.e. Gω is a dense subgroup of (ϱG)ω. Since the homomorphism φ is open, [1, Theorem 1.5.16] implies that
Hω = (ϱH)ω ∩ Gω is dense in (ϱH)ω. Notice that the group (ϱH)ω is discrete since ϱH is metrizable. Hence
Hω = (ϱH)ω, i.e. H = ϱH. In other words, the group H is Răıkov complete. Hence H = ϱH is a closed subgroup
of the locally compact group ϱG, whence the local compactness of H follows.

Let us note that every precompact Abelian group is topologically isomorphic to a closed subgroup of a pseu-
docompact (connected) Abelian group [9]. Hence the following corollary describes quite a common situation.

Corollary 5.5. Let H be a closedmetrizable invariant subgroup of a pseudocompact topological group G. Then
the identity mapping of Gω/Hω onto (G/H)ω is a topological isomorphism if and only if the group H is compact.

Proof. According to Proposition 5.4, the groups Gω/Hω and (G/H)ω are topologically isomorphic iff H is lo-
cally compact. The group H is precompact as a subgroup of the pseudocompact group G. The required con-
clusion now follows from the fact that precompact locally compact topological groups are compact.

The corollary below extends Lemma 5.1 to a slightly more general case.

Corollary 5.6. Let K be a closed invariant pseudocompact subgroup of a topological group G. Then the identity
mapping of Gω/Kω onto (G/K)ω is a topological isomorphism.

Proof. Let ϱG be the Răıkov completion of the group G. Then the closure of K in ϱG is a compact group
topologically isomorphic to ϱK. Denote by π the quotient homomorphism of ϱG onto ϱG/ϱK and let G* =
π−1π(G). Then G ⊂ G* ⊂ ϱG. Since K is pseudocompact it meets every non-empty Gδ-set in ϱK. Hence G
meets every non-empty Gδ-set in G* = G · ϱK. Since K is dense in ϱK, the restriction of π to G is a continuous
open homomorphism of G onto π(G) ∼= G/K and, similarly, G*/ϱK ∼= π(G) ∼= G/K. The group ϱK is compact,
so Lemma 5.1 implies that

(G/K)ω ∼= (G*/ϱK)ω ∼= (G*)ω/(ϱK)ω . (1)

We know that G is Gδ-dense in G* and K is Gδ-dense in ϱK, i.e. Gω is dense in (G*)ω and Kω is dense in
(ϱK)ω. Hence (G*)ω/(ϱK)ω ∼= Gω/Kω by virtue of [1, Theorem 1.5.16]. The latter fact and (1) together imply
that (G/K)ω ∼= Gω/Kω.
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