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Abstract: This paper is concerned with a procedure for financial time series clustering, aimed at creating
groups of time series characterizedby similar behaviorwith regard to extreme events. The core of our proposal
is a double clustering procedure: the former is based on the lower tail dependence of all the possible pairs of
time series, the latter on the upper tail dependence. Tail dependence coefficients are estimated with copula
functions. Thefinal goal is to exploit the two clustering solutions in an algorithmdesigned to create a portfolio
that maximizes the probability of joint positive extreme returns while minimizing the risk of joint negative
extreme returns. In financial crisis scenarios, such a portfolio is expected to outperform portfolios generated
by the traditional methods. We describe the results of a simulation study and, finally, we apply the procedure
to a dataset composed of the 50 assets included in the EUROSTOXX index.
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1 Introduction

In the analysis of the relationship between financial returns, the lower tail dependence quantifies the risk of
investing on assets for which extremely negative returns could occur simultaneously. This is a very important
issue for portfolio selection. Financial institutions have to offer to their customers the chance of investing
money in a number of assets. But these assets should be poorly associated in the negative performances, in
the sense that a fall in the quotations of an asset should not affect the quotations of the other assets. In or-
der to have a measure of the association between two assets, some classical statistical tools are inadequate.
The correlation coefficient is the main measure of association for quantitative data, but it has revealed its
limit in this context. The correlation coefficient summarizes the linear relationship between two variables
considering the entire probability distributions. However, in presence of non-linear relationships and when
the interest is focused on the extremely low values of the variables, it is appropriate to adopt some specific
association measures (see [16] for a comprehensive survey). In recent years literature has given much im-
portance to the tail dependence, that is, the dependence between extreme values (see [18]). In particular,
we can consider the upper tail dependence, when the interest lies in the very high values, and the lower tail
dependence, when the interest is in the very low values.

Portfolio selection techniques are heavily affected by the estimated association of the potential assets.
The classical approach has been designed by Markowitz [21] and is known as mean-variance approach (the
resulting portfolio is known as mean-variance portfolio). Given n assets, the rationale of the mean-variance
approach is that of choosing the weights of the assets, in such a way that the resulting portfolio has a specific
expected value and the lowest possible variance. Since the variance is an indicator of the variability, and then
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of the risk, the solution of the Markowitz problem provides a diversified portfolio satisfying a fairly general
criterion of minimization of the risk, based on linear correlation as association measure between returns.
However, in the last decades a number of contributions has been presented in literature enriching the range
of opportunities. Another measure of risk built on the entire distribution of the returns has been proposed
by Bernardo and Ledoit [3], and later popularized by Keating and Shadwick [19] as Omega. A largely used
alternative approach is the minimization of the Conditional Value-at-Risk (CVaR). The Value-at-Risk (VaR) is
certainly the most popular measure of financial risk, largely used by financial institutions. It is defined as a
threshold loss value, such that the loss on the portfolio over a given time horizon can exceed this value with
a given (low) probability. The CVaR is the expected loss given that a loss greater than the VaR has occurred.
The problem of minimizing the CVaR has been introduced by Rockafellar and Uryasev [24] and Krokhmal,
Palmquist and Uryasev [20].

When the aim is the composition of a portfolio with low association in the extremely low values of the
assets, the lower tail dependence coefficient has adominant role. In [6]wehaveproposed to classify the assets
in groups according to their association between very low returns, measured by the lower tail dependence
coefficient. As a result, we have clusters composed of assets with a strong association between extremely low
returns, while the assets belonging to different groups present a weak association between extremely low
returns. The topic has been also faced by other authors. In [13], Durante, Pappadà and Torelli have proposed
to carry out a clustering procedure based on the conditional Spearman’s correlation coefficient, and in [14]
they have suggested a non-parametric estimation of the tail dependence coefficients, while in [12] Durante
and Pappadà have clustered time series according to the pairwise Kendall distribution. A different approach
has been studied by DiTraglia and Gerlach [11] exploiting a result from Extreme Value Theory to estimate the
tail dependence and use it in portfolio selection.

The problem of time series clustering has also been explored in the literature from different perspectives;
see, e.g., [2, 4, 5, 15, 22, 23, 25].

In terms of portfolio selection, we have introduced in [6] the strategy of picking one asset from each of the
groups, such that the resulting portfolios are composed of assetswith a lowprobability of a joint collapse. The
weights of the selected assets are estimated using one of the known techniques. This research line has been
further developed in [9] pursuing the idea that the lower tail dependence coefficients are not time-invariant,
but have their own dynamics. As a result, the possible portfolios one can compose also change over time.

Up to now, the strategies proposed in this framework are designed to take into account only the depen-
dence of returns in the lower tail, as it is considered the most crucial issue to prevent severe losses from
occurring in financial crisis periods. In this paper we propose to go beyond this point and take into account
the association of returns both in the lower and in the upper tail, so as to compose portfolios able to protect
against crisis periods, while taking the best of booms. In detail, we present a development of the basic strat-
egy ‘pick one asset from each cluster’, proposed in [6, 9]. More specifically, we propose to exploit the results
of a second clusterization of the same assets based on the upper tail dependence coefficients. The idea is that
of selecting assets which belong to different lower tail dependence-based clusters and, possibly, to a unique
upper tail dependence-based cluster. If the last condition cannot be satisfied, we request to get as close as
possible. In this case, for each possible selection derived from the lower tail dependence-based clusters, we
compute the heterogeneity Gini index according to the position of the assets in the upper tail dependence-
based clusters. At the end we opt for the selection which minimizes the Gini index. The rationale behind
this strategy is that of selecting a well-diversified portfolio for crisis period that, at the same time, can take
advantage of positive extreme events.

The paper is organized as follows. Section 2 describes the clustering procedure and presents themethods
for finding the weights to compose a portfolio. In Section 3 the results of an extensive simulation study are
illustrated. An application to a real dataset is discussed in Section 4 and, finally, Section 5 concludes.
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2 Time series clustering on tail dependence

In this paper we refer to the clustering procedure proposed in [6], where time series of financial returns are
clustered using a dissimilarity measure based on tail dependence coefficients, focusing either on the lower
or on the upper tail. The dissimilarity measure is defined as

δ̂({rit}, {rjt}) = δ̂ij = − log(λ̂ij),

where {rit}t=1,...,T and {rjt}t=1,...,T denote the time series of returns of two assets i and j, and λ̂ij is their esti-
mated (lower or upper) tail dependence coefficient. For details about the estimation of tail dependence coef-
ficients by means of copula functions, see [16, 17].

Given the time series of the returns of p assets, in the following we will denote by Λ̂ the p × p symmetric
matrix containing the (upper or lower) tail dependence coefficients between all the possible pairs of returns.
The diagonal of Λ̂ is composed of ones. Later, when we will need to distinguish between lower and upper tail
dependence, the matrix will be denoted as Λ̂L and Λ̂U , respectively.

Given Λ̂, the clustering procedure is composed of two steps. In step 1, starting from the dissimilarity
matrix ∆̂ = (δ̂ij)i,j=1,...,p = − log(Λ̂), an optimal representation of the p time series {r1t}, . . . , {rpt} as p points
y1, . . . , yp in ℝq is found by means of multidimensional scaling (MDS). The term optimal means that the
Euclidean distance matrix D = (dij)i,j=1,...,p, with dij = ‖yi − yj‖, of the p points y1, . . . , yp in ℝq has to fit
as closely as possible the dissimilarity matrix ∆̂. The extent to which the interpoint distances dij “match” the
dissimilarities δ̂ij is measured by an index called stress, which should be as low as possible. The algorithm
of MDS works for a given value of the dimension q, which has to be given in input. So, it is proposed to start
with the dimension q = 2 and then to repeat the analysis by increasing q until the minimum stress of the
corresponding optimal configuration is lower than a given threshold ̄s. In step 2, the p points y1, . . . , yp
in ℝq are clustered using a k-means algorithm. In [6] we have shown simulation studies where this two-
step procedure outperforms the application of hierarchical clustering directly on the dissimilarity matrix ∆̂.
However, this is still an open issue. For example, Durante, Pappadà and Torelli [13, 14] propose a similar
approach where the use of hierarchical clustering instead of the k-means algorithm allows them to avoid the
MDS step.

The clusters obtained with this procedure are composed of assets characterized by high tail dependence
in the (lower or upper) tail. We point out (see [6–9]) that the clustering solution may be exploited for a pre-
liminary decision about which stocks should be included in a portfolio. In other words, the idea is to use the
clustering solution to select a small number of stocks to invest on, from among the p stocks available. Then,
a portfolio is constructed by estimating proper weights using the common portfolio selection techniques (see
Section 2.1).

When the clustering solution based on the lower tail is used, the selection is made by including in the
portfolio assets belonging to different lower tail-based clusters, that allows to counterbalance possible ex-
treme losses. On the other hand, the clustering solution based on the upper tail may be used, as well. In this
case the opposite strategy should be followed: investing on assets belonging to the same upper tail-based
cluster allows to take advantage of simultaneous extreme profits. In [6–9] we have shown examples where
portfolios including the stocks selected by means of lower tail-based clusters outperform the classical port-
folio selection strategies. Instead, the performance of portfolios built relying on the upper tail-based clusters
hasnot been explored so far, because the latest years financial situation suggested to protect frombears rather
than take advantage of bulls.

In this paperwe propose to select the stocks to include in the portfolio relying both on the lower tail-based
and upper tail-based clusters. Again, a defensive approach is adopted, in the sense that the upper tail-based
clusters are used as a second-best criterion to be exploited once the requirements based on the lower tail-
based clusters have been fulfilled.

The proposed procedure is described in the next subsection.
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2.1 Portfolio selection based on upper and lower tail dependence

Here we describe the procedure proposed to select the stocks to include in the portfolio, by exploiting both
the lower tail-based and the upper tail-based clustering solution. Let GL1, GL2, . . . , GLKL and GU1, GU2, . . . ,
GUKU be, respectively, the lower tail-based and the upper tail-based clustering solution, obtained by carrying
out the procedure described in Section 2 on p time series of returns {rit}, t = 1, . . . , T, i = 1, . . . , p. The
generic GLkL and GUkU , kL = 1, 2, . . . , KL and kU = 1, 2, . . . , KU , denote the set of stocks included, re-
spectively, in the kLth cluster of the lower tail-based solution and in the kU th cluster of the upper tail-based
solution.

The selection proceeds through three steps:
(i) First selection, based on GL1, GL2, . . . , GLKL : the selection criterion based on the lower tail-based clus-

tering solution requires to include in the portfolio stocks belonging to different clusters, thus avoiding
to invest on assets that could be characterized by simultaneous extreme losses. We denote by nkL the
number of stocks belonging to cluster kL, i.e. the cardinality of the set GkL . Then the criterion allows
us to define, on the whole, S(0) = ∏KL

kL=1 nkL possible portfolios composed of KL stocks. We denote by
C(0) = {C(0)1 , C(0)2 , . . . , C(0)S(0) } the set of all possible candidate portfolios, that will simply be called candi-
dates in the following.

(ii) Second selection, based on GU1, GU2, . . . , GUKU : at the second stepwe select, fromC(0), a subset of can-
didates that exhibit desirable features according to the upper tail-based clustering solution. Specifically,
when the upper tail is considered, a reasonable criterion consists of including in the portfolio stocks be-
longing to the same cluster, so as to invest on assets that could be characterized by simultaneous extreme
profits. So, the idea is to select from C(0) the candidates composed of stocks as much as possible belong-
ing to the same upper tail-based cluster. To do that, for each candidate C(0)s we compute the heterogeneity
index

γs =
KU

KU − 1[1 −
KU
∑
kU=1

(
ns,kU
KL

)
2
],

where ns,kU is the number of stocks of C(0)s belonging to the kU th upper tail-based cluster. The index γs
is the Gini heterogeneity index adapted to this context, and informs on the amount of heterogeneity of
candidate C(0)s with respect to the upper tail-based clustering solution. If γs = 0, the stocks composing
candidate C(0)s belong all to the same upper tail-based cluster. So, we desire γs to be as low as possible
and we will select from C(0) the candidates that minimize this index. Formally, we denote by C ⊆ C(0),
C = {C1, C2, . . . , CS}, the subset of candidates selected at the second step, given by

C = {C(0)s : γs = min
s=1,2,...,S(0)

(γs)}.

(iii) Final selection: the final portfolio is selected from among the candidates in C, by means of financial
criteria. In detail, firstly theweights of all the candidate portfolios are estimated byminimizing the CVaR,
then the best portfolio is selected either with theminimumCVaR or themaximumOmega index criterion.

3 Simulation study

In this section we describe the results of a simulation study investigating how the whole proposed procedure
works. The main aim is to understand how effective the idea to exploit the clustering solution for portfolio
selection is.

In Sections 3.1 and 3.2, we will describe the data generating process and the results obtained in the two
phases, the clustering and the portfolio selection, of the proposed procedure.

As far as it concerns the data generating process, it is worth pointing out that to define a multivariate
random variable able to allow different lower and upper tail dependence structures is a challenging task. Up
to our knowledge, at themoment there is in the literature no procedure able to generatemultivariate datawith
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two (different) givenmatrices of lower and upper tail dependence coefficients. Some studies in this sense can
be found in [1, 10], but they are not suited to themultivariate structure needed in this study. So,wewill define
a new random variable by joining two different multivariate Student-t variables, determining the behavior of
the lower and the upper tail in a separate fashion.

In Section 3.2 the results of the portfolio selection are described, focusing on the out-of-sample perfor-
mance of the proposed portfolios compared to two benchmark alternatives.

3.1 The data generating process

The data generating process for the simulation study has been designed so as to obtain simulated hetero-
skedastic financial returns with a multivariate structure allowing for given (different) lower and upper tail
dependence coefficients.

Let {Rt} = {R1,t , R2,t , . . . , Rp,t} be a p-dimensional stochastic process with

Ri,t = σi,tτi,t , i = 1, 2, . . . , p,

and σ2i,t following a GARCH(1, 1) specification. In order to impress to {Rt} different lower and upper tail de-
pendence structures, the probability density function of τi,t has been defined as the ithmarginal distribution
of a p-variate random variable τt, built as a combination of two p-variate Student-t random variables TL and
TU , with variance-covariancematrices ΣL and ΣU anddegrees of freedom νL and νU , respectively. The random
variables τt are assumed to be independent and identically distributed over t. According to our definition,
the probability density function f(τt) is given by

f(τt; ΣL , ΣU , νL , νU) = fL(τt; ΣL , νL)I(τt) + fU(τt; ΣU , νU)(1 − I(τt)),

where fL and fU are the probability density functions of TL and TU , respectively, and

I(τt) =
{
{
{

0 if τ�t1 ≤ 0,
1 if τ�t1 > 0,

with 1 a properly sized vector of ones.
This definition allows for a random variable with a domainD ideally divided intoDL = {τt ∈ ℝ : τ�t1 ≤ 0}

andDU = {τt ∈ ℝ : τ�t1 > 0}, and different behaviors in these two portions of space, determined by the two
random variables TL and TU . More specifically, since DL contains the lower tail of the distribution and DU
the upper tail, the variance-covariance matrix ΣL determines the lower tail dependence coefficients (and the
implied lower tail clustering structure), while ΣU similarly governs the upper tail.

In our simulation study, we set p = 20, νL = (4, 4, . . . , 4), νU = (5, 5, . . . , 5). The variance-covariance
matrix ΣL for the lower tail is a block matrix with square matrices w(kL)

L on the diagonal (kL = 1, 2, 3, 4) of
sizes nkL = 12, 2, 2, 4with elements all equal to 0.7 (except for the diagonal, composed of ones) andmatrices
bL outside, properly sizedwith elements all equal to 0.3. The variance-covariancematrix ΣU for the upper tail
is still a blockmatrix with squarematricesw(kU )

U on the diagonal (kU = 1, 2, 3, 4, 5) of sizes nkU = 6, 7, 2, 3, 2
with elements all equal to 0.7 (except for the diagonal, composed of ones) andmatrices bU outside, properly
sized with elements all equal to 0.3.

Since the tail dependence coefficients of two Student-t random variables are univocally determined by
their linear correlation coefficient and their degrees of freedom, the implied lower and upper tail depen-
dence structures of τt can be derived, separately for the lower and the upper tail, from ΣL, ΣU , νL, νU . So, the
lower and upper tail dependence matrices ΛL and ΛU have the same block structure of ΣL and ΣU with the
within and between groups lower tail dependence coefficients given, respectively, by λw,L = 0.3907 and
λb,L = 0.1618, while the within and between groups upper tail dependence coefficients are, respectively,
λw,U = 0.3423 and λb,U = 0.1224.

Thanks to this setting, the defined p-variate process {Rt} = {R1,t , R2,t , . . . , Rp,t} has the following
features:
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∙ Each process {Ri,t}, i = 1, 2, . . . , p has a marginal GARCH structure.
∙ In the lower tail we recognize the presence of four groups of processes:

GL1 = {R1,t , . . . , R12,t}, GL2 = {R13,t , R14,t}, GL3 = {R15,t , R16,t}, GL4 = {R17,t , . . . , R20,t},

characterized by a moderately high tail dependence between pairs belonging to the same group (the
within groups lower tail dependence coefficient is λw,L = 0.3907) and a moderately low tail dependence
betweenpair belonging to different groups (thebetween groups lower tail dependence coefficient is λb,L =
0.1618). Note that the values of λw,L and λb,L are very similar to what is usually observed in practice with
financial data.

∙ In the upper tail we recognize the presence of five groups of processes:

GU1 = {R1,t , . . . , R6,t}, GU2 = {R7,t , . . . , R13,t}, GU3 = {R14,t , R15,t},
GU4 = {R16,t , . . . , R18,t}, GU5 = {R19,t , R20,t},

characterized by a moderately high tail dependence between pairs belonging to the same group (the
within groups lower tail dependence coefficient is λw,U = 0.3432) and a moderately low tail dependence
between pairs belonging to different groups (the between groups lower tail dependence coefficient is
λb,U = 0.1224). Again, note that the values λw,U and λb,U are very plausible.

∙ According to the rule described in Section 2.1, the following twelve sets of candidates are selected from
among the p processes {R1,t}, . . . , {Rp,t} for the portfolio determination:

C1 = {R7,t , R13,t , R16,t , R17,t}, C2 = {R7,t , R13,t , R16,t , R18,t},
C3 = {R8,t , R13,t , R16,t , R17,t}, C4 = {R8,t , R13,t , R16,t , R18,t},
C5 = {R9,t , R13,t , R16,t , R17,t}, C6 = {R9,t , R13,t , R16,t , R18,t},
C7 = {R10,t , R13,t , R16,t , R17,t}, C8 = {R10,t , R13,t , R16,t , R18,t},
C9 = {R11,t , R13,t , R16,t , R17,t}, C10 = {R11,t , R13,t , R16,t , R18,t},
C11 = {R12,t , R13,t , R16,t , R17,t}, C12 = {R12,t , R13,t , R16,t , R18,t}.

Note that all the twelve configurations are composed of processes belonging to four different groups in the
lower tail and twodifferent groups in theupper tail. This corresponds to aheterogeneity index γs = 0.625,
that is the minimum value that can be reached with this configuration of the process {Rt}. Also in this
case, we point out that this corresponds to what usually happens with empirical data, as very low values
of γ are not likely to occur in practice.

3.2 Results

The simulation study has been repeated for Niter = 25 iterations. At each iteration we drew a p-dimensional
time series rt = (r1,t , r2,t , . . . , rp,t), p = 20, of T = 1000 observations from the data generating process de-
scribed in Section 3.1. For each univariate series, we removed heteroskedasticity by filtering data through a
Student-t GARCH model with maximum likelihood estimated parameters. The obtained standardized resid-
uals have then been used to derive the estimated lower and upper tail dependence matrices, Λ̂L and Λ̂U .

It is worth noting that (a) the distributional assumption used to estimate the parameters of the GARCH
models is not exactly the same as the random variables τi,t that have generated data, and (b) the estimation
of the tail dependence coefficients has beenmade bymeans of the Joe–Clayton copula, that uses a joint prob-
abilistic structure different from that of the multivariate random variable τt in the data generating process.
These two points allow us to assess the robustness of the proposed procedure to misspecified distributional
assumptions.

In the following,we summarize the results of the twomain steps of theproposedprocedure: the clustering
and the portfolio determination.
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i πi,A πi,B D̄i,A D̄i,B

C1 51.78 50.35 0.0007 0.0005
(< 10−15) (0.0009) (< 10−15) (< 10−15)

C2 53.12 53.00 0.0015 0.0013
(< 10−15) (< 10−15) (< 10−15) (< 10−15)

Table 1. Results of the simulation study, indices πi,j (in parenthesis
the p-value of the test H0 : πi,A = 50) and D̄i,j (in parenthesis the
p-value of the test H0 : D̄i,j = 0).

Clustering. The time series clustering algorithm described in Section 2 has been carried out for each p-
dimensional time series rt starting from the estimated matrices ∆̂L = − log(Λ̂L) and ∆̂U = − log(Λ̂U). In all
the Niter = 25 cases, the procedure was able to recover the exact clustering structure impressed to the data
generating process {Rt}. So, in all the explored cases, the exact twelve sets of candidates C1, C2, . . . , C12were
selected for the portfolio determination step.

Portfolio. In the second step, we examined the performance of some portfolios, built according to the strate-
gies described in Section 2.1, on out-of-sample data, also comparing themwith two benchmark competitors.
In detail, for each simulated series rt = (r1,t , r2,t , . . . , rp,t), we determined the optimal weights of the follow-
ing portfolios:
A. (Benchmark Portfolio 1) Markowitz minimum variance portfolio (all the stocks).
B. (Benchmark Portfolio 2) Minimum CVaR portfolio (all the stocks).
C. Minimum CVaR portfolios (one portfolio for each set of candidates C1, C2, . . ., C12). In order to choose

among the twelve portfolios, two possible criteria have been explored (see Section 2):
C1. minimum CVaR,
C2. maximum Omega.
For each option, the optimal weights have been determined using all the observations (t = 1, 2, . . . , T)

and the performance of the portfolio has been checked on out-of-sample data simulated from the same
data generating process. In detail, for each iteration, SC = 100 series of Q = 50 observations, r+t = (r1,t ,
r2,t , . . . , rp,t), t = T + 1, T + 2, . . . , T + Q, have been generated. In other words, each series r+t simulates a
scenario for the 50 days following the last observation of rt and 100 different scenarios are examined for each
series rt. In total, for the Niter = 25 iterations, Niter ⋅ SC = 2500 scenarios are analyzed, globally accounting
for Niter ⋅ SC ⋅ Q = 12500 out-of-sample observations.

The returns of the two portfolios C1 and C2, built according to the proposed procedure, are compared to
the two benchmark portfolios A and B using two indices:
∙ Howmany times (%) the return of portfolio i, rpi,t, is higher than the return of portfolio j, rpj,t:

πi,j =
∑Niter
iter=1∑

SC
sc=1∑

Q
q=1 Isc,iter(rpi,t+q , rpj,t+q)
Niter ⋅ SC ⋅ Q

⋅ 100,

where Isc,iter(rpi,t+q , rpj,t+q) denotes the indicator function assuming value 1 if, in the sc-th scenario of
the iteration number iter, we have rpi,t+q > rpj,t+q, and 0 otherwise. When πi,j = 50, portfolio i out-
performs portfolio j half the times, meaning that there is no difference between i and j from this point
of view. So, inference about the performance of the portfolios can be made by testing the hypothesis
H0 : πi,j = 50.

∙ The average difference between the returns of portfolio i and j:

D̄i,j =
∑Niter
iter=1∑

SC
sc=1∑

Q
q=1 dsc,iter(rpi,t+q , rpj,t+q)
Niter ⋅ SC ⋅ Q

⋅ 100,

where dsc,iter(rpi,t+q , rpj,t+q) is equal to the difference rpi,t+q − rpj,t+q evaluated at each iter and each sc.
When D̄i,j = 0, there is no difference between the two portfolios i and j from the point of view of the
average difference of returns. So, we have to test the hypothesis H0 : D̄i,j = 0.
Results are reported in Table 1. The two portfolios selected according to the proposed procedure outper-

form the competitors. All the indices πi,j comparing portfolios C1 and C2 to A and B are significantly higher
than 50%. Analogously, all the indices D̄i,j are significantly higher than 0.
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Figure 1. Ratio between deviance and total deviance: pattern and increments versus the number of clusters in the lower tail-
based (left) and upper tail-based (right) clustering solutions.

We point out again that both the tail dependence coefficients λw,L, λw,U , λb,L and λb,U and the hetero-
geneity index γ have been fixed so as to resemble as close as possible what usually happens in practice with
financial data. As a matter of fact, if we fixed (a) higher values of λw,L and λw,U , (b) lower values of λb,L and
λb,U , and (c) a clustering structure allowing lower values of γ, the performance of our procedure would be
even better with respect to the competitors.

4 Empirical analysis of real data

Our procedure is applied to daily log-returns of the 50 stocks included in the EUROSTOXX index observed in
the period from January 2, 2008 to December 31, 2013. The total number of returns for each stock is 1540.
The EUROSTOXX index is designed to reflect the performance of the largest companies in the Eurozone and
so is a measure of the performance of the financial markets in Europe.

Each time series of log-returns has been filtered to remove autocorrelation and heteroskedasticity by ap-
plying a univariate Student-t AR-GARCH models. The order of the autoregressive component ranges from 0
to 1, while for the heteroskedastic component the GARCH(1, 1) model has provided a satisfactory fit for al-
most all the series (for a few time-series a GARCH(1, 2) has been estimated). Then we have computed the
distribution functions of the standardized residuals. Applying the Joe–Clayton copula, we obtain the 50×50
symmetric matrices containing the estimated lower and upper tail dependence coefficients, respectively Λ̂L
and Λ̂U .

4.1 Clustering

Starting from Λ̂L and Λ̂U , we obtained the corresponding dissimilarity matrices ∆̂L = − log(Λ̂L) and ∆̂U =
− log(Λ̂U). Then, we followed the procedure defined in Section 2.1. In doing that, we obtained the clustering
as described in Section 2 two times, using firstly ∆L and secondly ∆U , in order to obtain, respectively, the two
(lower tail-based and upper tail-based) clustering solutions GL1, GL2, . . . , GLKL and GU1, GU2, . . . , GUKU .

In order to select the optimal number of clusters, KL and KU , we inspected the graphs presented in Fig-
ure 1, displaying the pattern of the between over the total deviance and the corresponding increments, versus
the number of clusters of the two clustering solutions.
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Figure 2. Joint composition of the clustering solutions GL1 , GL2 , GL3 , GL4 , GL5 and GU1 , GU2 , GU3 , GU4 , GU5 , GU6.

We decided to set KL = 5 and KU = 6. The joint composition of the two clustering solutions is graphically
summarized in Figure 2, where the five lower tail-based and the six upper tail-based clusters are represented
respectively by columns and rows, while the squares contain the stocks belonging to the same cluster both
in the lower tail-based and the upper tail-based solution.

Step-by-step, the procedure described in Section 2.1 produced the following results:
(i) First selection, based on GL1, GL2, GL3, GL4, GL5: the cluster sizes were n1 = 6, n2 = 16, n3 = 5,

n4 = 11, n5 = 12, so the set C(0) of the first-step candidates is composed of S(0) = 63360 possible
portfolios of five stocks belonging to different clusters.

(ii) Second selection, based on GU1, GU2, GU3, GU4, GU5, GU6: the index γs was computed for each first-
step candidate C(0)s ; its minimum value was mins=1,2,...,63360(γs) = 0.768 and was reached by the 2.32%
of first-step candidates. So, the set C of second-step candidates is composed of S = 1470 possible port-
folios, selected from C(0) by taking into account the upper tail-based clustering solution. All the 1470
candidates are composed of five stocks belonging to different lower tail-based clusters and to three dif-
ferent upper tail-based clusters.

(iii) Final selection: the best portfolio among the 1470 second-step candidates is then chosen with financial
criteria, as described in Section 4.2.

4.2 Portfolio selection

In detail, firstly the weights of the 1470 candidate portfolios are estimated by minimizing the CVaR, then
the best portfolio is selected either with the minimum CVaR (portfolio C1) or the maximum Omega index
criterion (portfolio C2), as described in Section 2.1. The performance of the selected portfolios has then been
evaluated in an out-of-sample period, from January 1, 2014 to January 15, 2014 and compared to the two
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Figure 3.Weights of the stocks.

Figure 4. Returns of the portfolios.

benchmark options considered in the simulation study (A:Markowitzminimumvariance portfolio built using
all the stocks; B: Minimum CVaR portfolio built using all the stocks).

Figure 3 shows the composition and the weights of the four analyzed portfolios. While portfolios C1 and
C2 are composed of five stocks by construction, portfolios A and B turn out to be composed of eleven and
nine stocks, respectively. In the specified out-of-sample period the cumulative returns of the four portfolios
(with respect to December 31, 2013) are plotted in Figure 4. Portfolios C1 and C2 largely outperform the
competitors. In the first four days, all the portfolios have a loss, but the lowest loss is always recorded for
portfolio C1 (0.0070) while portfolio C2 is the second best except in the fourth day when its cumulative loss
is slightly higher than the competitor portfolios.However, from thefifth to the tenthday, all the portfolios have
positive returns, and the superiority of portfolios built using a clustering procedure is clear. At the sixth day,
the cumulative returns of portfolios C1 and C2 are, respectively, 0.033 and 0.024 against 0.009 (portfolio
A) and 0.010 (portfolio B). At the end of the out-of-sample period (15 January), the cumulative returns of
portfolios C1 andC2are 0.024 and0.023, againmuchhigher thanportfolio A (0.013) andportfolio B (0.012).
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5 Concluding remarks

In this paper a portfolio selection procedure has been proposed, taking into account the behavior of stock
returns in case of extreme events, both negative and positive. The innovative proposal of this paper, with
respect to previous work on this theme, is the idea of considering, beyond the lower tail of the distribution,
also the upper tail. Specifically, the idea is to invest on stocks exhibiting, at the same time, low and high mu-
tual association in case of, respectively, extremely low and extremely high returns. The association in case
of extreme events is measured by (lower and upper) tail dependence coefficients estimated via copula func-
tions. Theportfolio selection is basedon twopreliminary time series clusteringprocedures, aimedat grouping
together stocks with high (lower and upper) tail dependence. The two clustering solutions are jointly consid-
ered in order to provide a set of candidates portfolios and the “winner” of the competition is then chosen from
among these candidates, using a financial criterion such as the minimum CVaR or the maximum Omega in-
dex. The definition of the set of candidate portfolios requires to consider the heterogeneity of all the possible
portfolios than can be built relying on one clusterization, with respect to the other. For this reason, the com-
putation burden implied by the proposed procedure tends to grow rapidly as the number of considered stocks
increases. Then, the method cannot realistically be applied to very large sets of stocks.

The performance of the procedure has been successfully checked on simulated data, with an experiment
aimed at verifying (i) the adequateness of copula functions estimation of the tail dependence structure with
a misspecified distributional assumption, (ii) the ability of the procedure in recovering the right clustering
structures, and (iii) the comparison of the selected portfolios’ returns to those obtained by two common port-
folio selection techniques, used as benchmarks.

Finally, a case study on real data from the EUROSTOXX index shows that the portfolios selected according
the proposed procedure have been able to outperform the benchmarks in a two-weeks out-of-sample period.

Funding: This researchwas fundedby a grant from the ItalianMinistry of Education, University andResearch
to the PRIN Project entitled “Multivariate statistical models for risks evaluation” (2010RHAHPL_005).
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