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Abstract: Distance multivariance is a multivariate dependence measure, which can detect dependencies be-
tween an arbitrary number of random vectors each of which can have a distinct dimension. Here we discuss
several new aspects, present a concise overview and use it as the basis for several new results and concepts:
in particular, we show that distance multivariance unifies (and extends) distance covariance and the Hilbert-
Schmidt independence criterion HSIC, moreover also the classical linear dependence measures: covariance,
Pearson’s correlation and the RV coefficient appear as limiting cases. Based on distancemultivariance several
new measures are defined: a multicorrelation which satisfies a natural set of multivariate dependence mea-
sure axioms and m-multivariance which is a dependence measure yielding tests for pairwise independence
and independence of higher order. These tests are computationally feasible and under very mild moment
conditions they are consistent against all alternatives. Moreover, a general visualization scheme for higher
order dependencies is proposed, including consistent estimators (based on distance multivariance) for the
dependence structure.
Many illustrative examples are provided. All functions for the use of distance multivariance in applications
are published in the R-package multivariance.
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1 Introduction
The detection of dependence is a common statistical task, which is crucial in many applications. There have
beenmanymethods employed and proposed, (see e.g. Josse and Holmes 2016; Tjøstheim et al. 2018; Liu et al.
2018) for recent surveys. Usually these focus on the (functional) dependence of pairs of variables. Thus when
the dependence of many variables is studied the resulting networks (correlation networks, graphical models)
only show the pairwise dependence. As long as pairwise dependence is present, this might be sufficient (and
also for the detection of such dependencies total multivariance and m-multivariance provide efficient tests).
But recall that pairwise independence does not imply the independence of all variables if more than two vari-
ables are considered. Thus, in particular if all variables are pairwise independent many methods of classical
statistical inference would have discarded the data. Although there might be some higher order dependence
present. This can only be detected directly with a multivariate dependence measure. The classical examples
featuring 3-dependence are a dice in the shape of a tetrahedron with specially coloured sides (see Example
10.1) and certain events in multiple coin throws (Examples 10.2). In Example 10.3 a generalization to higher
orders is presented.

To avoid misconceptions when talking about independence one should note that the term “mutual inde-
pendence” is ambiguous, some authors use it as a synonym for pairwise independence, others for indepen-
dence. For the latter also the terms “total independence” or “joint independence” are used.We use the terms:
pairwise independence, its extension m-independence (see Section 2) and independence. Another miscon-
ception might be triggered by the term “dependence measure”. Formally, such a measure assigns a value to
“dependence”. In our setting and in most of the cited papers these values are values of scaled test statistics
used in independence tests and their only meaningful comparison is based on the corresponding p-values!
Therefore the whole theory is based on independence tests. (Section 3.6 might be viewed as a starting point
for a direct comparison of the values of these measures, but it does not provide a meaningful interpretation
in general.)

In Böttcher et al. (2018, 2019) the basics of distance multivariance and total distance multivariance were
developed, which can be used to detect multivariate dependence. Incidentally, a variant of total distance
multivariance based on the Euclidean distance was simultaneously developed in Chakraborty and Zhang
(2019). Moreover, distance multivariance names and extends a concept introduced in Bilodeau and Guetsop
Nangue (2017). Herewe recall and extend themain definitions and properties (Sections 2 and 4). In particular,
the moment conditions required in Böttcher et al. (2019) for the independence tests are considerably relaxed
(Theorem 2.5, Tests 4.1 and 4.3), invariance properties are explicitly discussed (Propositions 2.3 and 2.4) and
resampling tests are introduced (Section 4). Moreover, on this basis the following new results and concepts
are developed:

– Ageneral scheme for thevisualizationofhigherorderdependencewhich canbeusedwith anymul-
tivariate dependence measure (Section 6). For the setting of multivariance we provide explicit consis-
tent estimators for the (higher order) dependence structure. In particular the method for the clus-
tered dependence structure is based on the fact that multivariance is a truly multivariate dependence
measure: On the one hand it can detect the dependence of multiple (more than 2) random variables.
On the other hand each random variable can be multivariate and each can have a different dimension.

1

2

3

4
5

6

7

8

9 10

11

12

13
14

1516

17

18

19

20

21

22

23
24

25

26

98.64

98.25

97.67

96.25

97.89

97.54

97.58

100
100

100
100

100100

1

2

3

4

5

6

7

8

9

100

100

100

94.91

1

2

3

4

5
6

7

8 9

10

11

12

13

97.1

31.73

8.624

Figure 1: Visualized dependence structures of Examples 10.5, 10.6 and 10.7.
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– Global tests for pairwise (and higher order) independence: Pairwise independence is a fundamen-
tal requisite for many standard tools, e.g. for the law of large numbers in its basic form (a result which
is used in almost every statistical estimation). Recently in Yao et al. (2017) a test for pairwise indepen-
dence of identically distributed random variables was proposed. In contrast, we derive in Section 5 a
test for pairwise (and higher order) independence which is applicable to any mixture of marginal dis-
tributions and dimensions.

– The framework of multivariance provides a unified theory. Multivariance unifies several depen-
dence measures and links these to classical theory, in particular:

– We show in Section 3.1 that the RV-coefficient and, in particular, covariance (the most classical
dependence measure of all) are covered as limiting cases by the framework of multivariance.

– In Sejdinovic et al. (2013b) it was shown that independence testing methods based on reproduc-
ing kernels and methods based on distances are equivalent in a bivariate setting. We show in
Section 3.2 that both are covered by the framework of multivariance. In particular a new, explicit
and very elementary relation between these methods is presented. Moreover, this transfers also
to the setting of multiple random vectors.

– In independence testing Hilbert space methods require characteristic kernels. Multivariance re-
quires the full support of the underlying measures. We show that these assumptions are equiva-
lent (Proposition 2.2).

– Multivariate correlations: A formalization of desired properties of dependence measures goes back
at least to Renyi’s axioms (Rényi 1959). We discuss in Section 3.6 amultivariate extension of the axioms
and provide several multicorrelations, e.g. (14), (15) and (56).

Recently also several other dependence measures for the detection of dependence of multiple random vec-
tors were proposed, (e.g. Yao et al. 2017) proposed tests for pairwise independence, banded independence
and independence based on distance covariance or based on the approach of Pfister et al. (2017). The latter
presented tests for independence of multiple random vectors using kernels. In Jin and Matteson (2018) also
distance covariance (ameasure for the dependence of two randomvectors; introduced in Székely et al. (2007))
was generalized to tests of independence of multiple random vectors. All these approaches are related to dis-
tancemultivariance, see Section 3 for a detailed discussion. Empirical comparisons can be found in Examples
7.2 and 7.3.

It is remarkable that, although the above measures are able to detect higher order dependencies, all real
data examples which were provided so far feature only pairwise dependence. Certainly the predominant sta-
tisticalmethods cause apublicationbias for suchdatasets. Nevertheless,wewant to point out thatmanyavail-
able datasets feature higher order dependence. Based on a data driven study we collected over 350 datasets
featuring statistically significant higher order dependencies¹. All of these datasets are distributed as part of
various R-packages without the context of higher order dependence. This indicates that higher order depen-
dence can be detected frequently, but what remains open are intrinsic explanations of higher order depen-
dence within each field of research of the underlying data. For illustration we discuss one of these datasets
in further details in Section 7.2.

Besides the real data examples the presentation of this paper is complemented by a comprehensive col-
lection of further examples (in Sections 7 and 10): illustrating higher order dependencies (Section 10.1), dis-
cussing various properties of distance multivariance (Section 10.2), comparisons to other dependence mea-
sures (Section 7.1). Technical details and further results are collected in Section 9.

The R code for the evaluation of distance multivariance and the corresponding tests is provided in the
R-package multivariance (Böttcher 2019). Finally, based on (some of) the results of this paper we have the
following recommendations for questions common in independence testing:

1. Are at least some variables dependent? Detection of any kind of dependence:

1 A collection of datasets featuring higher order dependence, http://www.math.tu-dresden.de/~boettch/research/hod/

http://www.math.tu-dresden.de/~boettch/research/hod/
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(a) The global independence test based on total multivariance can be used to detect any kind of
dependence, alternatively 2-multivariance can be used to test for pairwise (in)dependence. The
latter andm-multivariance can also be used (via amultiple testing approach) to reduce the statis-
tical curse of dimension which total multivariance might suffer. For all settings fast distribution
free (conservative) tests exist and these are applicable for large samples and a large number of
random vectors. The computation of the test statistic takes in its current implementation for 100
variables with 1000 samples each (or for 1000 variables with 300 samples each) less than 2 sec-
onds on a dated i7-6500U CPU Laptop. Slower, but approximately sharp, are the corresponding
resampling tests. Faster approximately sharp tests are discussed in Berschneider and Böttcher
(2019).

(b) As a complementary approach to the global tests one could performmultiple tests as suggested in
Bilodeau and Guetsop Nangue (2017). This requires 2n − n − 1 individual tests, where n denotes
the number of random vectors. Hence it is only applicable for small n. Bilodeau and Guetsop
Nangue (2017) also provides a multiple testing approach to m-dependence.

2. Which variables depend on each other? Dependence structure: Especially if some dependence was de-
tected the algorithm of Section 6 can be used to analysewhich variables depend on each other, yielding
either a full or clustered dependence structure. The method is based on multiple tests, but variables
are clustered (or related tuples are excluded from further tests) as soon as a positive detection occurred.
This can considerably reduce the computation time in comparison to 1.(b).

2 Distance multivariance
In the following distance multivariance is introduced. Some parts are essential for the (less technical) com-
parison to other dependence measures in Section 3, other parts are required for the introduction of m-
multivariance (Section 5). Furthermore, several new results are included which make distance multivariance
more accessible and applicable. Tests using distance multivariance will be discussed in Section 4.

Let Xi be Rdi valued random variables with characteristic functions fXi (ti) = E(eiti ·Xi ) for i = 1, . . . , n,
where ti · Xi denotes the standard inner product tTi Xi. Then distance multivariance is defined by

Mρ(X1, . . . , Xn) := Mρ(Xi , i ∈ {1, . . . , n}) :=

⎯⎸⎸⎷∫︁ ⃒⃒⃒⃒⃒E
(︃ n∏︁
i=1

(eiXi ·ti − fXi (ti))
)︃⃒⃒⃒⃒
⃒
2

ρ(dt) (1)

and total distance multivariance is

Mρ(X1, . . . , Xn) :=
⎯⎸⎸⎷ ∑︁

1≤i1<...<im≤n
2≤m≤n

M2
⊗m
k=1ρik

(Xi1 , . . . , Xim ), (2)

where ρ = ⊗n
i=1ρi and each ρi is a symmetric measure with full topological support² on Rdi such that

∫︀
1 ∧

|ti|2 ρi(dti) < ∞ and t = (t1, . . . , tn) with ti ∈ Rdi . To simplify notation and definitions we will just use the
term ’multivariance’ instead of ’distancemultivariance’, andwewill drop the subscript ρ if themeasure is the
full measure ρ.

Randomvariables X1, . . . , Xn are calledm-independent, if Xi1 , . . . , Xim are independent for any distinct
ij ∈ {1, . . . , n} for j = 1, . . . ,m. This concept is essential for the statement (and proof) of the following
theorem. It is also the basis for the estimators for m-independence which will be developed in Section 5.

Theorem 2.1 (Characterization of independence, (Böttcher et al. 2019, Theorem 3.4.)). For random variables
X1, . . . , Xn the following are equivalent:

2 A measure ρ has full topological support on Rd if and only if ρ(O) > 0 for all open sets O ⊂ Rd, O ≠ ∅. See also Prop. 2.2.
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1. X1, . . . , Xn are independent,
2. M(X1, . . . , Xn) = 0 and X1, . . . , Xn are (n − 1)-independent,
3. M(X1, . . . , Xn) = 0.

For statistical applications the following representations, which require the moment condition (5), are very
useful. Let (X′

1, . . . , X′
n) be an independent copy of (X1, . . . , Xn) and ψi(yi) :=

∫︀
Rdi∖{0} 1 − cos(yi · ti) ρi(dti)

then

M2
ρ(X1, . . . , Xn) = E

(︃ n∏︁
i=1
Ψi(Xi , X′

i)
)︃

and Mρ
2(X1, . . . , Xn) = E

(︃ n∏︁
i=1

(1 + Ψi(Xi , X′
i))
)︃
− 1 (3)

where
Ψi(Xi , X′

i) := −ψi(Xi − X′
i) + E(ψi(Xi − X′

i) | Xi) + E(ψi(Xi − X′
i) | X′

i) − E(ψi(Xi − X′
i)). (4)

Note that in Böttcher et al. (2019) a technical looking moment condition was required for the above rep-
resentations, we show in Section 9.2 that the followingmore comprehensible condition is equivalent to it (for
non constant random variables)

finite joint ψ-moments: for all S ⊂ {1, . . . , n} : E
(︃∏︁
i∈S

ψi(Xi)
)︃
< ∞. (5)

A direct consequence of (3) is the factorization ofM andM for independent subsets, i.e., if (Xi)i∈I and (Xi)i∈Ic
are independent for some I ⊂ {1, . . . , n} then

M(Xi , i ∈ I ∪ Ic) = M⊗i∈Iρi (Xi , i ∈ I) ·M⊗i∈Ic ρi (Xi , i ∈ I
c), (6)

M2(Xi , i ∈ I ∪ Ic) + 1 = (M2
⊗i∈Iρi (Xi , i ∈ I) + 1) · (M

2
⊗i∈Ic ρi (Xi , i ∈ I

c) + 1). (7)

Furthermore, the expectations in (3) yield strongly consistent (see (Böttcher et al. 2019, Theorem 4.3)
and Corollary 2.7) and numerically feasible estimators. Hereto denote samples of (X1, . . . , Xn) by x(k) =
(x(k)1 , . . . , x(k)n ) ∈ Rd1 × . . . ×Rdn for k = 1, . . . , N. Then sample multivariance NM is defined by

NM2(x(1), . . . , x(N)) := 1
N2

N∑︁
j,k=1

(A1)jk · . . . · (An)jk (8)

and sample total multivariance NM is defined by

NM2(x(1), . . . , x(N)) :=

⎡⎣ 1
N2

N∑︁
j,k=1

(1 + (A1)jk) · . . . · (1 + (An)jk)

⎤⎦ − 1, (9)

where (Ai)jk denotes the element in the j-th row and k-th column of the doubly centred distance matrix Ai
defined by

Ai := −CBiC with Bi :=
(︁
ψi(x(j)i − x

(k)
i )
)︁
j,k=1,...,N

and C :=
(︂
δjk −

1
N

)︂
j,k=1,...,N

. (10)

ThematricesAi are positive definite (Böttcher et al. 2019, Remark 4.2.b), since the considereddistancesψi(.−.)
are given by

ψi(yi) :=
∫︁

Rdi∖{0}

1 − cos(yi · ti) ρi(dti) for yi ∈ Rdi . (11)

Functions defined via (11) appear in various areas: e.g. they are called variogram (e.g. Matheron 1963), con-
tinuous negative definite function (e.g. Berg and Forst 1975) or characteristic exponent of a Lévy process with
Lévymeasure ρi (e.g. Sato 1999), and they are closely related to the symbol of generators of Markov processes
(Jacob 2001; Böttcher et al. 2013). The choice of ρi and ψi is discussed in more detail in Remark 2.8, the stan-
dard choices are the Euclidean distance ψi(ti) = |ti| and for αi ∈ (0, 2) stable distances ψi(ti) = |ti|αi and
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bounded functions of the form ψi(ti) = 1 − exp(−δi|ti|αi ) with δi > 0. But also other functions like Minkowski
distances are possible, various examples are given in (Böttcher et al. 2018, Table 1).

We call a functionψ characterizing if for any randomvector X the function z ↦→ E(ψ(X−z)) characterizes
the distribution of X uniquely, or equivalently, if for finite measures µ the function µ ↦→

∫︀
ψ(x − .)µ(dx) is

injective. The following Proposition provides a characterization of the required support property of ρ in terms
of ψ, it actually solves an open problem of Böttcher et al. (2018). Most notably, it also links the setting of
multivariance to other dependence measures, see Section 3.

Proposition 2.2. Let ψi be given by (11) for a symmetric measure ρi such that
∫︀
1∧ |ti|2 ρi(ti) < ∞. Then ψi is

characterizing if and only if ρi has full topological support.

Proof. The statement is a consequence of Theorem 9.1 (see Section 9). Hereto note that the distributions of
two random vectors coincide if and only if their characteristic functions coincide on a dense subset, i.e., µ
almost surely for a measure µ with full topological support.

There are important scaled versions of the estimators in (8) and (9):

– normalized sample (total) multivariance: We write M instead of M, if each Ai in (8) and (9) is re-
placed by

Ai :=
{︃

1
Nai
Ai if Nai > 0

0 if Nai = 0
, where Nai :=

1
N2

N∑︁
j,k=1

ψi(x(j)i − x
(k)
i ) which estimates E(ψi(Xi − X′

i)). (12)

In the case of normalized sample totalmultivariance the sum in (9) is additionally scaled by the number
of summands in the definition of total multivariance (2), i.e.,

NM
2(x(1), . . . , x(N)) := 1

2n − n − 1

⎧⎨⎩
⎡⎣ 1
N2

N∑︁
j,k=1

n∏︁
i=1

(1 + (Ai)jk)

⎤⎦ − 1
⎫⎬⎭ . (13)

By this scaling the test statistics for multivariance and total multivariance have expectation 1 (in the
case of independent variables).

– sample multicorrelation: We write R instead of M, if each Ai in (8) is replaced by

Bi :=
{︃

1
Nbi
Ai if Nbi > 0

0 if Nbi = 0
, where Nbi :=

⎛⎝ 1
N2

N∑︁
j,k=1

|(Ai)jk|n
⎞⎠1/n

which estimates
(︀
E(|Ψi(Xi , X′

i)|n)
)︀1/n .

(14)

– unnormalized samplemulticorrelation: We writeMcor instead ofM, if each Ai in (8) is replaced by

Ci :=
{︃

1
Nci
Ai if Nci > 0

0 if Nci = 0
, where Nci :=

⎛⎝ 1
N2

N∑︁
j,k=1

(Ai)njk

⎞⎠1/n

which estimates

⎛⎝M2
⊗n
k=1ρi (Xi , . . . , Xi⏟  ⏞  

n-times

)

⎞⎠1/n

.

(15)

Note that Mcor is newly introduced in this paper, see in particular Table 1 for a comparison. For even n mul-
ticorrelation R and Mcor coincide, but for odd n they differ. Only R is always bounded by 1, hence Mcor is
called unnormalized. But only for Mcor the value 1 has an explicit interpretation. The population versions
of the above sample measures are given by scaling Ψi in (3) with the final terms of (12), (14) and (15), e.g.
normalized multivariance and normalized total multivariance are given by

M2
ρ(X1, . . . , Xn) =

M2(X1, . . . , Xn)∏︀n
i=1 E(ψi(Xi − X′

i))
and M

2
ρ(X1, . . . , Xn) =

E
(︁∏︀n

i=1

(︁
1 + Ψi(Xi ,X′

i )
E(ψi(Xi−X′

i ))

)︁)︁
− 1

2n − n − 1 , (16)
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where implicitly the finiteness of the corresponding moments is assumed, i.e.,

finite first ψ-moments: for all i = 1, . . . , n : E(ψi(Xi)) < ∞. (17)

For the scaling of the multicorrelations one has to assume

finite ψ-moments of order n: for all i = 1, . . . , n : E(ψni (Xi)) < ∞. (18)

Note that the scaling factors given in (14) and (15) depend on n, thus the corresponding total multicorrela-
tions do not have such a simple representation as M (or its sample version (13)) in fact the following holds
(analogously also for Mcor):

R
2
ρ(X1, . . . , Xn) :=

1
2n − n − 1

∑︁
1≤i1<...<im≤n

2≤m≤n

M2
⊗m
k=1ρik

(Xi1 , . . . , Xim )∏︀m
k=1

(︁
E(|Ψik (Xik , X′

ik )|
m)
)︁1/m (19)

≥
E
(︂∏︀n

i=1

(︂
1 + Ψi(Xi ,X′

i )
(E(|Ψi(Xi ,X′

i )|n))1/n
)︂)︂

− 1

2n − n − 1 . (20)

Therefore the total multicorrelations seem more of a theoretic interest, but the corresponding m-multi-
correlations (whichwill be defined in Remark 5.5.3) have efficient estimators. Moreover, also the lower bound
in (20) has an efficient sample version analogously to (13). For a comparison of these multicorrelations see
Section 3.6.

The introduced dependence measures and their sample versions feature the following properties.

Proposition 2.3 (Invariance properties of multivariance). The following properties hold for M,M,M,M,
R,R,Mcor, Mcor and the corresponding sample versions, to avoid redundancy we only explicitly state them
for M:

(a) trivial for single variables, i.e., Mρi (Xi) = 0 for all i ∈ {1, . . . , n}.
(b) permutation invariant, i.e., M(X1, . . . , Xn) = M⊗n

i=1ρki
(Xk1 , . . . , Xkn ) for all permutations k1, . . . , kn

of 1, . . . , n. Moreover, the sample versions are in addition invariant with respect to permutations of the
samples, i.e., the equality NM(x(1), . . . , x(N)) = NM(x(l1), . . . , x(lN )) holds for all permutations l1, . . . , lN of
1, . . . , N . (This should not be confused with the permutations for a resampling test, where components
of the samples are permuted separately, see (42).)

(c) symmetric in each variable, i.e., M(X1, . . . , Xn) = M(c1X1, . . . , cnXn) for all ci ∈ {−1, 1}.
(d) translation invariant, i.e., M(X1 − r1, . . . , Xn − rn) = M(X1, . . . , Xn) for all ri ∈ Rdi .

Note that the latter and (c) imply that for dichotomous 0-1 coded data a swap of the coding does not
change the value of the multivariance.

(e) rotation invariant for isotropic ψi, i.e., if ψi(xi) = gi(|xi|) for some gi and all i = 1, . . . , n, then
M(X1, . . . , Xn) = M(R1X1, . . . , RnXn) for all rotations Ri on Rdi .
Note that in this case, since also (c) and (d) hold, M is invariant with respect to Euclidean isometries.

Proof. For multivariance M the property (a) follows by direct calculation using (3) and (4), (b) is obvious
by (3), (c) holds since ψi is symmetric and for (d) note that the translations cancel in (4). Moreover, since a
rotation preserves Euclidean distances also (e) holds. Total multivariance M is just a sum of multivariances,
hence it inherits these properties.

For sample multivariance NM the same arguments apply using (8) and (10). For the sample permutation
invariance in (b) note that permutations of samples correspond to permutations of rows and columns of the
centred distance matrices. Analogously also the scaling factors given in (12), (14) and (15) have these proper-
ties. Therefore the properties hold also for all scaled and sample versions of (total) multivariance.

Moreover, for special functions ψi the scaled dependence measures feature also scale invariance.



8 | B. Böttcher

Proposition 2.4 (Scale invariance of scaled multivariance for ψi(xi) = |xi|αi ). Let ψi(xi) = |xi|αi with αi ∈
(0, 2). Then the scaled measures M,M,R,R, Mcor,Mcor and the corresponding sample versions are scale
invariant, that is,

M(r1X1, . . . , rnXn) = M(X1, . . . , Xn) for all ri ∈ R∖{0}. (21)

Proof. For ψi(xi) = |xi|αi note that Ψi given in (4) satisfies Ψi(riXi , riX′
i) = |ri|αiΨi(Xi , X′

i). Thus multivariance
is α-homogeneous, i.e., M(r1X1, . . . , rnXn) = M(X1, . . . , Xn)

∏︀n
i=1 |ri|

αi . The same holds (using (10)) for NM
and also for the scaling factors given in (12), (14) and (15). Thus the factors |ri|αi cancel by the scaling.

The key for statistical tests based on multivariance is the following convergence result. The presented result
relaxes the required moments considerably in comparison to (Böttcher et al. 2019, Thm. 4.5, 4.10, Cor. 4.16,
4.18), moreover also a new parameter β is introduced which will be useful in Section 6.

Theorem 2.5 (Asymptotics of sample multivariance). Let Xi , i = 1, . . . , n be non-constant random variables
and let X(k), k = 1, . . . , N be independent copies of X = (X1, . . . , Xn). Let either of the following conditions hold

all ψi are bounded (22)

or
for all i = 1, . . . , n : E(ψi(Xi)) < ∞ and E

[︁
(log(1 + |Xi|2))1+ε

]︁
< ∞ for some ε > 0. (23)

Then for any β > 0

Nβ · NM2(X(1), . . . , X(N)) a.e.−−−−→
N→∞

∞ if X1, . . . , Xn are dependent but (n − 1)-independent, (24)

N · NM2(X(1), . . . , X(N)) d−−−−→
N→∞

Q if X1, . . . , Xn are independent, (25)

Nβ · NM2(X(1), . . . , X(N)) a.e.−−−−→
N→∞

∞ if X1, . . . , Xn are dependent, (26)

N · NM2(X(1), . . . , X(N)) d−−−−→
N→∞

Q if X1, . . . , Xn are independent, (27)

where Q and Q are Gaussian quadratic forms with EQ = 1 = EQ.

Proof. Here we explain the main new ideas, the details are provided in Section 9.3.
For the convergence in (25) and (27) exist at least two methods of proof: As in Böttcher et al. (2019) the

convergence of empirical characteristic functions can be used. For this step a slightly relaxed (but technical)
version of the log moment condition (see Remark 2.6) is necessary and sufficient, cf. (Böttcher et al. 2019,
Remark 4.6.b). An alternative approach (Theorem 9.3 in Section 9) uses the theory of degenerate V-statistics,
this requires moments of second order with respect to ψi, but no further condition. Thus, in particular, for
bounded ψi the latter removes the log moment condition.

For β = 1 the divergence in (24) and (26) was proved in Böttcher et al. (2019) under the condition (5),
which ensures that the representations (3) of the limits of sample (total) multivariance are well defined and
finite. Using the characteristic function representation (1) (which is always well defined, but possibly infinite)
the divergence can be proved without (5), see Section 9 Lemma 9.5 ff.. Moreover, the arguments used therein
work for any β > 0.

Remark 2.6. The log moment condition E
[︀
(log(1 + |Xi|2))1+ε

]︀
< ∞ in (23) can be slightly relaxed to (Csörgő

1985, Condition (*)). But the latter is practically infeasible, thus we opted for a comprehensible condition. More-
over the logmoment condition is trivially satisfied, if ψi satisfies aminimal growth, i.e., ψi(xi) ≥ c log(1+|xi|2)1+ε

for some c, ε > 0. Also the condition (22) is stated here for clarity, in fact (A10) is sufficient.

Note that in Theorem 2.5 the parameter βwas only considered in the dependent cases. In the case of indepen-
dent random variables one obtains the following result.
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Corollary 2.7 (Strong consistency of Nβ-scaled multivariance for independent random variables). Let Xi,
i = 1, . . . , n be independent random variables and let X(k), k = 1, . . . , N be independent copies of X =
(X1, . . . , Xn). If either (22) or (23) holds, then for any β < 1

Nβ · NM2(X(1), . . . , X(N)) a.e.−−−−→
N→∞

0, (28)

Nβ · NM2(X(1), . . . , X(N)) a.e.−−−−→
N→∞

0. (29)

Proof. The statements (28) and (29) are a direct consequence of (25) and (27), if one considers convergence
in probability instead of ’a.e.’, see e.g. (Böttcher et al. 2019, proof of Corollary 4.7) for the case β = 0.

For almost sure convergence one has to look at the proof(s) of (25) and (27). Therein a key step is an appli-
cation of the central limit theorem, which requires (in the given setting) exactly the factor N for convergence
(in distribution) to a standard normally distributed randomvariable. Using therein, for N replaced by Nβ with
β < 1, Marcinkiewicz’s law of large numbers, e.g. (Kallenberg 1997, Theorem 3.23), (or the law of the iterated
logarithm) yields the limit 0 almost surely.

The choice of ψi is intertwined with the invariance properties (Propositions 2.3 and 2.4) and the moment
conditions (22) and (23). For the population measures also condition (5) and for the scaled measures also (17)
and (18) have to be considered. In particular, it is possible to choose ψi (or to transform the random variables)
such that these conditions are satisfied regardless of the underlying distributions.

Remark 2.8. 1. (Comments on choosing ψ) Based on Propositions 2.3 and 2.4 the canonical choice for ψi is
ψi(xi) = |xi|αi with αi ∈ (0, 2), classically with αi = 1 (other choices might provide higher power in tests;
a general αi selection procedure is to our knowledge not yet available).
Nevertheless there are many other options for ψi, see (Böttcher et al. 2018, Table 1) for various examples,
and there are at least a few reasons why one might choose a ψi which is not (a power of) the Euclidean
distance:

(a) For unbounded ψi condition (23) is required in Theorem 2.5. If the existence of these moments is
unknown for the underlying distribution the convergence results might not hold. Here the use of a
slower growing or bounded ψi is a safer approach, see Example 10.13.

(b) The empirical size/power of the tests (details of theses are given in Section 4) can depend on the
functions ψi used, see Example 10.11. Especially if some information on the dependence scale is
known the parameter δi > 0 in ψi(xi) = 1− e−δi|xi|

αi can be adapted accordingly, see (Böttcher et al.
2019, Example 5.2) for an example using multivariance. Adaptive procedures for δi can be found in
Guetsop Nangue (2017).

(c) A non-linear dependence of multivariance on sample distances might be desired, e.g. there might
be application based reasons to use the Minkowski distance (Han et al. 2011, Section 2.4.4).

An alternative approach to ensure the moment conditions is the following.
2. (Transformation to bounded random variables) Recall a basic result on independence: For i = 1, .., n let
Xi : Ω → Rdi be random variables and fi : Rdi → Di ⊂ Rsi be measurable functions, then:

Xi , i = 1, . . . , n are independent ⇒ fi(Xi), i = 1, . . . , n are independent.

Moreover, if di = si and fi are bijective then also the converse implication holds. Thus one way to ensure
all moment conditions in Theorem 2.5 – and preserve the (in)dependence – is to transform the random
variables by bounded (bounded Di) bijective functions fi. But beware that with this approach the multi-
variance is neither translation invariant nor homogeneous, cf. Example 10.13.
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3 Comparison of multivariance to other dependence measures
In this section we compare multivariance to other dependence measures for random vectors Xi ∈ Rdi . We
only consider dependence measures which are closely related, in the sense that they are also based on char-
acteristic functions or appear as special cases. In the papers introducing and discussing thesemeasures com-
parisons with further dependence measures can be found.

Recall that multivariance (squared), M2(X1, . . . , Xn), is structurally of the form∫︁ ⃒⃒⃒⃒
⃒E
(︃ n∏︁
i=1

(eiXi ·ti − fXi (ti))
)︃⃒⃒⃒⃒
⃒
2

ρ(dt) = E

[︃ n∏︁
i=1
Ψi(Xi , X′

i)
]︃

(30)

with Ψi given in (4) and (X′
1, . . . , X′

n) being an independent copy of (X1, . . . , Xn).

3.1 Classical covariance, Pearson’s correlation and the RV coeflcient are limiting
cases of multivariance

Let n = 2 and ψi(xi) = |xi|2. Note that |.|2 is not characterizing in the sense of Proposition 2.2. It actually
does not correspond to a Lévy measure, cf. (Böttcher et al. 2018, Table 1). Thus the characteristic function
representation (left hand side of (30)) does not hold and a value 0 of the right hand side does not characterize
independence. Nevertheless, |.|2 is a continuous negative definite function and it is the limit for αi ↑ 2 of |.|αi
which are valid functions for multivariance. Moreover, the right hand side of (30) is also for |.|2 well defined,
and it corresponds to classical linear dependence measures: Hereto denote by Xi,k the components of the
vectors Xi, i.e., Xi = (Xi,1, . . . , Xi,di ) where Xi,k ∈ R. By direct (but extensive calculation) the expectation
representation in (30) of M2(X1, X2) with ψi(xi) = |xi|2 =

∑︀di
k=1 x

2
i,k simplifies to

d1∑︁
k=1

d2∑︁
l=1

(2 Cov(X1,k , X2,l))2. (31)

Especially for d1 = d2 = 1 the (absolute value of) classical covariance is recovered. Note that for n = 2
and ψi(.) = |.|2 the scaling constants in (12), (14) and (15) become 2Var(Xi), thus normalized multivariance
coincides in this setting with both multicorrelations and with the absolute value of classical correlation. For
arbitrary d1 and d2 themulticorrelations (squared) also coincide with the extension of correlation to random
vectors developed in Escoufier (1973). The corresponding sample versions NM, NR and NMcor coincide for d1 =
d2 = 1with (the absolute value of) Pearson’s correlation coefficient and NR2 and NMcor2 coincide for arbitrary
d1 and d2 with the RV coefficient of Robert and Escoufier (1976) (see also Josse and Holmes 2016).

Note that also for n > 2 the right hand side of (30) with ψi(xi) = |xi|2 is a well defined expression, which
can be understood as an extension of covariance, Pearson’s correlation and the RV coefficient to more than
two random vectors.

3.2 Multivariance unifies distance covariance and HSIC

In the case of two random variables (that is, n = 2) multivariance coincides with generalized distance covari-
ance (Böttcher et al. 2018) and the following (simplified) representations hold (using (Böttcher et al. 2018, Eq.
(30)), direct calculations, (Josse and Holmes 2016, Eq. (3.2)) and the notation ψ = 1 − ψ)

M2(X1, X2) =
∫︁∫︁

|f(X1 ,X2)(t1, t2) − fX1 (t1)fX2 (t2)|
2 ρ1(dt1)ρ2(dt2) = E

[︃ 2∏︁
i=1
Ψi(Xi , X′

i)
]︃

(32)

= E

[︃ 2∏︁
i=1

(ψi(Xi − X′
i))
]︃
− 2E

[︃ 2∏︁
i=1

E[ψi(Xi − X′
i) | Xi]

]︃
+

2∏︁
i=1

E
[︁
ψi(Xi − X′

i)
]︁

(33)
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= E

[︃ 2∏︁
i=1
ψi(Xi − X′

i)
]︃
− 2E

[︃ 2∏︁
i=1

E[ψi(Xi − X′
i) | Xi]

]︃
+

2∏︁
i=1

E
[︀
ψi(Xi − X′

i)
]︀

(34)

= Cov
(︀
ψ1(X1 − X′

1), ψ2(X2 − X′
2)
)︀
− 2Cov

(︀
ψ1(X1 − X′

1), ψ2(X2 − X′′
2 )
)︀
. (35)

The last line is included to emphasize that further interesting representations exist – this one actually pro-
vides a characterization of independence using (the classical linear dependence measure) covariance. Other
equivalent representations are Brownian distance covariance (Székely and Rizzo 2009) (for ψ(.) = |.|) and its
generalization Gaussian distance covariance (Böttcher et al. 2018, Section 7).

Note that (34) is for ψi(xi) = |xi|αi distance covariance (Székely et al. 2007) and (33) is for ψi(xi) = 1 −
e−δi ψ̃i(x) (where ψ̃i can be any real-valued continuous negative definite function, e.g. |.|αi , and δi > 0) the
Hilbert Schmidt Independence Criterion (HSIC, (Gretton et al. 2008)) with kernel ki(x, y) = e−δi ψ̃i(x−y).³ For the
latter just note that for any continuouspositivedefinite functionϕ the functionϕ(0)−ϕ is continuousnegative
definite (cf. (Jacob 2001, Corollary 3.6.10)), i.e., it fits into the framework of multivariance. The equivalence
of kernel based approaches and distance based approaches was noted in Sejdinovic et al. (2013b), see also
Shen and Vogelstein (2018) for a recent discussion. But note that the approach in Sejdinovic et al. (2013b)
to the correspondence of kernels and distance functions only works for the case n = 2, whereas the above
correspondence also extends to the multivariate setting.

In other words, in the case n = 2 multivariance with bounded measures ρi coincides with HSIC and
special cases of unbounded ρi yield distance covariance. Therefore, in general, multivariance is an extension
of these measures to more than two variables. But note that there is also at least one alternative extension as
we will discuss in the next section.

As discussed in Remark 2.8, the cases with bounded measures have the advantage that most moment
conditions are trivially satisfied and that in the case of HSIC the parameters δi provide a somehow natural
bandwidth selection parameter. In contrast, using unbounded measures ρi corresponding to |.|αi provide
(scaled) measures with superior invariance properties (Propositions 2.3 and 2.4). Note, that also in this case
the parameters αi offer some variability.

As a side remark, note that by the above it is straight forward that multivariance with ψ̃i is the derivative
(in the bandwidth parameter at δi = 0) ofmultivariance corresponding to 1−e−δi ψ̃i(x), this relation of distance
covariance and HSIC was noted in Bilodeau and Guetsop Nangue (2017). Incidentally, it is also the key for
relating Lévy processes to their generators, e.g. see the introduction of Böttcher et al. (2013).

Finally note that also the other measures discussed in the next section reduce for the case n = 2 to the
above setting, thus they are included (or closely related as Jin and Matteson (2018), which considers a joint
measure ρ without product structure).

3.3 Independence of more than two random vectors

As a consequence of Theorem2.1 themultivariances of all subfamilies of the variables X1, . . . , Xn characterize
jointly their independence. In fact, thiswas suggested in Bilodeau andGuetsopNangue (2017) as an approach
to independence viamultiple testing, i.e., via computing the p-value for each of these 2n−n−1multivariances
separately. The approach is complementary to the global test using total multivariance.

In Bilodeau andGuetsopNangue (2017)multivariance is considered in disguise: expanding the integrand
of (30) and using the linearity of the expectation yields E

(︁∏︀n
i=1(e

iXi ·ti − fXi (ti))
)︁
=
∑︀

S⊂{1,...n} E(
∏︀
i∈S(e

iXi ·ti )∏︀
i∈Sc (−fXi (ti)). This representation of the product is also called Möbius transformation of the characteristic

3 HSIC (and dHSIC in Pfister et al. (2017)) require bounded, continuous, symmetric, positive definite kernels ki . If ki is additionally
translation invariant, then ki(xi , x′i ) = ki(xi − x

′
i , 0) =: ϕ(xi − x

′
i ) and ϕ is a continuous positive definite function. For the non

translation invariant case see Section 3.5. Moreover, note that we assume here ϕ(0) = 1 to avoid distracting constants in the
presentation. HSIC and dHSIC additionally require that the kernel is characterizing, which is by Proposition 2.2 equivalent to the
full support property of ρ.
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functions. Without the characteristic function representation (with ψi based on kernels ki) the multivariance
of 3 random variables appeared before under the name “(complete) Lancaster interaction” in Sejdinovic et al.
(2013a).

Other popular multivariate dependence measures based on characteristic functions are of the following
form, which is here stated using our setting (with the notation ψ = 1−ψ and ρi(Rdi ) = 1; to reformulate it for
positive definite kernels use the correspondence provided in Section 3.2):∫︁ ⃒⃒⃒⃒

⃒E
[︃ n∏︁
i=1

eiXi ·ti
]︃
−

n∏︁
i=1
fXi (ti)

⃒⃒⃒⃒
⃒
2

ρ(dt) (36a)

= E

[︃ n∏︁
i=1

(ψi(Xi − X′
i))
]︃
− 2E

[︃ n∏︁
i=1

E[ψi(Xi − X′
i) | Xi]

]︃
+

n∏︁
i=1

E
[︁
ψi(Xi − X′

i)
]︁
. (36b)

Such dependence measures go back at least to (Kankainen 1995, (1.3)). It is important to note that the equal-
ity in (36) does not hold in general for unbounded measures ρi, e.g. for n = 3, X1, X2 dependent (satisfying
(5)) and X3 constant the term (36a) is infinite but (36b) is finite. Nevertheless, dependence measures of type
(36) for ρ = ⊗n

i=1ρi with bounded and unbounded ρi were recently discussed in Fan et al. (2017) (in the un-
bounded case (Fan et al. 2017, Lemma 1a) provides only a rather complicated sample version, which actually
corresponds to (36b), a proof can be found in Section 9.4), for finite ρi representation (36) corresponds to
the also recently introduced measure dHSIC of Pfister et al. (2017) and for an unbounded (joint measure) ρ
associated to ψ(.) = |.| it was considered in Jin and Matteson (2018) (in this case (36b) has a slightly different
form).

The above illustrates that also for measures derived via (36) various approaches can be unified using the
framework of continuous negative definite functions and Lévy measures.

To compare (36) with multivariance, note that in (Böttcher et al. 2019, Section 3.5) it was shown that for
any given multivariance there exist special kernels (beyond the restrictions of the above papers) which turn
(36b) intomultivariance.With theusual kernels the followingholds:E

(︁∏︀n
i=1(e

iXi ·ti − fXi (ti))
)︁
= E

[︁∏︀n
i=1 e

iXi ·ti
]︁
−∏︀n

i=1 fXi (ti) if the given random variables are (n−1)-independent (Böttcher et al. 2018, Corollary 3.3). Thus the
left hand sides of (30) and (36) coincide in the case of (n − 1)-independence. Without (n − 1)-independence
multivariance does not characterize independence, but total multivariance M(X1, . . . , Xn), given by

∑︁
S⊂{1,...,n}

|S|>1

∫︁ ⃒⃒⃒⃒
⃒E
(︃∏︁
i∈S

(eiXi ·ti − fXi (ti))
)︃⃒⃒⃒⃒
⃒
2

⊗
i∈S

ρi(dti) = E

(︃ n∏︁
i=1

(Ψi(Xi , X′
i) + 1)

)︃
− 1, (37)

does characterize independence.
The approach (36) and total multivariance (37) require similar moment conditions⁴ (the variant in Jin and

Matteson (2018) requires a joint first moment) and the computational complexity of the sample versions is
similar (the variant in Jin andMatteson (2018) has a higher complexity, but they also provide an approximate
estimator with the same complexity). Total multivariance needs one product of doubly centred distance ma-
trices whereas (36b) needs three products of different distance matrices (which actually coincide with those
used for the double centring). Nevertheless, both approaches differ: In the Section 9.5 we calculate explicitly
the difference of the population measures for the case n = 3, indicating that it is by no means theoretically
obvious which approach might be more advantageous. Here certainly further investigations are required. A
practical difference is the fact that the current implementation of dHSIC (Pfister and Peters 2019) requires
N > 2n, for multivariance there is no such explicit restriction.

Generally, papers on dependencemeasures differ not only in their measures, but also in their methods of
testing. For the approach (36) various methods have been proposed, of which the resampling method seems

4 Based on the method of proof and based on the focus of the papers (sample or population versions; bounded or unbounded ψi)
the stated conditions differ. But it seems a reasonable guess that these can be unified to those of multivariance, cf. the discussion
in the proof of Theorem 2.5.
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most popular. Formultivariancewe introduce the resamplingmethod in Section 4. Similarly to the othermea-
sures there are also further (and faster) methods available for multivariance: Distribution free tests are used
in Böttcher et al. (2019) (see Theorem 4.4) and in Berschneider and Böttcher (2019) tests based on moments
of the finite sample or limit distribution and/or using eigenvalues of the associated Gaussian process are
developed, see also Guetsop Nangue (2017).

3.4 Pairwise independence

In Section 5 we introduce m-multivariance. In particular, 2-multivariance provides a global test for pairwise
independence without any condition (when using bounded ψi) or under themildmoment condition (23), see
Test 5.4. A related approach to pairwise independence using distance covariance was developed in Yao et al.
(2017), but in contrast it required assumptions which are necessary for applications of a (generalized) central
limit theorem. The methods are compared in Example 7.3.

3.5 Generalizations

The setting of HSIC and also extensions of distance covariance are applicable to more general spaces than
Rd. In this settings the representation via characteristic functions and the characterization of independence
(might) fail. Nevertheless, the representations given in (3) can canonically be extend to negative definite ker-
nels n(xi , x′i) replacing ψ(xi − x′i). Thus it seems a natural guess that the key properties required for testing
can be recovered in this setting, but to our knowledge this has not been studied yet. In the bivariate setting
(Lyons 2013) considers the case where n(xi , x′i) is a metric, hereto note that in general ψ(xi − x′i) does not yield
a metric, but

√︁
ψ(xi − x′i) does, cf. (Böttcher et al. 2018, Remark 3.8.b)).

For distance covariance exist also furthermodifications, like the affinely invariant distance correlation in
Edelmann (2015). Also this extension seems possible for multivariance. It is only defined for random vectors
with non singular covariance matrices and in this setting it would be a candidate to satisfy the set of axioms
given in the next section (Móri and Székely 2018, Example 3).

3.6 Axiomatic classification of dependence measures

Rényi (1959) proposed a set of axioms which a dependence measure should satisfy. These have been chal-
lenged over the years,most recently e.g. inMóri and Székely (2018). They propose “four simple axioms”which
a dependencemeasure d should satisfy, and distance correlation is called the “simplest andmost appealing”
measure which satisfies these axioms. All axioms were proposed for pairwise comparisons of random vari-
ables or vectors. We present here a multivariate extension to n non-constant random vectors (constants are
removed to avoid technical difficulties, cf. Móri and Székely (2018)):

(A1) characterization of independence: d(X1, . . . , Xn) = 0 if and only if Xi are independent.
(A2) invariance: d(X1, . . . , Xn) = d(S1(X1), . . . , Sn(Xn)) for all similarity transforms⁵ Si.
(A3) reference value: d(X1, . . . , Xn) = 1 if X1, . . . , Xn are related by similarity transforms (see (38) for de-

tails).
(A4) continuity: d(X(k)1 , . . . , X(k)n ) k→∞−−−→ d(X1, . . . , Xn), if (X(k)1 , . . . , X(k)n ) k→∞−−−→ (X1, . . . , Xn) in distribution

(under a uniform moment condition, which ensures the finiteness of the measures).

5 A similarity transform is any combination of translations, rotations, and reflections and non zero scalings (using the same
scaling factor for all components of a vector), cf. Móri and Székely (2018).
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Note that Móri and Székely (2018) uses a further common axiom— normalization: d(...) ∈ [0, 1] —which was
only indirectly assumed and (A3) was stronger: it contained “if and only if” with a seemingly more restrictive
relationwhich actually forced explicitly the dimensions of the randomvectors to be identical. Note that in the
related (original) axiom (Rényi 1959, Axiom E) also only the “if” part was required and a footnote explicitly
advised against strengthening it.

In the setting ofmultivariancewe say that randomvariables Xi and Xk are related by similarity transforms
Si and Sk if

ψi(Si(Xi) − Si(X′
i)) = ψk(Sk(Xk) − Sk(X′

k)). (38)

A prerequisite for the continuity (A4) is the finiteness of the measure d, cf. Móri and Székely (2018). Thus
all considerations for (normalized) multivariance are under the moment condition (5) and for the multicor-
relation we have to assume (18). Based on Propositions 2.3 and 2.4 the invariance with respect to similarity
transforms holds for ψ(x) = |x|α, and it seems (cf. (Böttcher et al. 2018, Section 5)) that for other unbounded
andall boundedψ the invariance fails. Thereforeweonly considerψ(x) = |x|α. Table 1 indicateswhich axioms
are satisfied by the measures, all properties follow by direct calculations (the continuity uses the dominated
convergence theorem; for the normalization a generalized Hölder inequality is used, see also (Böttcher et al.
2019, Proposition 4.13)). For multicorrelation the properties vary as the number of variables is even or odd,
and R yields always a measure with values in [0, 1] whereas Mcor yields always the reference value 1 for
variables related by similarity transforms. Note that for a multivariate normal distribution the value of total
distance multivariance is (for the special case ψ(x) = |x|) linked to its correlation by (Chakraborty and Zhang
2019, Proposition 2).

By Table 1 the four axioms are simultaneously satisfied by Mcor. But recall that R and Mcor lack effi-
cient sample versions. In the sample setting also N · NM2 and N · NM2 provide statistically interpretable val-
ues (indirectly: via the corresponding p-value; yielding also a rough direct interpretation: they are positive
and their expectation is one for independent random variables. Thus values much larger than one hint at
dependence). Moreover, normalized multivariance requires only the moment condition (5) whereas multicor-

Table 1: Dependence measure axioms which are satisfied by (variants) of (total) multivariance for ψi(xi) = |xi|αi with αi ∈ (0, 2).

axioms (A1) (A2) (A3) (A4)
characterization of
independence

invariance reference value continuity normalization

multivariance
M n = 2 − − X −
M X − − X −
normalized
multivariance
M n = 2 X − X −
M X X − X −
multicorrelation
R n = 2 X n even X X
R X X n = 2 X X
Mcor n = 2 X X X n even
Mcor X X X X n = 2
2-multivariance char. of pairwise

independence
(A3) and iff

(Section 5)
M2 X − − X −
M2 X X − X −
Mcor2 (= R2) X X X X X
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relation requires the more restrictive condition (18). Finally, note that in the case n = 2 the multicorrelations
coincide. Thus, in particular,Mcor2 (defined in Section 5) provides ameasure with efficient sample estimator.
For this measure a value of 0 only characterizes pairwise independence, but the value 1 occurs if and only if
the random variables are related by similarity transforms.

A first discussion of the behaviour of (total) multivariance when one enlarges the family of random vari-
ables can be found in (Böttcher et al. 2019, Proposition 3.7, Remark 3.8), which translates directly to multicor-
relation.

4 Testing independence using multivariance
In this section we extend the discussion of (Böttcher et al. 2019, Section 4.5). We use the notation of Section
2, in particular x(k) = (x(k)1 , . . . , x(k)n ) are samples of independent copies of (X1, . . . , Xn). Based on Theorem
2.5, and recalling the fact that constant random variables are always independent, the following structure of
a test for independence is obvious.

Test 4.1 (Test for n-independence, given (n − 1)-independence). Let ψi be bounded or (23) be satisfied. Then
a test for independence is given by: Reject n-independence if X1, . . . , Xn are (n − 1)-independent and

N · NM2(x(1), . . . , x(N)) > R. (39)

The value R will be discussed below.

Remark 4.2. Note that also without the assumption of (n − 1)-independence (39) provides a test for indepen-
dence for which the type I error can be controlled by the choice of R, since the distribution of the test statistic
under the hypothesis of independence is known, see (25). But in this case it is unknown if the test statistic di-
verges if the hypothesis does not hold. Thus one can not control the Type II error and it will not be consistent
against all alternatives (regardless of the satisfied moment conditions). A trivial example hereto would be the
case where one random variable is constant, and thus the test statistic is always 0. But note that with the as-
sumption of (n − 1)-independence this problem does not appear, since the (n − 1)-independence implies (given
that at least one random variable is constant) that the random variables are independent.

Analogous to Test 4.1, using total multivariance instead of multivariance, one gets the test for independence.

Test 4.3 (Test for (n-)independence). Let ψi be bounded or (23) be satisfied. Then a test for independence is
given by: Reject independence if

N · NM2(x(1), . . . , x(N)) > R. (40)

To get a test with significance level α ∈ (0, 1) the natural choice for R in (39) and (40) is the (1 − α)-quantile
of the (limiting) distributions of the test statistics under H0, i.e., assuming that the Xi are independent. To
find this distribution explicitly or at least to have good estimates is non trivial, see Berschneider and Böttcher
(2019) for an extensive discussion. As a starting point, one can follow (Székely et al. 2007, Theorem 6) where
a general estimate for quadratic forms of Gaussian random variables given in Székely and Bakirov (2003) is
used to construct a test for independence based on distance covariance. In our setting this directly yields the
following result.

Theorem 4.4 (Rejection level for the distribution-free tests). Let α ∈ (0, 0.215]. Then Test 4.1 and 4.3 with

R := F−1χ21 (1 − α) (41)

are (conservative) tests with significance level α. Here Fχ21 is the distribution function of the Chi-squared distri-
bution with one degree of freedom.
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In the case of univariate Bernoulli random variables the significance level α is achieved (in the limit) by Test
4.1 with R given in (41), see (Berschneider andBöttcher 2019, Remark 4.27). But for other cases itmight be very
conservative, e.g. Example 10.11 (Figure A13). Recall that total multivariance is the sum of 2n − n − 1 distance
multivariances (this is the number of summands in (2)). Thus one distance multivariance with a large value
might be averaged out by many small summands, see Example 10.14. Hereto m-multivariance (which will be
introduced in the next section) provides an intermediate remedy. It is also the sum of multivariances, but
it has less summands. Thus the ’averaging out’ (also known as ’statistical curse of dimension’) will be still
present but less dramatic.

Note that R in Theorem 4.4 is provided by a general estimate for quadratic forms. It yields in general con-
servative tests, since it does not consider the specific underlying (marginal) distributions. Less conservative
tests can be constructed if the distributions are known or by estimating these distributions. The latter can be
done by a resampling approach or by a spectral approach, similarly to the case of distance covariance (see
(Sejdinovic et al. 2013b, Section 7.3.)). Methods related to the spectral approach are developed in Berschneider
and Böttcher (2019).

In the following the resampling approach for M is introduced. The procedure is certainly standard to
experts, never the less it seems important to recall it (to avoid ambiguity): Supposewe are given i.i.d. samples⁶
x(1), . . . , x(N) with unknown dependence, i.e., for each i the dependence of the components x(i)1 , . . . , x(i)n is
unknown. Now, resampling each component separately yields (almost) independent components. Thus Test
4.1 (respectively Test 4.3 withM) becomes a resampling test (resamplingwithout replacement / permutation
test) with L ∈ N replications using the rejection level R given by

Rrs := Q1−α

(︂{︂
N · NM2

(︂
x(p

(l)
1 (i))

1 , . . . , x(p
(l)
n (i))

n , i = 1, . . . , N
)︂
, l = 1, . . . , L

}︂)︂
(42)

where each p(l)k (1), . . . , p
(l)
k (N) is a random permutation of 1, . . . , N (and these are i.i.d. for k = 1, . . . , n and

l = 1, . . . , L) and x(i) = (x(i)1 , . . . , x(i)n ) are the samples given for the test. Here Q1−α(S) denotes the empirical
(1−α)-quantile of the samples in the set S. Insteadof randompermutations one could allow p(l)k (1), . . . , p

(l)
k (N)

to be any sample of 1, . . . , N, this would also be a resampling test (resampling with replacement / bootstrap
test), but note that the permutation test can be implemented more efficiently. Similarly, Test 4.1 (respectively
Test 4.3 withM) becomes aMonte Carlo test with L ∈ N replications using

RMC := Q1−α
(︁{︁
N · NM2(x(i,l)1 , . . . , x(i,l)n , i = 1, . . . , N), l = 1, . . . , L

}︁)︁
(43)

where x(i,l)k , k = 1, . . . , n, i = 1, . . . , N, l = 1, . . . , L are independent samples and for each fixed k the x(i,l)k , i =
1, . . . , N, l = 1, . . . , L are i.i.d. samples of Xk.

Remark 4.5. In (Pfister et al. 2017, Section 3.2) two related resampling tests are introduced for dHSIC. But note
that they use slightly different terminology, i.e., therein the ’permutation test’ considers samples as in (42) but in-
stead of random permutations all permutations are considered. For the ’bootstrap test’ they use all resamplings
of the sample distribution of each variable. This yields L = (N!)n and L = NNd, respectively. Which is infeasi-
ble even for relatively small N, thus in (Pfister et al. 2017, Section 4.2) they also use randomly selected samples
instead of all samples, and they call the resulting estimators ’Monte-Carlo approximations’ of the estimators.

5 m-multivariance
Pairwise independence is the prime requirement for various fundamental tools in stochastics, e.g. the classi-
cal law of large numbers. Especially when working with many variables (n large) a multiple testing approach

6 Here we use a common abuse of terminology: An independent sample is a sample based on independent random variables.
Analogously, an i.i.d. (independent and identically distributed) sample, is a sample of i.i.d. random variables. Moreover, note that
here the random variables are in general random vectors with possibly dependent components.
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might not be feasible. Thus a global test for pairwise independence has many applications, see also the mo-
tivation in Yao et al. (2017). Here we construct such a test, together with further generalizations which allow
the successive testing of 2-independence, 3-independence, etc.

Define for m ∈ {2, . . . , n} them-multivariance Mm by

M2
m,ρ(X1, . . . , Xn) :=

∑︁
1≤i1<...<im≤n

M2
⊗m
k=1ρik

(Xi1 , . . . , Xim ). (44)

Instantly Theorem 2.1 yields the following characterization.

Proposition 5.1 (Characterization of m-independence). For random variables X1, . . . , Xn taking values in
Rd1 , . . . ,Rdn the following are equivalent:

1. X1, . . . , Xn are m-independent,
2. Mm,ρ(X1, . . . , Xn) = 0 and X1, . . . , Xn are (m − 1)-independent.

In particular, M2(X1, . . . , Xn) = 0 characterizes pairwise independence.

Similar to multivariance, using (8), a strongly consistent estimator for Mm is the sample m-multivariance

NMm(x(1), . . . , x(N)) =

⎯⎸⎸⎷ ∑︁
1≤i1<...<im≤n

1
N2

N∑︁
j,k=1

(Ai1 )jk · . . . · (Aim )jk . (45)

Analogous to the case of normalized total multivariance the normalized sample m-multivariance NMm is
given by

NM2
m(x(1), . . . , x(N)) =

(︃
n
m

)︃−1 ∑︁
1≤i1<...<im≤n

1
N2

N∑︁
j,k=1

(Ai1 )jk · . . . · (Aim )jk , (46)

whereAi are the normalizedmatrices defined in (12). For (sample)m-multivariance the invariance properties
(Propositions 2.3 and 2.4) hold analogously. To ensure that the expectation representation ofm-multivariance
(analogous to (3)) is finite the following condition (which is weaker than (5)) is required:

finite joint ψ-moments for families of size m:

for all S ⊂ {1, . . . , n} with |S| ≤ m: E
(︃∏︁
i∈S

ψi(Xi)
)︃
< ∞. (47)

Note that the sum
∑︀

1≤i1<...<im≤n has
(︀n
m
)︀
summands, which might be a lot to compute. These sums can

be simplified using the multinomial theorem, (A1 + . . . + An)m =
∑︀

k1+...+kn=m
m!

k1!·...·kn !A
k1
1 · . . . · A

kn
n . In par-

ticular, for m = 2, 3 the following expressions of sample m-multivariance are easier to evaluate (analogous
representations hold for the normalized sample m-multivariance):

NM2(x(1), . . . , x(N)) =

⎯⎸⎸⎷1
2

1
N2

N∑︁
k,l=1

(︃(︀
(A1 + . . . + An)kl

)︀2 − n∑︁
i=1

(︀
(Ai)kl

)︀2)︃, (48)

NM3(x(1), . . . , x(N)) =

⎯⎸⎸⎸⎷1
3

1
N2

N∑︁
k,l=1

⎛⎝(︃(︃ n∑︁
i=1

Ai

)︃
kl

)︃3

− 3
(︃ n∑︁
i=1

Ai

)︃
kl

n∑︁
i=1

(︀
(Ai)kl

)︀2 + 2 n∑︁
i=1

(︀
(Ai)kl

)︀3⎞⎠. (49)

Thus at least for small m these estimators are easy to compute and – analogous to the case of (total) multi-
variance – these can be used to test m-independence by the next results.

Theorem 5.2. (Asymptotics of sample m-multivariance) Let Xi , i = 1, . . . , n be non-constant random variables
and let X(k), k = 1, . . . , N be independent copies of (X1, . . . , Xn). If either the ψi are bounded or (23) holds, then
for m ≤ n

N · NM2
m(X(1), . . . , X(N)) d−−−−→

N→∞
Q if X1, . . . , Xn are m-independent, (50)
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N · NM2
m(X(1), . . . , X(N)) a.e.−−−−→

N→∞
∞ if X1, . . . , Xn are m-dependent but (m − 1)-independent. (51)

where Q is a Gaussian quadratic form with EQ = 1.

Proof. Let the assumptions of Theorem 5.2 be satisfied. Then (50) holds, since in this case (25) implies the
convergence of each of the

(︀n
m
)︀
summands of (46) to a Gaussian quadratic form with expectation 1. Thus,

due to the normalizing factor in (46), the limiting distribution has expectation 1. Further note that given
(23) all these quadratic forms can be expressed as a stochastic integral with respect to the same process,
cf. (Böttcher et al. 2019, Supplement, Eq. (S.15)). This yields (by the same arguments as in the case of total
multivariance (Böttcher et al. 2019, Section 4.3)) that the limiting distribution is in fact the distribution of
a Gaussian quadratic form. If all ψi are bounded, a proof analogous to the one for the convergence of total
multivariance in Theorem 9.3 shows the result.

The divergence (51) follows by (24), since the latter implies under the given assumptions that at least one
summand of (46) diverges.

Analogous to the cases of multivariance and total multivariance the above theorem immediately yields a test
for m-independence which is (under the given moment conditions) consistent against all alternatives.

Test 5.3 (Test for m-independence, given (m − 1)-independence). If either the ψi are bounded or (23) holds,
then a test for m-independence is given by: Reject m-independence if X1, . . . , Xn are (m − 1)-independent and

N · NM2
m(x(1), . . . , x(N)) > R, (52)

with R as discussed in Section 4. (Note that one has to replaceM byMm in (42) and (43) to get R for the resam-
pling test and the Monte Carlo test, respectively.)

For a test of m-independence (without controllable type II error) one can drop in Test 5.3 the assumption of
(m − 1)-independence, cf. Remark 4.2.

As a special case, for m = 2, the Test 5.3 becomes a test for pairwise independence.

Test 5.4 (Test for pairwise independence). If either the ψi are bounded or (23) holds, then a test for pairwise
independence is given by: Reject pairwise independence if

N · NM2
2(x(1), . . . , x(N)) > R, (53)

with R asdiscussed in Section 4. (Note that one has to replaceMbyM2 in (42)and (43) to get R for the resampling
test and the Monte Carlo test, respectively.)

Examples of the use of m-multivariance are given in the Sections 7 and 10, e.g. Example 7.3. To roundup this
section we discuss some related estimators.

Remark 5.5. 1. Analogous to the case of total multivariance one can define total m-multivariance for
X = (X1, . . . , Xn) by

M2
m,ρ(X) :=

∑︁
1≤i1<...<ir≤n

2≤l≤m

M2
⊗l
k=1ρik

(Xi1 , . . . , Xil ) =
m∑︁
l=2

M2
l,ρ(X) (54)

and calculate its sample version. There might be computationally simpler representations using formulas
for (A1 + . . . + An + 1)m. Moreover, also the complements of these measures, e.g. M −M3 −M2 = M −M3,
might be of interest for multiple testing of higher order dependencies with disjoint hypotheses.

2. The simple form of the sample 2-multivariance in (48) might suggest other generalizations. For example
one could also consider

Ñ︀M3(x(1), . . . , x(N)) :=

⎯⎸⎸⎷1
2

1
N2

N∑︁
k,l=1

(︃(︀
(A1 + . . . + An)kl

)︀3 − n∑︁
i=1

(︀
(Ai)kl

)︀3)︃ (55)
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as an estimator for 3-independence. In fact in the case of 2-independence this provides (assuming (47)
and using (Böttcher et al. 2019, Corollary 4.7)) a weakly consistent estimator for M3. Hereto just note
that the sums of all mixed terms of the form ((Ai)kl)2(Aj)kl with i ≠ j are estimators for multivariances like
M(Xi , Xi , Xj), and the factorization for independent subsets (6) yields M(Xi , Xi , Xj) = M(Xi , Xi)M(Xj) = 0.
But note that the estimators for these terms squared and scaled by N do usually not vanish for N → ∞.
Thus a result like Theorem 5.2 fails to hold.

3. A further natural extension is to introduce the corresponding global scaled measures of m-dependence,
i.e. m-multicorrelations. These require finite ψ-moments of order m (cf. (18)). E.g. 2-multicorrelation is
given by

Mcor2,ρ(X1, . . . , Xn) :=

⎯⎸⎸⎸⎷(︃n2
)︃−1 ∑︁

1≤i<j≤n

M2
ρi⊗ρj (Xi , Xj)√︁

M2
ρi⊗ρi (Xi , Xi)M

2
ρj⊗ρj (Xj , Xj)

(56)

and it coincides with the (analogously defined) R2 since for n = 2 the scaling factors in (14) and (15)
coincide. Moreover these factors have for each summand in (56) the same exponent, thus (in contrast
to R and Mcor) one gets efficient sample representations by replacing the Ai in (48) by those in (14) (or
equivalently (15)). This correlation satisfies all the dependence measure axioms of Section 3.6 when one
replaces (A1) by the characterization of pairwise independence, see Table 1.

6 Dependence structure visualization and detection
In this section two visualizations of higher order dependencies of random variables X1, . . . , Xn using undi-
rected graphs are introduced: the full and the clustered dependence structure. For each the population ver-
sion and estimation procedures are discussed. The latter can be based on independence tests with a fixed
significance level or on a consistent estimator. In Sections 7 and 10 various examples are presented. The im-
plementation of the visualizations in R relies in particular on the package igraph (Csardi and Nepusz 2006).

A dependence structure graph consists of three elements (cf. Figure 2):
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31.73

8.624

Figure 2: Visualized clustered dependence structure based on
samples of Example 10.5.

– Circled nodes denote random variables.
– Edges denote dependencies.
– Non-circled nodes (’dependency nodes’)

are primarily used to denote the depen-
dence of the connected nodes and a label
might denote the value of a dependence
measure or a related quantity of the con-
nected nodes (in our sample setting it is the
value of the test statistic N ·NM2 or the order
of dependence). Secondarily these might
be used to represent the ’random variable’
which consists of all components of a con-
nected cluster, e.g. in Figure 2 the node
with label ’97.1’ represents the cluster of
X1, X2, X11.

A visualization of the full dependence structure is constructed by adding the corresponding ’depen-
dency nodes’ and edges for any m-tuple of Xi , . . . , Xn which is m-dependent but (m − 1)-independent. In
general this graph can be very overloaded, see Example 10.9.

The direct approach to the full dependence structure based on samples is to test successively all (m − 1)-
independent m-tuples for m-independence for m = 2, . . . , n, adjust the p-values appropriately for multiple
testing and add the significant dependency nodes and edges. For such a test procedure a direct visualization
of the tests p-values was introduced in Genest and Rémillard (2004): the dependogram. Note that the full
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dependence structure visualizes the (lowest order) significant findings in a dependogram, see Example 7.1 for
more details. In practice a visualization of the full dependence structure is only feasible for small n, since for
n random variables there are 2n − n − 1 =

∑︀n
k=2
(︀n
k
)︀
tuples to consider.

To overcome (or at least to reduce) the drawbacks of the full dependence structure one can alternatively
use a clustered dependence structure. Hereto each set of connected vertices in an undirected graph will be
called cluster. Then the clustered dependence structure graph is constructed by the following algorithm:

0. Include the circled nodes for X1, . . . , Xn .
1. Interpret clusters as random vectors: Let k be the number of clusters currently in the graph and let
Yi, i = 1, . . . , k be random variables which have as components the connected Xj of cluster i, e.g.
Y1 = (X1, X2, X11) if X1, X2, X11 are connected via some edges. (In the very first run each random
variable is its own cluster, i.e. k := n and Yi := Xi.) Moreover, set m = 2 (order of tuples to be tested
next).

2. Add successively edges (anddependencynodes) for dependent clusters: Ifm > k the graphconstruction
is finished, otherwise: For all m-dependent subsets of Y1, . . . , Yk add the corresponding dependency
nodes and edges (connected to some non-circled node representing the cluster, if the cluster consists
of more than one random variable) to the graph. If new nodes were introduced, go to step 2 otherwise
repeat this step with m increased by one.

Since dependence and independence are not transitive, some information might be lost in the clustered de-
pendence structure.Nevertheless, note that clusteringpreservesdependence, e.g. if at least oneof the random
variables Xi , i ∈ I is dependentwith one of Xk , k ∈ K then also (Xi , i ∈ I∪ J) is dependentwith (Xk , k ∈ K∪L).

The visualization algorithm for a clustered dependence structure based on samples is analogous to the
above, just in step 2 the m-independence has to be tested. Here one can (we do so) choose to skip sets of
variables which have been tested before, i.e., sets which remained unchanged after the last cluster detection.
But in any case the p-values have to be adjusted appropriately for multiple testing.

The appropriate adjustment of p-values due to multiple testing is the basis for many debates. For the
full dependence structure and for the clustered dependence structure the situation is complicated by the fact
that the total number of tests is unknown at the beginning, and the result of the tests in one step influence
(by indicating that some tuples are lower order dependent or by clustering) the data for the tests thereafter.
Thus adjusting p-values after clustering would usually require new tests. An approachwhich avoids this uses
Holm’s method separately for each set of multiple tests in step 2 of the algorithm, but one has to keep inmind
that by this the global type I error bound increases with each set of tests.

In general onemight also distinguish between visualizations of the results of tests using a given signifi-
cance level (in this case there is a bound for a type I error based on the significance level and it depends also
on the correction for multiple testing used) or visualizations using consistent estimators (if these exist they
might also be based on tests, but then the significance level or rejection level is adapted based on the sample
size, which might make it harder to get explicit error estimates). In the case of tests with a fixed significance
level, the range of significance levels which yield the same results might give an additional indication of the
reliability of the detection.

Remark 6.1 (Comment on detection errors). The probability of a type I error can be estimated and/or bounded
by the choice of the rejection level or significance level. But a type II error bound or estimate might not be avail-
able. In this case one has to keep in mind that, due to the successive estimation/testing procedure a type II error
(i.e., a not detected dependence) for some tuple can yield a detected higher order dependence for a superset of
the tuple. Thus in this case the higher order dependence still indicates that the components of the tuple are not
independent (but they might not be lower order independent).

All of the above applies to the use of anymultivariate dependencemeasure or test in the dependence structure
detection algorithms. Now we turn explicitly to the case of multivariance.
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6.1 Dependence structure detection using distance multivariance

For consistent estimates using multivariance the following observation is essential, it is based on Theorem
2.5 and Corollary 2.7.

Corollary 6.2 (Consistent dependence estimation). Let Xi , i = 1, . . . , n be (n − 1)-independent non-constant
random variables and let X(k), k = 1, . . . , N be independent copies of (X1, . . . , Xn). If either the ψi are bounded
or (23) holds, then for any β ∈ (0, 1)

Nβ ·M2(X(1), . . . , X(N)) a.e.−−−−→
N→∞

{︃
∞ if Xi , . . . , Xn are dependent,
0 if Xi , . . . , Xn are independent.

(57)

Hence using R = R(N) := N1−β · C for any fixed constants β ∈ (0, 1), C > 0 in the independence Tests 4.1,
4.3, 5.3, 5.4 provides strongly consistent tests, in the sense that (under the assumptions of these tests) the
test result converges almost surely to the correct statement as N → ∞. Clearly the convergence speed of the
estimator depends on the choice of β and C (see below for a rough error estimate).

Therefore there are several options for the dependence structure detection using Test 4.1:

(a) conservative / distribution free: the very fast but conservative rejection level given in Theorem 4.4,
(b) resampling: the slow but approximately sharp rejection level provided by the resampling approach

(42) (or by the Monte Carlo approach (43)),
(c) consistent: the value R := N1−β · C for tests corresponding to the consistent estimator.

Of the above options (a) and (b) provide (almost) directly also the corresponding p-values; but only (a)
and (c) are feasible, since for the resampling approach (b) the sample size would have to be adapted (in-
creased!) if the p-values are adjusted – yielding in general an extremely slow algorithm. For the consistent
estimator (c) the corresponding p-value can only be estimated (using one of the other methods) and the con-
vergence rates have not been analysed in detail yet, thus the actual type I error for a given finite sample is
not directly available. Nevertheless note that fast and approximately sharp methods to estimate the p-values
of multivariance are developed in the preprint (Berschneider and Böttcher 2019), see also Guetsop Nangue
(2017). Moreover, an approximation of an upper bound for the type I error of the consistent estimator is given
by the following elementary calculation: If one performs k independent sharp tests with significance levels
𝛾i then the probability of a type I error is 1 −

∏︀k
i=1(1 − 𝛾i). In the setting of multivariance the tests are in the

limit (under H0) independent and 𝛾i ≤ Fχ21 (N
1−β · C), thus posterior to testing the number of tests performed

is known, say k, and the bound becomes 1 − (1 − Fχ21 (N
1−β · C))k for the consistent estimator. Concerning β

and C note that for the estimator discussed in Corollary 6.2 with β close to 1 the convergence to 0 (in the case
of independence) becomes slower, for β close to 0 the divergence to ∞ (in the case of dependence) becomes
slower, here β = 1/2 seems a balanced choice. For the value of C an optimal recommendation is still open –
in our studies C = 2 seems a reasonable choice. Naturally, the constant C could also be based on a rejection
level for a fixed sample size, e.g. choose C such that 5 · C is the rejection level for a sample of size 25 for a
significance level of 0.05. Then at least for this sample size the probability of a type I error is known, but this
would still require some p-value estimation.

Finally, note that the suggested procedures are basic algorithms. There are certainly several variants
and extensions possible, e.g. a further speed-up might be obtained by using total multivariance and m-
multivariance for initial tests of independence (but beware of the problem of multiple vs. single tests). Fur-
thermore, if pairwise dependence is detected (and clustered) this can be further analysed in the framework
of graphical models. Hereto also note that (Pfister et al. 2017, Section 5.2) (see also (Chakraborty and Zhang
2019, Section 6)) provides amethod for the detection of causal relations of variables usingmultivariate depen-
dence measures, this can be used to refine an undirected graph (visualizing the dependence structure) into a
directed graph.Moreover, clearly the visual layout allowsmany variants, e.g. onemight also use different line
types, thicknesses or colours to indicate the value of the dependence measure or the order of dependence,
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also the denoted values could for example be replaced by p-values or by some other quantity (or symbol)
describing the dependence.

7 Empirical studies
In Section 10 a comprehensive collection of illustrating examples is provided. These discuss in detail several
(toy-)examples of higher order dependence and their visualization, including the full and clustered depen-
dence structure detection. Moreover also the detection power, empirical size and various other properties of
multivariance are studied.

Here in the current section we will only discuss two types of examples: Comparisons with other multi-
variate dependence measures (showing that the new tests are competitive) and two basic real data examples
(indicating the possibilities and some limitations of the methods).

For each example the dependence structure is visualized and the presented tables compare the power of
the independence tests introduced in Sections 4 and 5 with those of the cited papers. Additionally the tables
include a test called ’Comb’ which combines the tests of m- and total multivariance by Holm’s method. This
provides a reference for readers with an interest in a joint test procedure, rather than comparing individual
tests in their realm. For a full explanation of the setting, terms and parameter values of the studies we refer
to the introduction of Section 10.

7.1 Empirical comparison of multivariance with other dependence measures

As discussed in Section 3.3 there are several dependencemeasureswhich are closely related to distancemulti-
variance and its variants. For these empirical power comparisons are provided in Examples 7.2 and 7.3. But we
beginwith an example of a different visualization of higher order dependencewhichwas proposed alongside
a copula based dependence measure.

Example 7.1 (Dependogram vs. visualization). In Genest and Rémillard (2004) copula based higher order de-
pendence tests were proposed together with a dependogram, which provides a graphical representation of the
test results ofmultiple testing. Our proposed full dependence structure visualization is closely related, it provides
a visualization of all significant dependencies.

In Figure 3 the dependogram and the corresponding dependence structure (which is here actually detected
using the same samples and distance multivariance) are depicted for the example provided in (Genest and
Rémillard 2004, Section 4.2): Let Zi , i = 1, . . . , 5 be independent standard normal variables and let X1 :=
|Z1| sign(Z2Z3), Xi := Zi for i = 2, 3, 4and X5 := Z4/2+

√
3Z5/2. Nowconsider N = 50 samples of (X1, . . . , X5).
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Figure 3: Ex. 7.1: dependogram (see Genest and Rémillard (2004); implemented in Hofert et al. (2018)) and the corresponding
dependence structure.
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Example 7.2 (Comparison with the methods of Jin and Matteson (2018)). Here we compare tests based on
multivariance with those presented in Jin and Matteson (2018). In general, one should note that the compu-
tation of sample multivariance has complexity O(N2) whereas the exact sample versions of Jin and Matteson
(2018) (e.g. QN , SN) have higher complexity. To reduce the complexity they introduce approximate estimators
(e.g. Q*

N , J*N) which have the same complexity as ours. Note that these approximate estimators are not permuta-
tion invariant with respect to the order of the samples. In fact their positive finding (significant p-values) in the
real data example (Jin and Matteson 2018, 6.2 Financial data) is an artefact due to this shortcoming. Their test
yields for the same data with permuted samples p-values about 0.3 and above. Therefore we strongly advise
against the use of their approximate estimators in the given form. This problem can be reduced by permuting
the samples prior to the use of their estimators.

Nevertheless, we decided to use their measures for a comparison, since these are the most recent depen-
dence measures related to the approach discussed in Section 3.3 corresponding to (36). Moreover Jin andMatte-
son (2018) also provides several variants and comparative tables including independence tests based on other
measures. The following tables are computed with their parameter settings, e.g. α = 0.1. We only include tests
based on their best exact and approximate estimators (for each particular example), for further comparisons
see the full tables in Jin and Matteson (2018).

The example (Jin and Matteson 2018, Example 3) considers random variables Xi with values in R5 such
that (X1, X2, X3) ∼ N15(0, Σ) with Σij = 1 for i = j and 0.1 otherwise. For this example tests based on total
multivariance and 2-multivariance match the power of tests based on their the exact estimator and outperform
the approximate estimator (Figure 4).

1,2,3,4,5

6,7,8,9,10

11,12,13,14,15

resampling *
N NM NM2 Comb Q*

N SN dHSIC
25 0.408 0.417 0.359 0.220 0.418 0.982
50 0.712 0.722 0.631 0.378 0.719 1.000

100 0.960 0.970 0.941 0.707 0.961 1.000
150 0.995 0.995 0.993 0.873 0.996 1.000
200 1.000 1.000 1.000 0.946 1.000 1.000
300 1.000 1.000 1.000 0.997 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000

* values from (Jin and Matteson 2018, Table 6)

Figure 4: Dependence structure sketch and empirical power of the (in)dependence tests for (Jin and Matteson 2018, Example 3)
(Ex. 7.2).

As second example (Jin andMatteson 2018, Example 4) we consider (Y1, . . . , Y15) ∼ N15(0, Σ)with Σij = 1
for i = j and 0.4 otherwise and set Xi := (ln(Y25i), . . . , ln(Y25i+4)) for i = 1, 2, 3. Again, tests based on total
multivariance and 2-multivariance are close to the power of the tests based on the exact estimator and they
outperform the approximate estimator (Figure 5).
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1,2,3,4,5

6,7,8,9,10

11,12,13,14,15

resampling *
N NM NM2 Comb RN I*N dHSIC
25 0.256 0.290 0.221 0.294 0.169 0.267
50 0.452 0.495 0.413 0.504 0.320 0.441

100 0.780 0.817 0.732 0.824 0.579 0.745
150 0.930 0.941 0.902 0.942 0.770 0.906
200 0.990 0.993 0.983 0.987 0.905 0.963
300 0.999 0.999 0.999 0.999 0.982 0.997
500 1.000 1.000 1.000 1.000 1.000 1.000

* values from (Jin and Matteson 2018, Table 8)

Figure 5: Dependence structure sketch and empirical power of the (in)dependence tests for (Jin and Matteson 2018, Example 4)
(Ex. 7.2).

Finally, we discuss (Jin and Matteson 2018, Example 5): for dimensions n ∈ {5, 10, 15, 20, 25, 30, 50}
and sample size N = 100we consider (X1, . . . , Xn) ∼ Nn(0, Σ)with Σij = 1 for i = j and 0.1 otherwise. Here the
test based on 2-multivariance is close to the power of the test based on the exact estimator and it outperforms
the approximate estimator (Figure 6).

Onemight argue that the comparisonwith 2-multivariance is unjust, since it provides only a test for pairwise
independence, whereas the other measures yield tests for independence. Hereto note that also the combination
of the tests in ’Comb’ has a higher detection rate than the tests based on the approximate estimators.

1

2

34

5

6

7

8 9

10

resampling distribution-free *
n 100M 100M2 Comb 100M 100M2 Q*

100 S100
5 0.423 0.515 0.409 0.000 0.000 0.298 0.557

10 0.252 0.873 0.780 0.003 0.000 0.557 0.915
15 0.374 0.972 0.946 0.012 0.000 0.822 0.982
20 0.443 0.995 0.988 0.054 0.000 0.924 0.999
25 0.532 1.000 0.999 0.164 0.000 0.977 0.999
30 0.588 1.000 1.000 0.234 0.000 0.980 1.000
50 0.821 1.000 1.000 0.657 0.000 0.998 1.000

* values from (Jin and Matteson 2018, Table 10)

Figure 6: Dependence structure sketch (n = 10) and empirical power of the (in)dependence tests for (Jin and Matteson 2018,
Example 5) (Ex. 7.2).

Example 7.3 (Comparison with the methods of Yao et al. (2017)). In Yao et al. (2017) several measures of
dependence were introduced. The main contribution is a measure dCov for pairwise dependence, which
is closely related to NM2. The examples in Yao et al. (2017) use the parameters N ∈ {60, 100} and n ∈
{50, 100, 200, 400, 800} and α = 0.05, which we also use here to provide values which can be compared to
other dependence measures given in their tables. Let Xi , i = 1, . . . , n be random variables with values inR such
that (X1, . . . , Xn) ∼ N(0, Σ). We consider (Yao et al. 2017, Example 2), hereto let Σ ∈ Rn×n , Σij = 1 for i = j and
otherwise (for i ≠ j) set:

1. auto-regressive structure: Σij = (0.25)|i−j|,
2. band structure: Σij = 0.25 for 0 < |i − j| < 3 and 0 otherwise,
3. block structure: Σ = I⌊n/5⌋ ⊗ A where Ik ∈ Rk×k is the identity matrix and A ∈ Rk×k with Aij = 1 for i = j

and 0.25 otherwise.
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auto-regressive band structure block structure
resampling * resampling * resampling *

n N NM NM2 Comb dCov NM NM2 Comb dCov NM NM2 Comb dCov
50 60 0.052 0.898 0.768 0.886 0.159 0.999 0.999 1.000 0.232 0.998 0.994 0.999

100 60 0.108 0.873 0.807 0.906 0.192 1.000 1.000 0.999 0.234 1.000 0.998 1.000
200 60 0.104 0.896 0.765 0.909 0.167 1.000 0.999 1.000 0.139 0.999 0.998 1.000
400 60 0.111 0.924 0.812 0.909 0.174 0.998 0.998 1.000 0.177 1.000 0.999 1.000
800 60 0.101 0.937 0.843 0.908 0.105 1.000 1.000 1.000 0.128 1.000 1.000 1.000
50 100 0.115 0.999 0.996 0.998 0.137 1.000 1.000 1.000 0.195 1.000 1.000 1.000

100 100 0.071 0.999 0.986 0.999 0.153 1.000 1.000 1.000 0.170 1.000 1.000 1.000
200 100 0.128 1.000 0.999 1.000 0.142 1.000 1.000 1.000 0.222 1.000 1.000 1.000
400 100 0.073 1.000 1.000 0.999 0.168 1.000 1.000 1.000 0.169 1.000 1.000 1.000
800 100 0.084 1.000 0.998 0.999 0.139 1.000 1.000 1.000 0.191 1.000 1.000 1.000

* the dCov values are from (Yao et al. 2017, Table 2)

Figure 7: Dependence structure sketches (n = 10) and empirical power of the (in)dependence tests for (Yao et al. 2017, Example
2.a) (Ex. 7.3).

In all cases the performance of tests based on 2-multivariance is very similar to their tests, see Figure 7. Note
that due to computation time restrictions we used for the table in Figure 7 the resampling distribution of one
sample to compute all resampling p-values (instead of resampling each sample separately).

In (Yao et al. 2017, Example 6) randomvariables (X1, . . . , Xn)are consideredwhere the 3-tuples (X1, X2, X3)
and (X4, X5, X6) and ... are independent and each 3-tuple consists of pairwise independent but 3-dependent
Bernoulli random variables (as explicitly constructed in Example 10.2). Here only the sample sizes and dimen-
sions (N, n) ∈ {(60, 18), (100, 36), (200, 72)} are used. Figure 8 shows that the test based on 3-multivariance
(and also the combined test ’Comb’) clearly outperforms all tests included in their table (of which we only cite
two in our table).

1
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3

4

56

7 8

9
10

11

12

13

14

15

16

17

18
99.92

93.2

99.6
97.64

97.41

99

resampling (Yao et al. 2017, Table 4)
n N NM NM3 Comb dCov dHSIC(3)

18 60 0.112 1.000 1.000 0.051 0.708
36 100 0.044 1.000 1.000 0.048 0.314
72 200 0.047 1.000 1.000 0.057 0.073

Figure 8: Dependence structure of (Yao et al. 2017, Example 6) (with n = 18) and the empirical power comparison. Note that
here dHSIC(3) denotes dHSIC with a special choice of the bandwidth parameter, see Yao et al. (2017) for details. (Ex. 7.3).
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7.2 Real data examples

As stated in the introduction, looking at other papers on multivariate dependence measures (e.g. those dis-
cussed in Section 3.3) one notices that although these are capable of detecting dependencies of higher order
the real data examples feature pairwise dependence. From our point of view this seems first of all to be due to
the fact that the concept of higher order dependencies is not popular (or even unknown) in applied statistics.
Therefore, on the one hand there is a very strong publication bias for datasets with pairwise dependencies,
on the other hand even if datasets statistically feature higher order dependencies an explanation by field ex-
perts is yet missing. Nevertheless, we can refer to a collection of more than 350 datasets which feature higher
order dependence⁷.

In the following we present two examples for which 2-multivariance and total multivariance detect some
dependence. In terms of dependence structure detection they are more delicate: The first example illustrates
the difference between the clustered and full dependence structure and it indicates an application of higher
order dependencies to model selection. The second example discusses detected higher order dependencies
which are actually based on pairwise dependence. It illustrates results caused by a small sample size, a con-
servative detection method and by a relatively high (for multiple testing) significance level (see also Remark
6.1).

Example 7.4 (Quine’s student survey data). We consider a classical data set of a student survey (Aitkin 1978)
(see also (Venables and Ripley 2002, R-package: MASS, dataset: quine)), which contains 146 samples of the
variables: age (actually the class level), gender, cultural background, type of learner and the number of days
school wasmissed. The dataset was extensively used in Aitkin (1978) to discussmodel selection in amulti-factor
analysis of variance to model the number missed school days.

The conservative tests using 2-multivariance and total multivariance detect no dependencies (p-values:
0.0767, 0.1565), the corresponding resampling tests reject independence with actual p-values of 0.00.

The dependence structure detection yields the structures shown in Figure 9. Here the full structure provides
a refinement of the clustered structure. For the detection we used resampling tests with 10000 resamples and
significance level α = 0.01. Based on the actually performedmultiple tests the approximate probability of a type
I error is 0.0297 for the clustered structure and 0.0199 for the full structure. By the large number of resamples
used this example might just seem to be an (impractical) proof of concept, but note that the same results can
also be obtained with the faster methods developed in Berschneider and Böttcher (2019).

For the variables: age, gender and missed-days 3-dependence (with lower order independence) was de-
tected (Figure 9). To judge if this is really a sensible finding in terms of the field of study is beyond our expertise.
Nevertheless the founddependencies naturally suggest candidates for aminimalmodel for the number ofmissed
days: Based on the detected full dependence structure the missed days depend only on the cultural background
and on the interaction term of age and gender.

7 A collection of datasets featuring higher order dependence, http://www.math.tu-dresden.de/~boettch/research/hod/

http://www.math.tu-dresden.de/~boettch/research/hod/
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Figure 9: Student survey data (Ex. 7.4): detected dependence structures.

A preliminary attempt to use other multivariate dependence measures for the detection of the dependence
structure in this example did not yield unanimous results. Hereto recall that any test based on resampling adds
randomness to its results. Moreover, the implementations and presets of the dependence measures might not
(or not yet) be appropriate for this particular task.

Example 7.5 (Decathlon). The results of decathlon athletes from 1985 to 2006 are provided by Unwin (2015).
To consider these (and smaller subsets) as independent samples we only keep the personal best of each athlete,
leaving 2709 samples, and order these by the achieved total points in increasing order (the field is denser for
lower points, constituting more to the required i.i.d. setting for the sample subsets tested). It is well known that
the 10 disciplines are dependent, e.g. Cox and Dunn (2002); Woolf et al. (2007). We are interested how many
samples (using the real measurements of the results in each discipline) are required to detect a dependence
using the presentedmethods: with tests based on 2-multivariance M2 using the resamplingmethod dependence
is, for a significance level of α = 0.05, first detected for N = 5 and finally for all N > 11 (the conservativemethod
detects dependencefirst for N = 154). Using the test basedon total-multivarianceMwith the resamplingmethod
dependence is detected also for all N > 11 (the conservative method detects dependence first for N = 2603 –
thus the conservative test are very conservative in this setting!).

Next we try to detect the clustered dependence structure based on conservative tests, thus it is interesting
to see which structures are detected for various sample sizes, see Figure 10. The detection of the higher order
dependence indicates early on that these variables are dependent, but due to the conservative tests, the actual
lower order dependence is missed. With increasing sample size only the dominant pairwise dependencies are
detected. Also note that due to the repeated testing and the given significance level the probability of a type I
error is large.

Notably there are some natural variants: 1. Instead of the results one could consider the achieved points in
each discipline, which are obtained by non linear transformations of the results. This yields almost the same
inference. 2. Starting with the elite athletes instead of our order causes a change in the detection: In this case
a resampling test based on 2-multivariance detects a dependence for all N > 25 but total-multivariance re-
quires much more samples: N > 177. Thus here a curse of dimension is at work (compare with Example 10.14),
which might indicate that for top athletes some disciplines are less dependent than for other athletes. We leave
further analysis and interpretation to field experts. The setting also naturally yields to clustering methods (for
dependent random variables) based on distance multivariance, a topic which is beyond the current paper.
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Figure 10: Decathlon (Ex. 7.5): detected dependence structures (based on conservative p-values) for 50, 100, 200 and all 2709
samples.

8 Conclusion
The framework of distance multivariance is a powerful tool for the detection of dependence. It provides a
unified theory covering several known dependence measures. In particular, measures well established in
applications appear as limiting cases, e.g. the RV coefficient.

Besides useful extensions of the theory (e.g. a relaxation of the required moment assumptions, introduc-
tion of approximately sharp resampling tests), also new tests and visualization procedures for higher order
dependencies have been developed. As indicated in the introduction and in the example section: higher order
dependencies seem not yet to be in the focus of applied statistics. We hope, that the presented results (and
their ready-to-use implementations in the R package multivariance) help and inspire practitioners to study
higher order dependencies.

The presented results yield also to several new theoretic research questions and topics, e.g.:

– The expositions in Section 3.3 provide a roadmap to unify further dependence measures using contin-
uous negative definite functions.

– As hinted in Section 3.5 a natural follow-up question is the construction of an extension of multivari-
ance to other spaces than Rd.

– Theflexibility of distancemultivariance due to the continuousnegative definite functions (see Equation
(11) ff.) raises the general question of optimal or adaptive ρi or ψi selection procedures.

– Optimization of the dependence structure detection algorithm, e.g. parameter selection, adaptive pro-
cedures, improved error control.

– There might be multiple testing procedures for testing independence particularly tailored to the intro-
duced methods – we just used the classical method of Holm.

– Clustering methods based on distance multivariance.
– Finally, as stated in Section 3 there are several related – but different – multivariate dependence mea-

sures. A general classification of situations where a particular measure provides the best performance
seems still open. In particular, also their performance in the general dependence structure detection
algorithms of Section 6 has to be investigated.

Acknowledgement: We are grateful for detailed proofreading comments by Georg Berschneider and some
remarks by Réne Schilling and other colleagues.Moreover, wewant to thank several referees for their detailed
reports, which helped to bring the paper to its present form.

Financial Support: This research receivedno specific grant fromany funding agency, commercial or nonprofit
sectors.

Conflict of Interests: The authors have no conflicts of interest to disclose.



Dependence and dependence structures via distance multivariance | 29

Ethics Statement: This research did not required ethical approval.

References
Aitkin, M. (1978), “The analysis of unbalanced cross-classifications”, Journal of the Royal Statistical Society: Series A (General),

141(2), 195–211.
Berg, C., and Forst, G. (1975), Potential Theory on Locally Compact Abelian Groups, Berlin: Springer.
Berschneider, G., and Böttcher, B. (2019), On complex Gaussian random fields, Gaussian quadratic forms and sample distance

multivariance, arXiv:1808.07280v2.
Bilodeau, M., and Guetsop Nangue, A. (2017), “Tests of mutual or serial independence of random vectors with applications”, The

Journal of Machine Learning Research, 18(1), 2518–2557.
Böttcher, B. (2019),multivariance: Measuring Multivariate Dependence Using Distance Multivariance. R package version 2.2.0.
Böttcher, B., Keller-Ressel, M., and Schilling, R. L. (2018), “Detecting independence of random vectors: Generalized distance

covariance and Gaussian covariance”,Modern Stochastics: Theory and Applications, 5(3), 353–383.
Böttcher, B., Keller-Ressel, M., and Schilling, R. L. (2019), “Distancemultivariance: New dependencemeasures for random vectors”,

The Annals of Statistics, 47(5). 2757–2789.
Böttcher, B., Schilling, R. L., and Wang J. (2013), Lévy-Type Processes: Construction, Approximation and Sample Path Properties,

volume 2099 of Lecture Notes in Mathematics, Lévy Matters, Springer.
Chakraborty, S., and Zhang, X. (2019), “Distance metrics for measuring joint dependence with application to causal inference”,

Journal of the American Statistical Association, 114(528), 1638-1650.
Cox, T. F., and Dunn, R. T. (2002), “An analysis of decathlon data”, Journal of the Royal Statistical Society. Series D (The Statistician),

51(2), 179–187.
Csardi, G., and Nepusz, T. (2006), “The igraph software package for complex network research”, InterJournal, Complex Systems,

1695.
Csörgő, S. (1985), “Testing for independence by the empirical characteristic function”, Journal of Multivariate Analysis, 16(3),

290–299.
Edelmann D. (2015), Structures of Multivariate Dependence, PhD thesis, Universität Heidelberg.
Escoufier, Y. (1973), “Le traitement des variables vectorielles”, Biometrics, 29(4), 751–760.
Fan, Y., de Micheaux, P. L., Penev, S., and Salopek, D. (2017), “Multivariate nonparametric test of independence”, Journal of

Multivariate Analysis, 153, 189–210.
Genest, C., and Rémillard, B. (2004), “Test of independence and randomness based on the empirical copula process”, Test, 13(2),

335–369.
Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., and Smola, A. J. (2008), “A kernel statistical test of independence”,

Advances in Neural Information Processing Systems, 20, 585–592.
Guetsop Nangue, A. (2017), Tests de permutation d’ind´ependance en analyse multivariée, PhD thesis, Université de Montréal.
Han, J., Pei, J., and Kamber, M. (2011), Data mining: concepts and techniques, Burlington: Morgan Kaufmann.
Hofert, M., Kojadinovic, I., Maechler, M., and Yan, J. (2018), copula: Multivariate Dependence with Copulas, R package version

0.999-19.
Jacob, N. (2001), Pseudo-Differential Operators andMarkov Processes I. Fourier Analysis and Semigroups, London: Imperial College

Press.
Jin, Z., and Matteson, D. S. (2018), “Generalizing distance covariance to measure and test multivariate mutual dependence via

complete and incomplete V-statistics”, Journal of Multivariate Analysis, 168, 304–322.
Josse, J., and Holmes, S. (2016), “Measuring multivariate association and beyond”, Statistics Surveys, 10, 132-167.
Kallenberg, O. (1997), Foundations of Modern Probability, New York, Berlin, Heidelberg: Springer.
Kankainen, A. (1995), Consistent testing of total independence based on the empirical characteristic function, PhD thesis, University

of Jyväskylä.
Korolyuk, V. S., and Borovskich, Y. V. (1994), Theory of U-statistics, volume 273, Dordrecht: Springer Science & Business Media.
Liu, Y., de la Pena, V., and Zheng, T. (2018), “Kernel-basedmeasures of association”,Wiley Interdisciplinary Reviews: Computational

Statistics, 10(2), e1422.
Lyons, R. (2013), “Distance covariance in metric spaces”, The Annals of Probability, 41(5), 3284-3305.
Matheron, G. (1963), “Principles of Geostatistics”, Economic geology, 58(8), 1246–1266.
Móri, T. F., and Székely, G. J. (2018), “Four simple axioms of dependence measures”,Metrika, 82, 1–16.
Pfister, N., Bühlmann, P., Schölkopf, B., and Peters, J. (2017), “Kernel-based tests for joint independence”, Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 80, 5–31.
Pfister, N., and Peters, J. (2019), dHSIC: Independence Testing via Hilbert Schmidt Independence Criterion, R package version 2.1.
Robert, P., and Escoufier, Y. (1976), “A Unifying Tool for Linear Multivariate Statistical Methods: The RV- Coeflcient”, Journal of the

Royal Statistical Society. Series C (Applied Statistics), 25(3), 257- 265.



30 | B. Böttcher

Rényi, A. (1959), “On measures of dependence”, Acta mathematica hungarica, 10(3-4), 441–451.
Sato, K. (1999), Lévy Processes and Infinitely Divisible Distributions, Cambridge: Cambridge University Press.
Sejdinovic, D., Gretton, A., andBergsma,W. (2013), “A Kernel Test for Three-Variable Interactions” inAdvances in Neural Information

Processing Systems (NeurIPS), volume 26, pp. 1124–1132.
Sejdinovic, D., Sriperumbudur, B., Gretton, A., and Fukumizu, K. (2013), “Equivalence of distance-based and RKHS-based statistics

in hypothesis testing”, Annals of Statistics, 41(5), 2263–2291.
Shen, C., and Vogelstein, J. T. (2018), “The exact equivalence of distance and kernel methods for hypothesis testing”, CoRR,

abs/1806.05514.
Székely, G. J., and Bakirov, N. K. (2003), “Extremal probabilities for Gaussian quadratic forms”, Probability Theory and Related

Fields, 126(2), 184–202.
Székely, G. J., and Rizzo, M. L. (2009), “Brownian distance covariance”, Annals of Applied Statistics, 3(4), 1236– 1265.
Székely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007), “Measuring and testing dependence by correlation of distances”, The Annals

of Statistics, 35(6), 2769–2794.
Tjøstheim, D., Otneim, H., and Støve, B. (2018), Statistical dependence: Beyond pearson’s ρ. arXiv:1809.10455v1.
Unwin, A. (2015), GDAdata: Datasets for the Book Graphical Data Analysis with R, R package version 0.93.
Venables, W. N., and Ripley, B. D. (2002),Modern Applied Statistics with S. New York: Springer, fourth edition.
Woolf, A., Ansley, L., and Bidgood, P. (2007), “Grouping of decathlon disciplines”, Journal of Quantitative Analysis in Sports, 3(4).
Yao, S., Zhang, X., and Shao, X. (2017), “Testing mutual independence in high dimension via distance covariance”, Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 80, 455–480.
Zinger, A., Kakosyan, A. V., and Klebanov, L. B. (1992), “A characterization of distributions by mean values of statistics and certain

probabilistic metrics”, Journal of Mathematical Sciences, 59(4), 914–920.



Dependence and dependence structures via distance multivariance | 31

9 Appendix - Further results and proofs
Here we collect several results which are essential for (parts of) the previous sections, but which were post-
poned to this section due to their technicality.

9.1 A theorem characterizing the support of Lévy measures

Note that in (Böttcher et al. 2018, after Definition 2.3) it was stated that it is unknown how to characterize
the (full) support of Lévy measures in terms of the corresponding continuous negative definite function. The
following result provides a characterization (via Proposition 2.2), it is related to (Zinger et al. 1992, Corollary
2).

Theorem 9.1. Let ψ(x) :=
∫︀
Rd 1 − cos(x · t) ρ(dt) where ρ is a symmetric measure integrating 1 ∧ |.|2, and X, Y

be Rd-valued random vectors with characteristic functions fX , fY , and assume E(ψ(X)) < ∞ and E(ψ(Y)) < ∞.
Then

fX = fY ρ-a.s. ⇔ for all z ∈ Rd : E(ψ(X − z)) = E(ψ(Y − z)). (A1)

Proof. Additionally to the stated assumptions let Z, X′, Y ′ be independent random variables which are also
independent of X, Y and satisfy E(ψ(Z)) < ∞ and X′ d= X, Y ′ d= Y. Note that∫︁

1 − Re(fX(t)fZ(−t)) ρ(dt) =
∫︁∫︁∫︁

1 − cos((x − z) · t) ρ(dt)P(X ∈ dx)P(Z ∈ dz) = E(ψ(X − Z)) < ∞ (A2)

by Tonelli and using the (generalized) triangle inequality for continuous negative definite functions (A9).
Thus the following implications hold:

fX = fY ρ-a.s. ⇒ for all z ∈ Rd :
∫︁
Re((fX(t) − fY (t))e−iz·t) ρ(dt) = 0 (A3)

⇔ for all z ∈ Rd : E(ψ(X − z)) = E(ψ(Y − z)) (A4)
⇒ E(ψ(X − X′)) = E(ψ(Y − X′)) and E(ψ(X − Y ′)) = E(ψ(Y − Y ′)) (A5)

⇔
∫︁

|fX(t)|2 − Re(fY (t)fX′ (−t)) ρ(dt) = 0 (A6)

and
∫︁

|fY (t)|2 − Re(fX(t)fY′ (−t)) ρ(dt) = 0

⇒
∫︁

|fX(t) − fY (t)|2 ρ(dt) = 0 (A7)

and the last line is equivalent to the start. This completes the proof.

9.2 Moment condition

In Böttcher et al. (2019) the following condition was used:

mixed ψ-moment condition: E

(︃ n∏︁
i=1
ψi(Xki ,i − X

′
li ,i)
)︃
< ∞ for all ki , li ∈ {0, 1}, i = 1, . . . , n (A8)

where X0, X′
0, X1, X′

1 are independent and have the samemarginal distributions as X (for the dimensions di),
X1, X′

1 have also the same joint distribution as X, but the marginal distributions of X0, X′
0 are independent

(for further details see (Böttcher et al. 2019, Def. 2.3.a)).
We show that for non constant random vectors Xi the joint ψ-moment condition (5) and (A8) are equiv-

alent. If a random vector is constant condition (A8) becomes trivial since the corresponding factor therein is
equal to 0.
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Recall the (generalized) triangle inequality which holds for any real-valued negative definite function ψ
(Böttcher et al. 2018, Equation (8)):

ψ(x + y) ≤ 2ψ(x) + 2ψ(y). (A9)

By this inequality (5) implies (A8). For the converse implication we begin with the following observation.

Lemma 9.2. For random variables (X1, . . . , Xn) the following are equivalent:

(a) for all S ⊂ {1, . . . , n} : E
(︀∏︀

i∈S ψi(Xi)
)︀
< ∞,

(b) for all S ⊂ {1, . . . , n} : E
(︀∏︀

i∈S ψi(Xi − xi)
)︀
< ∞ for some (x1, . . . , xn),

(c) for all S ⊂ {1, . . . , n} : E
(︀∏︀

i∈S ψi(Xi − x̃i)
)︀
< ∞ for all (x̃1, . . . , x̃n).

Proof. Obviously (c) with x̃i = 0, i = 1, . . . , n is (a) which implies (b). Finally, (c) follows from (b) by ψi(Xi −
x̃i) ≤ 2ψi(Xi −xi)+2ψ(xi − x̃i) applied to each component. Note that hereto it is essential that the expectations
are finite for all subsets S ⊂ {1, . . . , n}.

Now note that E(ψi(Xi − X′
i)) > 0 for non-constant random variables. Thus the expectations of independent

components (i.e., for ki = li = 0 in (A8)) which factor out in (A8) yield strictly positive factors. Therefore,
due to the independence of (X1, . . . , Xn) and (X′

1, . . . , X′
n), the condition (A8) implies for all S ⊂ {1, . . . , n} :

E
(︀∏︀

i∈S ψi(Xi − xi)
)︀
< ∞ for P(X1 ,...,Xn)-almost all (x1, . . . , xn). Hence the joint ψ-moment condition (5) holds

by Lemma 9.2.
Note that further moment conditions for the case ψi(.) = |.| can be found in Chakraborty and Zhang

(2019).

9.3 Proof of the asymptotics of sample distance multivariance (Theorem 2.5)

Here we are in the setting of Section 2. The asymptotics (25) and (27) of the test statistic were proved in
(Böttcher et al. 2019, Thm. 4.5, 4.10, Cor. 4.16, 4.18) and (Böttcher et al. 2018, Cor. 4.8) under the condition
(23). The following theorem provides a proof using an alternative condition. Combining the results yields the
convergence statements (25) and (27) of Theorem 2.5.

Theorem 9.3. Let Xi , i = 1, . . . , n be non-constant random variables such that

E(ψ2
i (Xi)) < ∞ for all i = 1, . . . , n (A10)

and let X(k), k = 1, . . . , N be independent copies of X = (X1, . . . , Xn). Then

N · NM2(X(1), . . . , X(N)) d−−−−→
N→∞

Q if X1, . . . , Xn are independent, (A11)

N · NM2(X(1), . . . , X(N)) d−−−−→
N→∞

Q if X1, . . . , Xn are independent, (A12)

where Q and Q are Gaussian quadratic forms with EQ = 1 = EQ.

Proof. Let X′, X(k), k = 1, . . . , N be independent copies of X = (X1, . . . , Xn) with independent components.
Note, NM2(X(1), . . . , X(N)) = N−2

∑︀N
j,k=1

NΦ(j, k) with NΦ(j, k) := NΦ{1,...,n}(j, k) where

NΦS(j, k) := NΦS(j, k;X(1), . . . , X(N)) := (A13)∏︁
i∈S

(︃
− ψi(X(j)i − X

(k)
i ) + N−1

N∑︁
m=1

ψi(X(j)i − X
(m)
i ) + N−1

N∑︁
l=1

ψi(X(l)i − X
(k)
i ) − N−2

N∑︁
l,m=1

ψi(X(l)i − X
(m)
i )
)︃
.

Similarly, define Φ(x(j), x(k)) := Φ{1,...,n}(x(j), x(k)) with

ΦS(x(j), x(k)) :=
∏︁
i∈S

(︂
− ψi(x(j)i − x

(k)
i ) + E(ψi(x(j)i − Xi)) + E(ψi(Xi − x(k)i )) − E(ψi(Xi − X′

i))
)︂
. (A14)
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Then E(Φ(X, X)) =
∏︀N
i=1 E(ψi(Xi − X

′
i)) and

E(Φ(x, X)) = 0, E(Φ(X, X′)) = 0, E(|Φ(X, X)|) < ∞ and E(Φ(X, X′)2) < ∞. (A15)

where (A10)was used for the bounds. ThereforeN ·N−2
∑︀N

j,k=1 Φ(X
(j), X(k)) converges in distribution to aGaus-

sian quadratic form by (Korolyuk and Borovskich 1994, Thm. 4.3.2, p. 141). Note that in the limit in Korolyuk
and Borovskich (1994) appear E(Φ(X, X)) and a sum

∑︀∞
i=1 λi, which cancel in our setting – this equality also

implies that the limit for normalized multivariance has expectation 1, cf. (Berschneider and Böttcher 2019,
Lemma 2.3 and Remark 4.9.1). Finally, (A11) follows by Slutsky’s theorem since

N · N−2
N∑︁

j,k=1

(︁
NΦ(j, k) − Φ(X(j), X(k))

)︁
P−−−−→

N→∞
0. (A16)

To avoid a false impression, note that (A16) seems natural since the strong law of large numbers implies that
the expectations in (A14) are approximated by the corresponding sums in (A13). But the additional factor N
in (A16) makes the proof technical, which we only sketch here: For (A16) it is, using the Markov inequality,
sufficient to show that the secondmoment of the left hand side converges to 0. This moment and its limit can
be calculated explicitly based on and similar to (Berschneider and Böttcher 2019, Theorem 4.15), where the
second moment of NΦS(j, k) is analysed in-depth.

Considering analogously NΦ(j, k) :=
∑︀

S⊂{1,...,n}
|S|>1

NΦS(j, k) instead of NΦ yields the result for total multi-

variance.

Remark 9.4. Based on themethods developed in the preprint (Berschneider and Böttcher 2019, e.g. Section 7.7)
the second order moment in (A15) seems to be already bounded under the weaker assumption E(ψi(Xi)) < ∞
for all i = 1, . . . , n. To make this rigorous one would have to rewrite (or at least discuss) the steps in Korolyuk
and Borovskich (1994) in much more detail, which is beyond the bounds of this paper. Moreover, this clearly
also requires a discussion if (and why) the counterexample, which shows that the log moment condition in (23)
(see also Remark 2.6) is necessary for the convergence of the empirical characteristic functions, is somehow
compensated by the L2(ρ) norm.

To prove the divergence in (24) and (26) we require further notations: let ε > 0 and ρε := ⊗n
i=1ρi,ε with ρi,ε(.) :=

ρi(. ∩ Bci,ε) where Bci,ε := {x ∈ Rdi : |x| > ε}. Note that the corresponding continuous negative definite
functions ψi,ε(xi) :=

∫︀
1−cos(xi · ti) ρi,ε(dti) are bounded (with non-full support; alternatively one could also

use the truncation of (Böttcher et al. 2018, Eq. (40)) which preserves the full support). Moreover recall that by
(Böttcher et al. 2019, Supplement, (S.7))

NMρ(x(1), . . . , x(N)) =

⎯⎸⎸⎸⎷∫︁
⃒⃒⃒⃒
⃒⃒ 1N

N∑︁
j=1

n∏︁
i=1

(︃
eix

(j)
i ·ti − 1

N

N∑︁
k=1

eix
(k)
i ·ti

)︃⃒⃒⃒⃒
⃒⃒
2

ρ(dt). (A17)

This and (1) yield by the monotone convergence theorem: supε>0 NMρε (X(1), . . . , X(N)) = NMρ(X(1), . . . , X(N))
and supε>0Mρε (X1, . . . , Xn) = Mρ(X1, . . . , Xn). Which are the key ingredients for the proof of the following
Lemma, which in turn is the key to prove (24) and (26) without any further moment restrictions.

Lemma 9.5. Let X(k), k = 1, . . . , N be independent copies of X = (X1, . . . , Xn). Then, without any moment
assumptions, we have

lim inf
N→∞

NMρ(X(1), . . . , X(N)) ≥ Mρ(X1, . . . , Xn). (A18)

Proof. In this proof we omit (X(1), . . . , X(N)) and (X1, . . . , Xn) in the notation. Note that for ρε instead of ρ the
joint ψ-moment condition (5) is always satisfied, and therefore limN→∞

NMρε = Mρε by (Böttcher et al. 2019,
Theorem 4.3). Thus

Mρ = sup
ε>0

Mρε = sup
ε>0

lim
N→∞

NMρε = sup
ε>0

lim inf
N→∞

NMρε ≤ lim inf
N→∞

sup
ε>0

NMρε = lim inf
N→∞

NMρ .
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Now the proof of the divergence (24) is identical to (Böttcher et al. 2019, Thm. 4.5.b) just replacing (Böttcher et
al. 2019, Theorem4.3) by Lemma9.5: If the randomvariables are (n−1)−independent but dependent Theorem
2.1 impliesM > 0. Thus N · NM diverges for N →∞by Lemma 9.5. This also applies in the case of dependence
to at least one summand of total multivariance (and the remaining terms are all non negative) therefore also
the divergence (26) follows.

9.4 The population representation of (Fan et al. 2017, Lemma 1a)

Note that the 𝛾, β terms appearing in (Fan et al. 2017, Lemma 1a) correspond in our notation to 𝛾j,l =
ψl(x(j)l ), 𝛾j,j′ ,l = ψl(x

(j)
l − x

(j′)
l ) and

βj,j′ ,l = ψl(x(j)l ) + ψl(x
(j)
l ) − ψl(x

(j)
l − x

(j′)
l ) =: ϕl(x(j)l , x

(j′)
l ). (A19)

Turning their sample sums into expectations and observing the independence implied by the indices yields
the population version of their Tn:

∑︁
S⊂{1,...,n}

|S|>0

∑︁
S′⊂{1,...,n}

|S′|>0

(−1)|S|+|S
′|
[︃
E

⎛⎝ ∏︁
l∈S∩S′

ϕl(Xl , X′
l)
∏︁
l∈S∖S′

ψl(Xl)
∏︁
l∈S′∖S

ψl(X′
l)

⎞⎠ (A20)

− 2E

⎛⎝ ∏︁
l∈S∩S′

E(ϕl(Xl , X′
l) | Xl)

∏︁
l∈S∖S′

ψl(Xl)
∏︁
l∈S′∖S

E
(︀
ψl(X′

l)
)︀⎞⎠ (A21)

+
∏︁

l∈S∩S′
E(ϕl(Xl , X′

l))
∏︁
l∈S∖S′

E(ψl(Xl))
∏︁
l∈S′∖S

E(ψl(X′
l))
]︃

(A22)

now note that (−1)|S|+|S
′| = (−1)|S∖S

′|+|S′∖S| can be distributed as factor −1 to each factor in the products
corresponding to S∖S′ and S′∖S. Then the formula

∑︁
S⊂{1,...,n}

|S|>0

∑︁
S′⊂{1,...,n}

|S′|>0

∏︁
l∈S∩S′

al
∏︁
l∈S∖S′

(−bl)
∏︁
l∈S′∖S

(−cl) =
n∏︁
i=1

(1 + ai − bi − ci) −
n∏︁
i=1

(1 − bi) −
n∏︁
i=1

(1 − ci) + 1 (A23)

yields

E

(︃ n∏︁
i=1

(︀
1 + ϕ(Xi , X′

i) − ψi(Xi) − ψi(X′
i)
)︀
−

n∏︁
i=1

(1 − ψi(Xi)) −
n∏︁
i=1

(1 − ψi(X′
i)) + 1

)︃
(A24)

− 2E
(︃ n∏︁

i=1

(︀
1 + E(ϕ(Xi , X′

i) | Xi) − ψi(Xi) − E(ψi(X′
i))
)︀
−

n∏︁
i=1

(1 − ψi(Xi)) −
n∏︁
i=1

(1 − E(ψi(X′
i))) + 1

)︃
(A25)

+
n∏︁
i=1

(1 + E(ϕ(Xi , X′
i)) − E(ψi(Xi)) − E(ψi(X′

i))) −
n∏︁
i=1

(1 − E(ψi(Xi))) −
n∏︁
i=1

(1 − E(ψi(X′
i))) + 1. (A26)

Finally, after using the linearity of the expectation, the last twoproducts in thefirst rowcancelwith the second
product in (A25), and the third product in (A25) cancels with the last two products in (A26); also the trailing
”+1” cancel. For the remaining products the linearity of the expectation and the definition of ϕ in (A19) yield

E

(︃ n∏︁
i=1

(1 − ψi(Xi − X′
i)
)︃
− 2E

(︃ n∏︁
i=1

E(1 − ψi(Xi − X′
i) | Xi)

)︃
+

n∏︁
i=1

E(1 − ψi(Xi − X′
i)). (A27)
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9.5 The difference of dHSIC and total multivariance for n = 3

Expanding the product in (3) yields by careful accounting the representation:

M(X1, X2, X3) = − E
(︃ 3∏︁
i=1
ψi(Xi − X′

i)
)︃
− 4E

(︃ 3∏︁
i=1

E(ψi(Xi − X′
i) | Xi)

)︃
− 4

3∏︁
i=1

E(ψi(Xi − X′
i)) (A28)

+
∑︁

(i,j,k)∈π(1,2,3)

[︁
E
(︀
ψi(Xi − X′

i | Xi)ψj(Xj − X′
j)ψk(Xk − X′

k)
)︀

(A29)

− 1
2E(ψi(Xi − X

′
i))E

(︀
ψj(Xj − X′

j)ψk(Xk − X′
k)
)︀

(A30)

− E
(︀
E(ψi(Xi − X′

i) | Xi)ψj(Xj − X′
j)E(ψi(Xk − X′

k) | X
′
k)
)︀

(A31)

+ 2E(ψi(Xi − X′
i))E

(︀
E(ψj(Xj − X′

j) | Xj)E(ψk(Xk − X′
k) | Xk)

)︀ ]︁
, (A32)

where π(1, 2, 3) is the set of all permutations of the vector (1, 2, 3). Define

Hk(X1, . . . , Xn) := (A33)∑︁
S⊂{1,...,n}

|S|=k

[︃
E

(︃∏︁
i∈S

(−ψi(Xi − X′
i))
)︃
− 2E

(︃∏︁
i∈S

E
(︀
−ψi(Xi − X′

i) | Xi
)︀)︃

+
∏︁
i∈S

E
(︀
−ψi(Xi − X′

i)
)︀ ]︃

and note H0 = H1 = 0 and H2(X1, . . . , Xn) = M2(X1, . . . , Xn) where M2 is 2-multivariance defined in (48).
Using

∏︀n
i=1(1− αi) = 1+

∑︀n
k=1
∑︀

S⊂{1,...,n}
|S|=k

∏︀
i∈S(−αi) one finds for arbitrary n that dHSIC is equal to

∑︀n
k=2 Hk.

Thus, recalling thatM(X1, . . . , Xn) =
∑︀n

k=2Mk(X1, . . . , Xn) andMn(X1, . . . , Xn) = M(X1, . . . , Xn), we find for
n = 3

dHSIC(X1, X2, X3) −M(X1, X2, X3) = H2(. . .) + H3(. . .) −M2(. . .) −M(. . .) (A34)
= H3(X1, X2, X3) −M(X1, X2, X3).

Thus the difference in (A34) has almost the same representation as given in (A28)-(A32), only in (A28) the
factors change. We did not succeed to find any simplified representation of the remaining terms which would
allow a useful distinction. Obviously the values of the measures differ, but it remains an open problem if
based on this difference one of the measures should be preferred.
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10 Appendix - Collection of examples
The examples are arranged in several subsections: 10.1 discusses dependencies of higher order, 10.2 illustrates
various properties of multivariance. A comparisons of multivariance with other dependence measures and
real data examples can be found in the main body of the paper, Sections 7.1 and 7.2.

If not mentioned otherwise: We use the Euclidean distance ψi(xi) = |xi|, L = 300 repetitions for the
resampling tests (Tests 4.1, 4.3, 5.3 with (42)), sample sizes N ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100},
significance level α = 0.05 and 1000 runs to compute the empirical power of the tests.

The clustereddependence structure is detectedusing the conservative testswith significance level α (with
Holm’s correction for multiple tests) or using the consistent estimators of Corollary 6.2 with β = 1

2 and C = 2.
The rate of the correct detections (empirical power) canbe found in the tables in the columns ’distribution-free
detection’ and ’consistent detection’, respectively.

Moreover, the tables contain thepower of the independence tests basedon thenormalizedmultivariances
M,M,M2 andM3, which are studied using the (conservative) distribution-free method and the resampling
method. To avoid overloading we included only a selection of the test results in the tables. Hereto note that
the test based on M3, should (to provide a test which is consistent against all alternatives) be preceded by
a test for pairwise independence, e.g. usingM2. Here we performed these tests independently. But we also
include in the tables a test ’Comb’ which combines the tests based on M2, M3 and for n > 3 also M to a
global test for the same significance level (rejecting independence if at least one p-value, adjusted by Holm’s
method, is significant).

For most examples the clustered dependence structure is illustrated using the test based scheme (with
conservative p-value) of Section 6. Explicit values in the graphs are the values of the test statistic for a suc-
cessful detection with N = 100 samples, if not stated otherwise.

10.1 Detection and visualization of higher order dependencies

The generation of samples with higher order dependencies is explained by a detailed description of the two
classical examples (Examples 10.1 and 10.2) and a basic example for dependence of arbitrary order (Example
10.3). These provide reference examples to detect and buildmore involved dependence structures, which also
illustrate different aspects of higher order dependence: higher order dependencies with continuousmarginal
distributions (Example 10.4), disjoint clusters (Example 10.5), a mixture of pairwise and higher order depen-
dence (Example 10.6), iterated dependencies (Example 10.7) and joint dependence of all variables (such that
all are connected by dependencies of higher order) without any pairwise dependence (Example 10.8). The
full dependence structures for the examples are collected in Example 10.9.

Example 10.1 (Coloured tetrahedron). Consider a dice shaped as a tetrahedron with sides coloured red, green,
blue and stripes of all three colours on the fourth side. The events that a particular colour is on the bottom side –
when throwing this dice – are pairwise independent events. But they are not independent. Both properties follow
by direct calculation:

P(red) = P(green) = P(blue) = 2
4

P(red and green) = P(red and blue) = P(green and blue) = 1
4

P(red)P(green) = P(red)P(blue) = P(green)P(blue) = 1
4

P(red and green and blue) = 1
4 ≠ 1

8 = P(red)P(green)P(blue).

Thus this provides an example of three variables which are 2-independent, but dependent. In Figure A1 the
empirical powers of the tests are denoted. Maybe it seems surprising that the empirical power of the test based
dependence structure detection is not 1 albeit the others have power 1. Hereto recall that the distribution-free test
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is sharp for Bernoulli random variables, thus (due to the correction for multiple tests) it is expected that in 5% of
the cases already a (false) detection of pairwise dependence occurs. Furthermore, note that the distribution-free
test for the normalized total multivariance has for N = 10 an empirical power of 0 due to averaging (see also
Example 10.14).

1

2

396.04

resampling distribution-free consistent
N NM NM Comb NM NM detection detection
10 0.891 0.854 0.900 0.926 0.000 0.928 0.726
20 1.000 1.000 1.000 1.000 1.000 0.955 0.991
30 1.000 1.000 1.000 1.000 1.000 0.958 0.999
40 1.000 1.000 1.000 1.000 1.000 0.943 0.999
50 1.000 1.000 1.000 1.000 1.000 0.960 0.999
60 1.000 1.000 1.000 1.000 1.000 0.958 1.000
70 1.000 1.000 1.000 1.000 1.000 0.958 1.000
80 1.000 1.000 1.000 1.000 1.000 0.943 1.000
90 1.000 1.000 1.000 1.000 1.000 0.952 1.000

100 1.000 1.000 1.000 1.000 1.000 0.949 1.000

Figure A1: Colored tetrahedron (Ex. 10.1): dependence structure, empirical power and detection rate.

Example 10.2 (Two coins — three events). Throw two fair coins and consider the three events: the first shows
head, the second shows tail, both show the same. Then again a direct calculation shows pairwise independence,
but dependence. The probability that all three events occur simultaneously is 0.

Alternatively the same (but with a joint probability of 1/4 as in Example 10.1) holds for the events: the first
shows head, the second shows head, both show the same.

Figure 10.2 shows the dependence structure, empirical power and detection rate for the case with joint prob-
ability 0. The results are indistinguishable from Example 10.1.

1 2

3

99.29

resampling distribution-free consistent
N NM NM Comb NM NM detection detection
10 0.913 0.862 0.918 0.929 0.000 0.933 0.714
20 1.000 1.000 1.000 1.000 1.000 0.957 0.988
30 1.000 1.000 1.000 1.000 1.000 0.960 0.997
40 1.000 1.000 1.000 1.000 1.000 0.961 0.999
50 1.000 1.000 1.000 1.000 1.000 0.948 1.000
60 1.000 1.000 1.000 1.000 1.000 0.961 1.000
70 1.000 1.000 1.000 1.000 1.000 0.951 1.000
80 1.000 1.000 1.000 1.000 1.000 0.948 1.000
90 1.000 1.000 1.000 1.000 1.000 0.954 1.000

100 1.000 1.000 1.000 1.000 1.000 0.962 0.999

Figure A2: Three events of two coins (Ex. 10.2): dependence structure, empirical power and detection rate.

A simple generalization yields the next important example, featuring higher order dependence in its ’purest’
form.

Example 10.3 (n coins — (n + 1) events). Throw n fair coins and consider the n+1 events: The first shows head,
the second shows head, ..., the n-th shows head, there is an odd number of heads. Then by direct calculation
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these are n-independent, but dependent (the joint probability of the n+1 events is 0 for even n and it is (1/2)n

for odd n). To get an intuition, note that given n of these events one can directly calculate the (n + 1)th event.
But given less, provides not enough information to determine any further event - any option is equally likely.

Figure A3 shows the dependence structure and the empirical power of the tests. For totalmultivariance there
is a loss of power compared to the previous examples due to the averaging (only one of the 2n − n−1 summands
diverges, see also Example 10.14). Moreover one starts to see that the distribution-free method is conservative
for total multivariance (recall that also with univariate Bernoulli marginals it is only sharp formultivariance, not
for totalmultivariance). The low rate of successful detections of the test based dependence structure detection is
again due to the sharp rejection level for Bernoulli random variables and the p-value adjustment due to multiple
testing of all k-tuples for each k ∈ {2, . . . , n + 1}.

1

2

3

4

597.15

resampling distribution-free consistent
N NM NM Comb NM NM detection detection
10 0.814 0.165 0.076 0.792 0.001 0.755 0.348
20 0.999 0.610 0.359 1.000 0.000 0.915 0.938
30 1.000 0.961 0.812 1.000 0.000 0.902 0.990
40 1.000 1.000 0.997 1.000 0.001 0.905 0.993
50 1.000 1.000 1.000 1.000 0.007 0.896 0.999
60 1.000 1.000 1.000 1.000 0.040 0.905 1.000
70 1.000 1.000 1.000 1.000 0.137 0.906 1.000
80 1.000 1.000 1.000 1.000 0.453 0.900 0.999
90 1.000 1.000 1.000 1.000 0.901 0.886 0.999

100 1.000 1.000 1.000 1.000 1.000 0.909 1.000

1

2

3

4

5

6

7

8

9

10

11

90.96

resampling distribution-free consistent
N NM NM Comb NM NM detection detection
10 0.353 0.045 0.046 0.340 0.002 0.294 0.001
20 0.987 0.056 0.044 0.991 0.000 0.895 0.065
30 1.000 0.075 0.059 1.000 0.000 0.805 0.385
40 1.000 0.114 0.077 1.000 0.000 0.805 0.671
50 1.000 0.155 0.091 1.000 0.000 0.749 0.834
60 1.000 0.179 0.102 1.000 0.000 0.751 0.905
70 1.000 0.220 0.122 1.000 0.000 0.731 0.949
80 1.000 0.261 0.151 1.000 0.000 0.760 0.975
90 1.000 0.291 0.160 1.000 0.000 0.763 0.983

100 1.000 0.337 0.226 1.000 0.000 0.738 0.990

Figure A3: Events of 4 and 10 coins (Ex. 10.3): dependence structure, empirical power and detection rate.

The previous examples only used dichotomous data. Obviously the same dependence structures can also
appear (and be detected) for other marginal distributions. A basic example is the following.

Example 10.4 (Perturbed coins). Let (Y1, Y2, Y3)be the randomvariables corresponding to the events of n = 2
coins in Example 10.3 and Z1, Z2, Z3 be i.i.d. standard normal random variables. Now set Xi := Yi + rZi for
i = 1, 2, 3 and some fixed r ∈ R. For these the same dependence structure as in Example 10.2 (Figure A2) is
detected. Figure A4 shows the dependence structure and the empirical power for r ∈ {0.25, 0.5, 0.75, 1}. Note
that the rate of successful detections of the test baseddependence structure algorithm improves in comparison to
the previous examples (for N large) whereas the consistent estimator requires larger samples. The former is due
to the fact that only in the case of univariate Bernoulli distributed random variables the distribution-freemethod
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is sharp for multivariance. In all other cases it becomes conservative and therefore the rate of falsely detected
pairwise dependencies is reduced. Increasing the value of r reduces the empirical power. This is expected, since
the dependence structure becomes blurred by the variability of the Zi’s.

1

2

3

17.98

resampling distribution-free consistent
N NM NM Comb NM NM detection detection
10 0.629 0.136 0.541 0.006 0.000 0.011 0.000
20 0.987 0.788 0.991 0.481 0.000 0.490 0.000
30 1.000 0.985 1.000 0.929 0.000 0.930 0.000
40 1.000 1.000 1.000 0.998 0.001 0.999 0.000
50 1.000 1.000 1.000 1.000 0.014 1.000 0.000
60 1.000 1.000 1.000 1.000 0.165 0.999 0.001
70 1.000 1.000 1.000 1.000 0.557 0.999 0.008
80 1.000 1.000 1.000 1.000 0.873 0.999 0.016
90 1.000 1.000 1.000 1.000 0.985 0.997 0.059

100 1.000 1.000 1.000 1.000 0.998 0.999 0.131

resampling
r = 0.25 r = 0.5 r = 0.75 r = 1

N NM NM NM NM NM NM NM NM

10 0.629 0.136 0.114 0.050 0.060 0.045 0.050 0.047
20 0.987 0.788 0.315 0.095 0.102 0.065 0.068 0.060
30 1.000 0.985 0.500 0.159 0.122 0.078 0.072 0.054
40 1.000 1.000 0.646 0.213 0.168 0.060 0.076 0.055
50 1.000 1.000 0.778 0.320 0.185 0.087 0.085 0.060
60 1.000 1.000 0.853 0.437 0.260 0.099 0.092 0.066
70 1.000 1.000 0.908 0.506 0.284 0.086 0.087 0.048
80 1.000 1.000 0.951 0.616 0.292 0.095 0.110 0.070
90 1.000 1.000 0.969 0.670 0.361 0.114 0.127 0.069

100 1.000 1.000 0.984 0.749 0.401 0.141 0.119 0.060

Figure A4: Normal perturbed events of 2 coins (Ex. 10.4): dependence structure, empirical power and detection rate.

Now the above examples will be used as building blocks to illustrate the dependence structure detection
algorithm. For the following examples the visualized dependence structure is (at least to us) much more
comprehensible than the literal description.

Example 10.5 (Several disjoint dependence clusters). We look at samples of (X1, . . . , X26)where (X1, X2, X3)
are as in Example 10.3 with 2 coins, (X7, . . . , X11) are as in Example 10.3 with 4 coins, (X4, X5, X6) and
(X12, X13, X14) and (X15, X16, X17) are as in Example 10.1, (X18, . . . , X21) and (X22, . . . , X25) are as in Ex-
ample 10.3 with 3 coins and X26 ∼ N(0, 1). Furthermore, each of these tuples is independent of the others. Note
that we added X26 to make the detection much harder, since now the factorization for independent subsets (6)
impliesM(X1, . . . , X26) = 0.

Figure A5 shows that the detection algorithm and tests based on 3-multivariance (with resampling) perform
well, whereas tests using totalmultivariance suffer fromaveraging (see also Example 10.14) and the distribution-
free dependence tests are too conservative.
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98.64

98.25

97.67

96.25

97.89

97.54

97.58

resampling distribution-free consistent
N NM NM3 Comb NM NM3 detection detection
10 0.044 0.073 0.049 0.015 0.000 0.000 0.000
20 0.047 0.214 0.116 0.000 0.000 0.000 0.007
30 0.041 0.424 0.242 0.000 0.000 0.908 0.177
40 0.045 0.654 0.465 0.000 0.000 0.945 0.508
50 0.039 0.831 0.667 0.000 0.000 0.950 0.716
60 0.053 0.947 0.855 0.000 0.000 0.920 0.835
70 0.053 0.986 0.955 0.000 0.000 0.920 0.911
80 0.047 0.998 0.989 0.000 0.000 0.916 0.966
90 0.034 1.000 0.999 0.000 0.000 0.915 0.973

100 0.051 1.000 1.000 0.000 0.000 0.923 0.981

Figure A5: The dependence structure with several clusters (Ex. 10.5).

Example 10.6 (Star dependence structure). Consider samples of (X1, X2, X3, X1, X2, X3, X1, X2, X3) where
X1, X2, X3 are as in Example 10.3 with 2 coins. Then the structure in Figure A6 is detected. Here the graph was
slightly cleaned up: vertices representing only pairwise dependence were reduced to edges with labels.

The variables are Bernoulli distributed and thus (as e.g. in Example 10.3) the detection rate of 95% reflects
the 5% falsely detected pairwise dependencies.
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100100
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100

100

100

94.91

resampling distribution-free consistent
N NM NM2

NM3 Comb NM NM2
NM3 detection detection

10 1.000 1.000 0.999 1.000 0.269 0.237 0.049 0.000 0.679
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.973 0.988
30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.950 0.998
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.959 0.999
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.960 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.963 1.000
70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.954 1.000
80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.955 1.000
90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.946 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.958 1.000

Figure A6: The star dependence structure of Ex. 10.6.

Example 10.7 (Iterated dependence structure). Consider samples of random variables (X1, . . . , X13) where
X1, . . . , X10 are independent but X1, X2, X11 are dependent (but all subtuples are independent), the sameholds
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for X1, . . . , X5, X12 and X1, . . . , X9, X13. Such examples can be constructed by letting X11 = f (X1, X2) for some
(special) f , and analogously for the others. If such a structure is detected the graph looks like Figure A7.

For the dependence we used f (x1, . . . , xk) =
∑︀k

i=1 xi mod 2, and Xi , i = 1, . . . , 10 were i.i.d. Bernoulli
random variables. The dependence structure is reasonably detected given 100 samples by the test based al-
gorithm, the consistent estimator requires a much large sample size. Tests based on total multivariance and
3-multivariance also detect the dependence, see Figure A7.

1

2

3

4

5
6

7

8 9

10

11

12

13

97.1

31.73

8.624

resampling distribution-free consistent
N NM NM3 Comb NM NM3 detection detection
10 0.039 0.070 0.063 0.004 0.000 0.000 0.000
20 0.061 0.161 0.107 0.000 0.000 0.000 0.000
30 0.093 0.266 0.156 0.000 0.000 0.000 0.000
40 0.152 0.395 0.258 0.000 0.000 0.000 0.000
50 0.277 0.543 0.412 0.000 0.000 0.000 0.000
60 0.416 0.742 0.590 0.000 0.000 0.001 0.000
70 0.541 0.844 0.742 0.000 0.000 0.042 0.000
80 0.667 0.918 0.853 0.000 0.000 0.556 0.000
90 0.733 0.970 0.929 0.000 0.000 0.858 0.000

100 0.842 0.984 0.972 0.000 0.000 0.889 0.000

Figure A7: The iterated dependence structure of Ex. 10.7.

Example 10.8 (Ring dependence structure). The random variables (X1, . . . , X15) are defined as follows. Xi
are i.i.d. Bernoulli random variables for i ∈ {1, 2, 3, 5, 6, 8, 9, 11, 12, 14}, Xk := (

∑︀k−1
i=k−3 Xi) mod 2 for k ∈

{4, 7, 10, 13} and X15 := (X13 + X14 + X1) mod 2.
Since here only quadruple dependence is present, only total multivariance is expected to detect it. The de-

pendence structure detection works surprisingly well, also with small sample sizes, see Figure A8.
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97.93

96.72

96.47

97.88

96.25

resampling distribution-free consistent
N NM Comb NM detection detection
10 0.040 0.063 0.002 0.000 0.010
20 0.050 0.082 0.000 0.054 0.404
30 0.089 0.120 0.000 0.939 0.750
40 0.180 0.157 0.000 0.938 0.903
50 0.305 0.256 0.000 0.948 0.961
60 0.481 0.383 0.000 0.928 0.971
70 0.620 0.510 0.000 0.925 0.983
80 0.760 0.672 0.000 0.933 0.994
90 0.851 0.769 0.000 0.931 0.998

100 0.924 0.887 0.000 0.915 0.997

Figure A8: The ring dependence structure of Ex. 10.8.

Example 10.9 (The full dependence structures). For Examples 10.1 to 10.5 the clustered dependence structure
and the full dependence structure coincide. For Examples 10.6, 10.7 and 10.8 the full dependence structures
are given in Figure A9, A10 and A11, respectively. The full graph is not as easy to comprehend as the clustered
graphs, to improve it we used the order of dependence as labels of the dependency nodes. Moreover, besides the
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full graph also individual graphs depicting only the dependence of a certain order (for tuples for which no lower
order dependence was detected) are presented.
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Figure A9: The full dependence structure of Ex. 10.6 (star dependence structure).
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Figure A10: The full dependence structure of Ex. 10.7 (iterated dependence structure).
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Figure A11: The full dependence structure of Ex. 10.8 (ring dependence structure).
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10.2 Empirical studies of properties of distance multivariance

Note that in the papers introducing distance multivariance (Böttcher et al. 2018, 2019) only two very elemen-
tary examples are contained. Thus simultaneously to illustrating the a measures and methods provided in
the current paper we also provide the first detailed empirical study of distance multivariance. For further
related examples see also Chakraborty and Zhang (2019); Bilodeau and Guetsop Nangue (2017). The follow-
ing aspects of multivariance, total multivariance and m-multivariance are discussed: the empirical size of
the tests (Example 10.10), the dependence of the distribution of the test statistic on marginal distributions,
sample size, dimension and the choice of ψ (Example 10.11), the computational complexity (Example 10.12),
the moment conditions (Example 10.13) and the statistical curse of dimensions (Example 10.14). The section
closes with a generalization of total multivariance (Example 10.15).

Legend for empirical size plots
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Figure A12: The empirical size of the tests for Examples 10.2 to 10.8 (Ex. 10.10).

Example 10.10 (Empirical size). Here we consider the same settings as in the previous examples but with H0
data, i.e., the marginal distributions remain as in the examples but the components are now independent. In
Figure A12 the empirical sizes of the tests are depicted (no empirical size was above the depicted range). The
resampling methods have (as expected for a sharp test) an empirical size close to 0.05. For Bernoulli marginals
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also the distribution-free method for multivariance is close to 0.05. In the other cases (and for m- and total
multivariance) the tests are conservative.

Next we analyze the effect of various parameters on the distribution of the test statistic.

Example 10.11 (Influence of sample size, marginal distributions and ψi). The distribution of the test statistic
N · NM2 under the hypothesis of independence depends on the marginal distributions of the random variables
and also on the number of variables n as Figure A13 illustrates (see also Figure A15). The empirical distributions
are based on 3000 samples each.
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Figure A13: Empirical distribution of N · NM2
ρ(X1 , . . . , Xn) for i.i.d. Xi with various distributions (Ex. 10.11).

Moreover the distribution also clearly depends on the choice of the reference measure ρ or equivalently
(see (11) and Remark 2.8) on the distances determined by ψi. For Figure A14 we used ψi(xi) = |xi|α with α ∈
{0.5, 1, 1.5}, and the plots show that in general for α = 1.5 the upper tail of the distribution of the test statistic
comes closer to the distribution-free limit which is the χ21-distribution. Note that the χ21-distribution is matched
in the case of Bernoulli distributed random variables, in this case the choice of ψi has no effect on the empirical
distribution of the test statistic, since ψi(0) = 0 and ψi(1) = 1 for all α.
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Figure A14: Empirical distribution of N · NM2
ρ(X1 , . . . , Xn) for i.i.d. Xi with various distributions and for ψi(x) = |x|α (Ex. 10.11).
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Figure A15: Dependence of the distribution of N · NM2
ρ(X1 , . . . , Xn) for i.i.d. r.v. on the number of variables (Ex. 10.11).
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Figure A16: Dependence of the distribution of N · NM2
ρ(X1 , . . . , Xn) for i.i.d. r.v. on the sample size (Ex. 10.11).
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For independent normally distributed random variables the dependence of the test statistic on the number
of variables n is depicted in Figure A15, and the dependence on the sample size N is illustrated in Figure A16.
Roughly, the distribution spreads with the number of variables and shrinks to a limiting distribution (as stated
in Theorem 2.5) with increasing sample size.

Example 10.12 (Computational complexity). To illustrate that the theoretical complexity O(nN2) is met by the
computations, we computed distance multivariance for various values of N and n (using i.i.d. normal samples).
In FigureA17 themedian of the computation time of 1000 repetitions for each combination of n ∈ {2, 3, . . . , 10}
and N ∈ {10, 20, . . . , 100} is depicted. The linear growth in the dimension n and the non-linear (quadratic)
growth in the number of variables N is clearly visible.
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Figure A17: Dependence of the computation time of multivariance on sample size N and dimension n (Ex. 10.12).

Example 10.13 (Infinite moments – cf. Remark 2.8). Similar to Example 10.4 let (Y1, Y2, Y3) be the random
variables corresponding to the events of n = 2 coins in Example 10.3 and Z1, Z2, Z3 be independent Cauchy
distributed random variables. Now set Xi := Yi + rZ3i for i = 1, 2, 3 and some fixed r ∈ R (here we only use
r = 0.001). Note that E(|Xi|

1
3 ) = ∞, thus clearly the moment condition (23) does not hold for the standard

ψi(.) = |.|. Now we compare three methods: a) we don’t care (thus we use the standard method); b) we use
ψi(·) = ln(1 + |·|2

2 ) which increases slowly enough such that the moments exist; c) we consider the bounded
random variables arctan(Xi) instead of Xi (cf. Remark 2.8.2). The results are shown in Figure A18. It turns out
that method a) is not reliable, method b) works reasonably. In our setup method c) works best, but recall that
this method destroys the translation and scale invariance of the test statistic, thus already if we shift our data it
might not work anymore.
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1

2

3

18.05

resampling
ψi(·) = | · | ψi(·) = ln(1 + |·|2

2 ) arctan(Xi)
N NM NM NM NM NM NM

10 0.254 0.148 0.260 0.178 0.509 0.229
20 0.244 0.169 0.266 0.158 0.919 0.693
30 0.169 0.106 0.262 0.137 0.990 0.913
40 0.139 0.102 0.237 0.148 1.000 0.987
50 0.106 0.075 0.200 0.115 1.000 0.996
60 0.080 0.060 0.199 0.085 1.000 0.998
70 0.077 0.060 0.208 0.099 1.000 1.000
80 0.087 0.064 0.225 0.102 1.000 1.000
90 0.071 0.064 0.207 0.087 1.000 1.000

100 0.067 0.057 0.241 0.093 1.000 1.000

Figure A18:Multivariance for samples of a distribution with infinite expectation (Ex. 10.13).

Example 10.14 ((total and m-)multivariance – statistical curse of dimensions). Let X1, . . . , Xn be indepen-
dent random variables and set Y1 := X2. Then (due to the independence of the Xi)

M(Y1, X2, . . . , Xn) −M(X1, . . . , Xn) = M(Y1, X2) − 0 = M(Y1, X2) > 0. (A35)

But the corresponding difference of the estimators might be negative, as a direct calculation shows. Empirically
we study this setting with Xi i.i.d. Bernoulli random variables. The empirical power of the independence test
with resampling for NM2 and NM is shown in Figure A19 for increasing n and various sample sizes. As expected
the decrease of power is rapid for total multivariance and at least not as bad for 2-multivariance.

The resampling method was used, since the distribution-free test is not sharp in this setting. It is for univari-
ate Bernoulli marginals only sharp for multivariance but not for total or m-multivariance (m < n).
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Figure A19: The curse of dimension for NM2 (left) and NM (right) using the resampling rejection level (Ex. 10.14).

We close this section with an extension of total multivariance which introduces a further parameter to tune
the power of the tests. Recall that we assumed, in order to avoid distracting constants, in Section 3 that the
kernels ofHSIC (and the relatedmeasures) satisfy ki(xi , xi) = 1.Without this assumption additional constants
appear naturally. As a special case one is led to the following dependence measure, which was incidentally
suggested to us before (Martin Keller-Ressel, private communication, 2017) and it is for ψi(xi) = |xi| a special
case of the joint distance covariance developed in Chakraborty and Zhang (2019).
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Example 10.15 (total distance multivariance with parameter λ). Let λ > 0 and define λ-total multivariance

Mρ
2(λ; X1, . . . , Xn) :=

∑︁
1≤i1<...<im≤n

2≤m≤n

M2
⊗m
k=1ρik

(Xi1 , . . . , Xim )λ
n−m (A36)

and its sample version

NM2(λ; x(1), . . . , x(N)) :=

⎡⎣ 1
N2

N∑︁
j,k=1

(λ + (A1)jk) · . . . · (λ + (An)jk)

⎤⎦ − λn . (A37)

Thus one puts the weight λn−k on the multivariance of each k-tuple for k = 2, . . . , n. Therefore with λ < 1 the
n-tuple gets the biggest weight, with λ > 1 the 2-tuples (i.e., pairwise dependence) get the biggest weight. This
might be used to improve the detection rate of total multivariance as Figure A20 and Figure A21 show. If the
random variables are (n − 1)-independent then clearly the detection improves when λ gets closer to 0, Figure
A20. If some lower order dependence is present then some optimal λ seems to exist, Figure A21, but a priori its
value seems unclear.

1

2

3

4

5

6

7

8

9

10

11

90.96

resampling
λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

N NM NM NM NM

10 0.080 0.050 0.062 0.050
20 0.763 0.160 0.059 0.057
30 0.994 0.666 0.127 0.069
40 1.000 0.962 0.304 0.110
50 1.000 1.000 0.528 0.141
60 1.000 1.000 0.772 0.201
70 1.000 1.000 0.927 0.232
80 1.000 1.000 0.985 0.280
90 1.000 1.000 1.000 0.280

100 1.000 1.000 1.000 0.311

Figure A20: Empirical power of tests based on λ-total multivariance for the events of 10 coins, compare to Figure A3 (Ex. 10.15).
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resampling
λ = 1 λ = 2 λ = 4 λ = 8

N NM NM NM NM

10 0.051 0.041 0.041 0.051
20 0.034 0.035 0.056 0.104
30 0.031 0.042 0.093 0.147
40 0.052 0.043 0.115 0.156
50 0.053 0.048 0.181 0.202
60 0.043 0.055 0.263 0.272
70 0.040 0.057 0.424 0.343
80 0.050 0.063 0.547 0.430
90 0.046 0.069 0.693 0.501

100 0.047 0.080 0.785 0.562

Figure A21: Empirical power of tests based on λ-total multivariance for the dependence in Example 10.5, compare to Figure A5
(Ex. 10.15).
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