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Abstract: We show how to obtain analytic expressions for the Jordan form of an upper triangular matrix,
including that of the standardizing matrix. For example, the Jordan form of a triangular banded matrix (a
banded matrix is a matrix where nonzero entries are confined to a band along the main diagonal) is given in
terms of Bell polynomials.
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1 Introduction

This short note gives original results on the Jordan form for triangular matrices. To the best of our knowledge,
there has been little or no work on this important area. Triangular matrices arise in many theoretical and
applied subjects. Some recent applications have included: co-channel interference rejection in MIMO systems
[3]; Cholesky-GARCH models with applications to finance [2]; underwater target detection [5].

The Jordan form of a square matrix is a fundamental tool for solving a variety of matrix problems, such as
the behavior of large powers of a matrix [6], solving of Fredholm integral equations with nonsymmetric
kernels [7], and many classes of linear and nonlinear matrix recurrence formulas. It is defined in terms of

( ) = +λ λJ I U ,
m m m

where Im is the ×m m identity matrix, and Um is the shift matrix, the ×m m matrix of zeros except for ones on
its first superdiagonal:

( ) = ≤ ≤+δ i j mU for 1 , ,m i j i j, 1,

and δj k, is the Kronecker delta, equal to 1 or 0 for =j k or ≠j k . For example,
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So,
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for ≤ i1 , ≤j m, and ≤ <k m0 , so that Um
k has zeros on its first −k 1 superdiagonals. LUk is L with its columns

moved right by k columns. That is, for �( )= ∈ ×L l l, …, r
r r

1
,

( )= = −− k rLU 0 0 0 l l l, , …, , , , …, , 1, 2,…, 1.
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The Jordan form of a matrix �∈ ×A r r is the decomposition

=A LΛR*, (1)

where
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where λj are the eigenvalues of A repeated mj times, for =j s1,…, . Also

( )= =AL LΛ Λ Λ Λ, diag , …, .s1
(2)

So, writing ( )=L L L, …, s1
and ( )=R R R, …, s1

, where �∈ ×L R,i i
r mi, gives
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Writing

( ) ( )∑= = = =
=

+−M M m L l l L l l0, , , …, , , …, ,i

j

i

j r i M M0

1

1 1i i1

the kth column in (4) is

( ) ( )− = − = =+ + −− −λ δ k m i sA I l l1 , 1,…, , 1,…, .i r M k k M k i,1 1i i1 1

This is the Jordan chain. L is not unique and there is at present no convention or canonical choice for it.
Note that { }Λ L R, , *i i i can be put in any order, for example withmi increasing, or decreasing as done by MAPLE,
or with ∣ ∣λi increasing. For a given ordering, lk , the kth column of L, is not unique as it can be multiplied by any
nonzero constant.

Section 2 gives the Jordan form of a triangular matrix when diagonal elements are either all equal, =s 1,
or all distinct, =s r , and also when the number of Jordan blocks is =s 2 or −r 1. The method can be extended
to general s. A corollary gives the Jordan form of a triangular banded matrix (a matrix where nonzero entries
are confined to bands on one side of the diagonal) in terms of Bell polynomials.

Section 3 gives some examples of triangular banded matrices. Section 4 considers the question: given
�∈ ×V r r, for what class of matrices does { }Vk form a basis?
We have not found any results on L in the literature. A result that overlaps a little with ours, but without

discussing L, is Theorem 6.25, page 424 of Horn and Johnson [4].

2 The general upper triangular matrix

Let A be any upper triangular matrix. That is, =A 0i j, for >i j so that { }Ai i, are the eigenvalues of A, and
( ) = ∏ = AAdet i

r

i i1 ,
. Its Jordan form depends on the number of equal eigenvalues. In this section, we give solu-

tions for when these are all equal and for when these are all distinct, and more generally when the number of
Jordan blocks, s, is 1 or 2 or −r 1 or r . This is enough to show how the method can be applied to the general
case, as other cases can be dealt with similarly. Let li be the ith column of L: ( )=L l l, …, r1

.
The case =s 1: We begin with the case ≡A ai i, 0

. Our first result gives necessary and sufficient conditions
that =s 1, that is, there is only one Jordan block, ( )= aΛ J

r 0
.
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Theorem 2.1. Suppose that = +aA I Δr0
, where Δ is any strictly upper triangular ×r r matrix with no zero on

its first superdiagonal, that is,

∏ ≠
=

−

+A 0.

i
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i i
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, 1

Then A has Jordan form (1) with =s 1, =m rr , =λ a
1 0

,

( )=L l l, …, ,r1
(5)

where = −l Δ lj
r j

r, = −j r1,…, 1, and lr is any r-vector with ≠L 0r r, . So, L is given in terms of lr by
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and = −A LΛL 1 is the Jordan form for A. So, if ( )= = ′l e 0, …,0, 1r r r, , the rth unit vector in � ×r r, then
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Proof. Let 0r be the r-vector of zeros. Then

( ) ( ) ( )+ = = + = =
= ≥

−

−

a a

j

I Δ L AL L I U ΔL LU 0 l l

l Δl

, , , …, ,

for 1.

r r r r r r

j j

0 0 1 1

1

So, (5) holds and the rest follows, since if Δ is strictly upper triangular, then

( ) ( )= ≤ − = ⋯−
+ −i j k A AΔ Δ0 unless . Also, .

k
i j

r i
i r i i r r, , , 1 1,

(8)

The proof is complete. □

We call L of (7) the canonical choice of L. If just one +Ai i, 1
is zero, then the Jordan form of A is given under

the case =s 2 below. We now apply this to the triangular banded matrix. Given a sequence ( )= a aa , , …
1 2

of
complex numbers, the ordinary partial Bell polynomials,   ( )=B B ak i k i, ,

, are defined by

∑ ∑⎜ ⎟
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⎞
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=
=
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=
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a x B x

k

k
k

i

k i
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1

,

for �∈x and ≥i 0. So,  =B 1
0,0

,  =B 0k i, if <k i, or if = ≠k i 0. The others are tabled on page 309 of the study by
Comtet [1].

Corollary 2.1. Suppose that �∈ ×A r r has the form
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(9)

Set = − aΔ A Ir0
. Then
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If ≠a 0
1

, A has Jordan form

( )= + −aA L I U L ,r r0

1

where ( )=L l l, …, r1
and li is given in terms of lr by
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That is, the canonical choice of L is

   

  

 



=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⋯

⋯
⋯ ⋯ ⋯
⋯

⋯

⎞

⎠

⎟
⎟
⎟
⎟
⎟

− − − − − −

− − − −

B B B B

B B B

B B

B

L

0

0 0

0 0

0 0 0

.

r r r r r r

r r r r

1, 1 1, 2 1,1 1,0

2, 2 2,1 2,0

1,1 1,0

0,0

For example, ( )= ′− − −a a al , , …, , 0r r r1 1 2 1
.

The case =s 2: Suppose that =A ai i i,
, where =i 1 for ≤ ≤i m1

1
and =i 2 for < ≤m i r

1
. Then

( )=Λ Λ Λdiag ,
1 2

, where ( )= aΛ Ji m i
i

. Write A, L as ×2 2 block matrices with ( )i j, elements Ai j, , Li j, , i, =j 1, 2.
Since A is upper triangular, we can choose L to be upper triangular, so that = =A L 0

2,1 2,1
. By (2),

( )=AL L Λ Λdiag ,
1 2

. Taking the ( )i j, element for i, =j 1, 2 gives

= =iA L L Λ , 1, 2,i i i i i i i, , ,
(10)

( )+ = = +aA L A L L Λ L I U .m m1,1 1, 2 1, 2 2,2 1, 2 2 1, 2 2
2 2

(11)

The solution of (10) for Li i, is just that given for =s 1 above with A, r , a
0
, L, Δ replaced by Ai i, , mi, ai, Li i, , Δi,

where = − aΔ A Ii i j i m, i
. So, it requires that the elements of the first superdiagonal of Ai i, are nonzero, that is,

{ }∏ ≤ < ≠ ≠+ i r i mA 0: 1 , .i i, 1 1

(12)

Given L
2,2
, we now solve (11) for L

1, 2
. Write it as

( ) ( )+ + = +a aI Δ L B L I U ,m m m1 1,1 1, 2 1, 2 2
1 2 2

where =B A L
1, 2 2,2

is ×m m
1 2

. That is, + =JL B L Um1, 2 1, 2
2

, where ( )= − + Δa aJ Im1 2 1,1
1

and =m m
1
. Taking the

ith column gives
+ = =− i mb Jn n , 1,…, ,i i i 1 2

where bi and ni are the ith columns of B and L
1, 2
, respectively. Its solution in terms of nm

2

is

∑= + = −−
=

−

− + + i mn J b J n , 1,…, 1.m i

j

i

j
m i j

i
m

0

1

1
2 2 2

Also by (12), ( ) ( )= ∏ ≠=L Ldet det 0i i i1

2

,
so that = −A LΛL 1 is the Jordan form for A.
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Example 2.1. Suppose that = =s r 3. Then we can take
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⎛
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( ) ( )= + − = −L A A A A A L A A A, .
1,3 1, 2 2,3 1,3 3,3 2,2 2,3 2,3 3,3 1,1

The case =s r: This holds if { }Aj j, are all distinct. Then ≡m 1j , =Λ Aj j j, , ( )=Λ A Adiag , …, r r1,1 ,
and L

satisfies =LΛ AL. So, L is upper triangular and the ( )i j, element of =LΛ AL gives

( ) ( )∑= − − = +−

= +
− − j i rL A A A L L , 1,…, .i j j j i i

k i

j

i k k j k j, , ,

1

1

, , 1, 1

In particular,
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= − −

− − −
−

− − −
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−

= −
− − −
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,
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j j j j j j j j j j j j
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j

j k k j k j

1, , 1, 1

1

1, , 1, 1

2, , 2, 2

1

1

2, , 1, 1

and so on, giving lj in terms of Lj j, , which is arbitrary but nonzero.
The case = −s r 1: Without loss of generality, we can order the blocks so that =m 1i for ≤ ≤ −i r1 2 and
=−m 2r 1

. By (4), =L lj j, = AAl lj j j j,
for ≤ ≤ −j r1 2, and ( )=− −L l l,r r r1 1

satisfies ( ) ( )=− − −λAL l l J,r r r r1 1
2

1
, where

= =− − −λ A Ar r r r r1 1, 1 ,
. That is,

( )= − =− − −λ λAl l A I l l, .r r r r r1 1 1

So, −lr 1
is the eigenvector of A with eigenvalue −λr 1

, and ( )= −− Al A I lr r r r r1 ,
has last element zero. So, L is upper

triangular, and lr is any vector with ≠L 0r r, . The canonical choice =l er r r, implies ( )= ′− −A A Al , , …, , 0r r r r r1 1, 2, 1,
.

3 Some triangular banded matrices

As in (1), we set ( ) = +λ λJ I Um m.

Example 3.1. Suppose that �∈θ . By (3),

( )∑=
=

λA L J R*.

θ

i

s

i m i
θ

i

1

i

For ≠λ 0, ( )λJ θ has the form (9) with

= = −a λ a a α λ, ,

θ
k k

k
0 0

where = ⎛
⎝

⎞
⎠αk

θ

k
. So,

 ( ) ( )= −αB a B λa .k i
i

k i
k

, 0 ,

More generally, for A of Theorem 2.1, by (8),

∑= ⎛
⎝

⎞
⎠

=

−
−r

k
aA Δθ

k

r

θ k k

0

1

0

is upper triangular with ( )i j, element

( ) ( )∑= ⎛
⎝

⎞
⎠

=

−
−r

k
aA Δ .

θ
i j

k

j i

θ k k
i j,

0

0 ,

(13)
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Example 3.2. By (3),

( ) [ ( )]∑=
=

λA L J Rexp exp *.

i

s

i m i i

1

i

Note that [ ( )]λJexp has the form (9) with

( )= =a λ a
a

k
exp ,

!

.k0

0

So,

 ( )
( )

=B i a
B

k
a

1
!

!

,k i
i k i

, 0

,

where ( )B ak i, is the exponential partial Bell polynomial, tabled on pages 307–308 of [1]. But by page 135 in the
study by Comtet [1], ( ) ( )=B S i k1 ,k i, , the Stirling number of the second kind, tabled on pages 310–311 in the
study by Comtet [1]. More generally, for A of Theorem 2.1, by (8),

( ) ( ) ∑=
=

−

a
k

A
Δ

exp exp

!
k

r k

0

0

1

(14)

is upper triangular with ( )i j, element

( ( ))
( )∑=

=

−

k
A

Δ
exp

!

.i j

k

j i k
i j

,

0

,

Example 3.3. By (3),

( ( ))∑=
=

λA L J Rlog log *.

i

s

i m i i

1

i

For ≠λ 0, [ ( )]λJlog has the form (9) with

( ) ( )= = − −
−

a λ a
λ

k
log , 1 .k

k

k

0

1

So,

 ( ) ( ) ( )= − −
−

B i a B
λ

k
a γ1 !

!

,k i
i k i

k i

k

, 0 ,

where ( )= −γ k 1 !
k

. By page 135 in the study by Comtet [1], ( ) ∣ ( )∣=B s i kγ ,k i, , where ( )s n k, is the Stirling
number of the first kind, tabled on pages 310–311 in the study by Comtet [1]. More generally, for A of Theorem
2.1, by (8),

( )∑= + −
=

−
−a

k
A I

Δ
log log 1r

k

r

k

k

0

1

1

1 (15)

is upper triangular with ( )i j, element

( )
( )

( )∑= +
−

=

− −
a

k
A Δlog log

1

.i j

k

j i k

k
i j, 0

1

1

,

4 When is {{ }}Vk a basis in ××
ℂ

r r?

In this section, we address the following question: given matrices �∈ ×A V,

r r, when can we write

∑=
=

∞

aA V ,

k

k
k

0

(16)

where ak are scalar?
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Clearly, if V is diagonal, then so must A be. If V is upper triangular, then so must A be. Experimenting with
various V, such as = + ′a bV U U , gives some interesting shapes for { }Vk . We can write A in terms of the Jordan
form of V. For example, if V has only one Jordan block, say ( )= −λV LJ L

r
1, then

= −A LBL ,

1

where

∑ ∑= = ⎛
⎝

⎞
⎠=

−

=

∞
−b b

i

k
a λB U , .

k

r

k r
k

k

i k

i
i k

0

1

How many linearly independent { }≥kV , 0

k are there? If V has only one Jordan block, that is, if =s 1,
then the answer is +r 1, as we now show.

Theorem 4.1. Suppose that ≠λ 0 and ( )= −λV LJ L
r

1. Then,

�∑ = ∈
=

×a V 0
k

r

k
k r r

0

(17)

if ( )= ⎛
⎝

⎞
⎠ −a λk

r

k

k .

Proof. Set T equal to the left hand side of (17). Then = −T LCL 1 is an upper triangular matrix with = −T Ci j j i,
,

where

( )∑=
=

λ aC J .

k

r

r
k

k

0

So, �= ∈ ×T 0 r r if and only if =C 0a for = −a r0, 1,…, 1. Putting = −a r 1, then −r 2 confirms that =C 0a .
Now use induction. □

Our final result gives expressions for Aθ, ( )Aexp and Alog .

Theorem 4.2. For A given by (16),

( )∑ ∑ ∑= = =
=

∞

=

∞

=

∞

a b cA V A V A V, exp , log ,

θ

i

θ i
i

i

i
i

i

i
i

0

,

0 0

where







( )

( )
( )

( )
( )

( )

( )

( )

∑

∑

∑

= ⎛
⎝

⎞
⎠

=

= =
−

=

−
−

=

−

=

− −

a
r

k
a B

b a
B

k

c a c
k

B

a

a

a

,

exp

!

,

log ,

1

θ i

k

i r

θ k
k i

i

k

i r
k i

i

k

i r k

k i

,

0

min , 1

0 ,

0

0

min , 1

,

0 0

0

min , 1
1

,

for ≥i 1.

Proof. Set = − aΔ A Ir0
. By (16),

 ( )∑=
=

∞

BΔ a V .

k

i k

i k
i

,

Applying this to Examples 3.1–3.3, (13)–(15) give the results. □
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