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Abstract: This article considers the computation of the matrix exponential e4 with numerical quadrature.
Although several quadrature-based algorithms have been proposed, they focus on (near) Hermitian matrices.
In order to deal with non-Hermitian matrices, we use another integral representation including an oscillatory
term and consider applying the double exponential (DE) formula specialized to Fourier integrals. The DE
formula transforms the given integral into another integral whose interval is infinite, and therefore, it is
necessary to truncate the infinite interval. In this article, to utilize the DE formula, we analyze the truncation
error and propose two algorithms. The first one approximates e4 with the fixed mesh size, which is a para-
meter in the DE formula affecting the accuracy. The second one computes e based on the first one with
automatic selection of the mesh size depending on the given error tolerance.
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1 Introduction
The exponential of a matrix A € C™" is defined as follows:

eA=T+ A+ %AZ + %A3 oo

and it arises in several situations in scientific computing. One of the applications is the exponential integrator,
a class of numerical solvers for stiff ordinary differential equations [13]. In recent years, e4 also arises in the
analysis of directed graphs [4]. Thus, several classes of computational methods of e4 and e4b (b € C") have
been proposed. For example, methods based on Padé approximation of e? at z = 0 [1,2,7], methods based on
projections onto Krylov-like subspaces [8,18], methods based on the best approximation of e? on (-, 0] [19],
and methods based on numerical quadrature [5,24]. For a more detailed review of the computational methods
of the matrix exponential, see, e.g. [14,15].

In general, quadrature-based methods have two advantages: these algorithms can compute e4b without
computing e4 itself when A is large and either sparse or structured, and it is possible to easily make these
algorithms parallel in the sense that the integrand can be computed independently on each abscissa [23, Sect. 18].

* Corresponding author: Fuminori Tatsuoka, Department of Applied Physics, Graduate School of Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, e-mail: f-tatsuoka@na.nuap.nagoya-u.ac.jp

Tomohiro Sogabe: Department of Applied Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya
464-8603, Japan, e-mail: sogabe@na.nuap.nagoya-u.ac.jp

Tomoya Kemmochi: Department of Applied Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya
464-8603, Japan, e-mail: kemmochi@na.nuap.nagoya-u.ac.jp

Shao-Liang Zhang: Department of Applied Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya
464-8603, Japan, e-mail: zhang@na.nuap.nagoya-u.ac.jp

8 Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/spma-2024-0013
mailto:f-tatsuoka@na.nuap.nagoya-u.ac.jp
mailto:sogabe@na.nuap.nagoya-u.ac.jp
mailto:kemmochi@na.nuap.nagoya-u.ac.jp
mailto:zhang@na.nuap.nagoya-u.ac.jp

2 =—— Fuminori Tatsuoka et al. DE GRUYTER

For similar reasons, quadrature-based algorithms for other matrix functions have been developed in recent years
[21,22]. Thus, we consider quadrature-based algorithms in this article.

Quadrature-based algorithms in [5,24] focus on (nearly) Hermitian matrices. In detail, they are proposed
for the efficient computation of Bromwich integrals whose integrand has singularities on or near the negative
real axis. For the computation of e4, (all) the eigenvalues of A are the singularities of the integrand. Hence,
when A has eigenvalues with large imaginary parts, the singularities are also located far from the negative
real axis, and these algorithms would be inaccurate or may not converge.

The motivation of this study is to construct quadrature-based algorithms that can be used for non-
Hermitian matrices. Here, we consider another integral representation

o

2
ed = )X sin(x)(x?I + A?)ldx. ()]
0

The derivation of (1) is presented in A. The integral representation (1) holds when all the eigenvalues of A lie in
the open left half plane {z € C : Re(z) < 0}, but this condition can be assumed without loss of generality
because e4*s! = eSe4 (s € C). Unlike the Cauchy integral used in [5,24], the integral representation (1) allows us
to avoid considering its integral path even when A is a non-Hermitian matrix.

Since the integrand in (1) includes an oscillatory term sin(x) and the interval is half infinite, it is difficult to
compute (1) by using typical quadrature formula such as Gaussian quadrature. To compute (1), we consider
applying the double exponential (DE) formula specialized to Fourier integrals [17].

In this article, we propose algorithms using the DE formula to compute e4b (or e4) for non-Hermitian
matrices with numerical quadrature. The DE formula transforms a given integral into another integral suited
for the trapezoidal rule. Because the transformed integral interval is infinite, we need to truncate the infinite
sum of the discretized integral appropriately into a finite one. Thus, we propose a truncation method of the
infinite sum based on error analysis. In addition, we show an automatic quadrature algorithm that selects the
mesh size of the trapezoidal rule depending on the given tolerance.

The organization of this article is as follows: The DE formula used in this article is introduced in Section 2.
In Section 3, we analyze the truncation error and propose algorithms. Numerical results are presented in
Section 4, and we conclude this article in Section 5.

2 The DE formula for Fourier integrals

The DE formula exploits the fact that the trapezoidal rule for the integrals of analytic functions on the real line
converges exponentially [20]. Several types of change of variable are proposed to deal with different types of
integrals. In [16], integral forms of

7 = g0 sin(x)dx ¥)
0

are considered, where g is a scalar function decaying polynomially as x — .

The DE formula for (2) is as follows. We first select the mesh size h > 0 to be used for the trapezoidal rule.
Next, we apply a change of variable x = x,(t) such that x;(t) decays double exponentially as t » - and
xp(t) — mt/h decays double exponentially as t — . Then, we compute the transformed integral with the
trapezoidal rule:

7 = [xi(Og0n(®)sinCu(0)dt = h Y xi(kh)g(x(kh)) sinCo,(Kkh)).
o k=-o

The summand decays double exponentially as |k| — o, and therefore, the infinite sum can be approximated by
a sum of not too many terms. Examples of such change of variable are as follows:
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T t
h 1 - exp(-asinht)’

xp(t) = (a =6),

which is proposed in [16], or

n t _1 B
h1-exp(-2t - a(l - et) - Bet - 1)) p=

(©)

Xp(t) =

2 7 T+ log + niyah |

which is proposed in [17]. The implementation notes for (3) is presented in Appendix B.
The DE formula can be applied to (1) because the integrand is a rational function of A in the sense of [12,
Definition 1.2]. See [21, Section 1.1] for more details of the discussion.

3 Computing e4 with the DE formula

In this section, we propose algorithms for e4 based on the DE formula:

et = [Fyt, At = Y hFy(kh, 4), @
k=1

—00

where
Fu(t, A) = x; () sin(p()GOa (), A),  G(x, A) = %X(XZI + A,

We may not write the second argument of F;, and G when it is obvious from the context.
The error of the DE formula can be divided into the discretization error and the truncation error:

> hEy(kh) - Y hFy(kh)|.
k=-c0 k=1

+

IFh(t,A)dt— S hEy(kh, A) = _[Fh(t)dt— i hF(kh)
k=1 k=-00

—00 - —00

We employ a posteriori error estimation technique to presume the discretization error and provide an upper
bound on the truncation error. In Section 3.1, we analyze the truncation error for the given interval, and in
Section 3.2, we present the two algorithms; notably, one algorithm uses the technique to achieve the required
accuracy.

3.1 Truncation error
We show an upper bound on the truncation error as follows:

Proposition 1. Suppose that all the eigenvalues of A € C™" lie in the left half plane. Let u(t) = 1 — mt/hxy(t),
where xp(t) is a DE transformation for Fourier integrals. Given l,r € Z such that l<r, xp(lh) <

min{1//2||A?||, 7}, and x;(kh) < 27t/h for k = r + 1, we have

Y hEy(kh) - Y hFy(kh)
k=-c k=1

5)
h < °  ku(kh
<7 &)+ 2 kgﬂ#(kiz)(”(“‘ + DRI + 1A - D)D),

where ||-|| is any subordinate norm.
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Proof. From the triangle inequality, it holds that

w r -1 w
Y hFy(kh) - Y hFy(kh) Y hEy(kh) > hPh(kh)H.
k=-e k=1 k=—co k=r+1
In this proof, we show (5) that

-1 on 1
> hE(kh)|| < = 3 x;(kh), (6)
k=—00 T k=-c0

< < ku(kh . .

Y hR(kh)|| <2m ) #(II(A + (kD + [I(A = Day(kR)DT). ™

k=r+1 k=r+11 u(kh)

We first show (6). The assumption (0<) xp(lh) < 1/./2||A2|| gives that for k < I, ||xp(kh)?A%|| < 1/2  (<1).
Hence, by using the Neumann expansion, we have
llx(kR)* O (k)T + A%)7H| = 1 (KR)? A7 [~ (=X (KR)?A™2) + I]7||

[_Xh(kh)%qi]m+1

m=0

Z lIxp(KR)2A2 ™ < 1.

In addition, because (0<) xn(kh) < 7 for k < [, we have

s 2h || C x4(kh)sinQo(kh)) )
k_Z_thh(kh)H o kzz_m—xh(kh) X (kY20 (kh)Y2T + A2)!
2h & sin(q(kh))
<— k:z_mxh(kh)ixh &

2h -1
< > x;(kh).

k=-c

Next, we show (7). It is easily seen that

[

S% 2 Xi(kh)lsinOaa (k) 12xu (k) o (k)T + 427

k=r+1

S hEGD)

k=r+1

B
= 2 X (m)lsinOa (k) LIA + Dk + [I(A = D (RRD™|].

k=r+1

Here, because x;(kh) < 27/h for k2 r + 1 and

[sin(xp(kh))| = |sin sin|k:

u(kh) 1 - u(kh)’

krt knu(kh) - kru(kh)
1- u(kh)

we have (7), and (5) is proved. O
We remark that the transformation (3) satisfies x;(t) < 2m/h for t > ty, where t; is the solution of

-2t - a(1 - et) - B(et - 1) = log(1 - 1/4/2). For more details, see Appendix B.

3.2 Algorithms

In this subsection, we propose two algorithms. The first one computes e4 by using the DE formula with the
given mesh size h and the second one computes e4 with automatic mesh size selection.
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In the first algorithm, the input matrix A is shifted so that all the eigenvalues of A lie in the left half plain.
Subsequently, the algorithm selects the truncation point of the discretized integral so that the truncation error
in 2-norm would be less than the given error tolerance. Then the algorithm calculates the exponential of the
shifted matrix. Finally, we obtain e by scaling the exponential of the shifted matrix exponential. The details of
the algorithm are given in Algorithm 1.

Algorithm 1 Computing e# with the DE formula with given mesh size

Input A € C™", mesh size h > 0, tolerance for the truncation error € > 0, shift parameter g < 0
1: Compute the right-most eigenvalue of A, Agn
2 A=A+ (0 = AvigndI, € = g/|e’rgnI| > Because of the scaling of A, the tolerance also needs to be
scaled.
I, r = GetInterval(&, h, 4)
4 X = hYjFu(kh, A)
Output X = ehisn 0¥ = e4

5. function GerInTERVAL (€, h, A) > Compute an interval whose truncation error is approximately smaller
than ¢

Find the maximum [ € Z satisfying 2h(Z§<_=1_mx’(kh))/n <gl2

Find the minimum r € Z satisfying 4m||A™||,Y -, ku(kh)/(1 - u(kh)) < /2

returnl, r
end function

Algorithm 1 requires the shift parameter o, and this parameter must be chosen appropriately. Indeed,
when o is positive, the integral representation (1) does not make sense. In addition, when o is large in the
negative direction, it makes inaccurate results because the condition number for e4 becomes large as ||4]| is
large, see [9, Section 1]. From the numerical examples in Section 4.2, it may be better to choose ¢ from [-5, 0).

The computation of the resolvent (x,(kk)2I + A*)™ is necessary in Step 4 of Algorithm 1, where 4 is the
shifted matrix computed at Step 2. The condition number for the resolvent can be as large as the square of the
condition number of A, and it may result in low accuracy. In this case, although the computational cost
increases, we can evaluate it as follows:

i

g
Otn(kh)’T + AT = 20 (kh)

[(Gxu (kI + A) = (~Da(kh)I + A)71]

for accuracy.
To obtain an upper bound on the 2-norm of the truncation error using Proposition 1, it is necessary to
compute the norm ||(4 + ixy(kh)I)™!||; for k = r + 1. As the computation of the norm at each k is challenging,

the algorithm assumes that the upper bound on the norm can be approximated by ||A_1||2. In other words, the
upper bound on the truncation error ||3-,.,hFy(kh)||; is approximated by

ku(kh)

~_1 hd
47[”A ”2 Z 1—u(kh)

k=r+1
Hence, for highly non-normal matrices such that ||A™||; is much larger than [|(A + ix,(kh)I)™|},, the computa-
tional cost of the algorithm may be large because of the overestimation of the truncation error.

The infinite sums in steps 6 and 7 of Algorithm 1 can be approximated without too much computations
because the summands x;(kh) and ku(kh)/(1 - u(kh)) decay double exponentially. For example, Figure 1
illustrates the value of |x;(kh)| and |ku(kh)/(1 - u(kh))| for h = 0.05, and it shows that these sums can be
presumed by computing the first 50 summands.
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|x'(kh)| (h=0.05) ku(kh)/(1 = u(kh)) (h=0.05)
10° 10°
1075 1075
10-10 10-10
10715 J 10*15 .
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Figure 1: The absolute value of the summands in the upper bound on the truncation error. The figure on the left illustrates [x'y(kh)| in
(5), and the one on the right illustrates |ku(kh)/(1 u(kh))|. The transformation (3) is used for this calculation.

We next propose an automatic quadrature algorithm. Ooura and Mori proposed an automatic quadrature
algorithm in [17, Section 5] that is applicable when the convergence rate of the DE formula, the constant p > 0
such that |7 = hY -_ox;(kh)g (xp(kh)) sin(xy(kh))| = O(exp(-p/h)), is known.

In the computation of e, the error |le4 - hYy._Fy(kh, A)|| can be bounded by yexp(-p/h) with
some positive constants y and p because any element of Fu(t) is an analytic function on a strip region
{z € C : |Im(2)| < d} for some d > 0. However, the convergence rate p varies with the eigenvalue distribution
of A because the singularities of the integrand in (4) are solutions z of x(z)? = -2*, where 1 is any eigenvalue
of A. Thus, we add a presumption of the convergence rate to the algorithm. Once we presume y and p, we can
select an appropriate mesh size h by solving |e’#%|e = y exp(-p/h) for h with a given tolerance &.

In the algorithm, we first select three mesh sizes h; > h, > hy > 0. Let X;(i = 1, 2, 3) be the computational
result of the DE formula for e with the mesh size h;. If £; is much more accurate than X; and X;, the errors of
X, and X, can be approximated as follows:

% - efll = &= 1% - Kl (i=12).

L3
hy )

and we can approximate || X; - eA|| = & = y exp(—p/hs). Because & is just an approximation, we select a safety
parameter n > 0 and stop the algorithm if & < n& to obtain Xi(=ed). If & > né, we set hy = p/log(y/n€) and
evaluate the DE formula (4) once more. When & = &, it means that the initial mesh size is too large to assume
the exponentially convergence of the DE formula (4). For this case, we set h; < hyq (i = 1,2) and repeat the
procedure. The detail of the algorithm is given in Algorithm 2.

By solving & = y exp(-p/h;)(i = 1, 2) for p and y, we obtain

_ _fuly Io ﬂ = £ ex

Algorithm 2 Automatic quadrature algorithm for e4 based on the DE formula

Input A € C™", tolerance for the error € > 0, shift parameter g < 0, initial mesh size hy > 0, safety
parameter n > 0, the minimum mesh size hy;, > 0

Output X = e4

Compute the rightmost eigenvalue of A, Aignt

A=A+ (0~ hign), &= ¢g/lehsn|

hy =m/2, hs=Hh/4

I, i = GetInterval(§/2, h;, A) (i=1,2,3) > Set &/2 for the input of GetInterval to bound the
truncation error by /2

S %= hiZﬁzliFhi(khi,A) (i=1,23)

W N
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6 g=|X-X (=12

7 p=hhylog(&/&)/(h — hy), y=&exp(p/hy)
8: & =yexp(-p/hs)

9. if& < &/nthen

10: return X = ehin0%;

11: else

12 hy = p/log(yn/é)

13: if & s & or hy < hy, then

14: Sethi « hisy(i=1,2,3) and X; « Xivqy (i=12)
15: I, 13 = GetInterval(&/2, hs, A)

16: X3 = h33 2 Fry(khs, A)

17: go to Step 6.

18: else

19: Iy, s = GetInterval(&/2, hy, A)

20: Xy = had )iy, Fr(khy, A)

21: return X = 0%,

22: end if

23: end if

4 Numerical examples

The computation is carried out with Julia 1.10.0 on an Intel Core i5-9600K CPU with 32 GB RAM. The IEEE
double-precision arithmetic is used unless otherwise stated. The reference solutions in Section 4.5 are com-
puted by [13/13]-type Padé approximation with the BigFloat data type of Julia, which gives roughly 77
significant decimal digits. The Padé approximation is performed after scaling so that the 1 norm of the matrix
is less than 5.37. The programs for these experiments are available on GitHub'. For the DE formula, we use the
change of variable in (3), and the infinite sums in GetInterval are truncated to 50 terms.

4.1 Computing the scalar exponential with the DE formula

By using the result in [3], the upper bound on the error of the DE formula can be obtained by

lleA = hZ e iFu(kh, A, < (1 + V2) max,eqpale? — hy Fu(kh, z)|, where W(A) = {x"Ax: x € C", ||x||; = 1}

is the field-of-value of A. Hence, it is worth observing the error of the DE formula for the scalar exponential

le? — hY - Fyn(kh, z)|. Figure 2 visualizes the error, and we can notice the followings:

» When z is on or near the negative real axis, the error of the DE formula with h = 0.1 is about 107,

» When -Re(z) is large, the error of the DE formula with h = 0.2 is about 1076,

* When z is in a sector region {z € C : |arg(-z)| < m/4}, the error of the DE formula with h = 0.05 is
about 107,

From these findings, when A is a near Hermitian matrix, the error in 2-norm of the DE formula for e4 with
h = 0.1 will be about 1071,

1 https://github.com/f-ttok/article-expmde/
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Figure 2: The error of the double exponential formula for the scalar exponential e?. The mesh size is set to h = 0.2, 0.1, 0.05.
The left column shows the error for the area {z € C : =30 < Re(z) < 10, -20 < Im(z) < 20} and the right one shows the error
for{z € C : -5,000 < Re(z) <0, -2,500 < Im(z) < 2,500}.

4.2 Accuracy dependence on the shift parameter o

Algorithm 1 requires the parameter ¢ for the input. For reference, we see the accuracy dependence of the DE
formula on 0. We consider two test matrices Ay = ZDyZ™! (k =1, 2), where Z € C3*% is generated by using a
function randsvd in MatrixDepot.jl [25] so that k(Z) = 10%, and D € €5*% is a diagonal matrix whose diag-
onals are d; = 1 — 102D/ + j3,./20 (i = 1, ...,50, v; ~ N(1, 0)).

Figure 3 shows the error of the DE formula for o € [-10, 5]. When o 2 0, the error of the DE formula is
large for both matrices because A does not satisfy the condition for (1). Thus, 0 must be smaller than 0. On the
other hand, as o becomes small, the computational result becomes inaccurate. Hence, it would be better to
set g € [-5,0).
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'g 100 o == Ay f
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S 1075 -
g
(%3]
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Shift o

Figure 3: Accuracy dependence of the double exponential formula on the shift parameter a.

4.3 Accuracy control of automatic quadrature

Here, we see the accuracy control of Algorithm 2. Figure 4 shows the error of Algorithm 2, where the test
matrices are the same as in Section 4.2, and the safe parameter is set to n = 2. We note that these test matrices
have field-of-value that crosses the imaginary axis: max;ew,Re(z) = 612, and max;ey,)Re(z) = 61,403.

The left figure shows the accuracy dependence on the input tolerance &, and it shows that the accuracy of
Algorithm 2 could be controlled by €. The right figure shows the error and its presumed value of the computa-
tional results for the selected mesh size for the case, where A = A; and € = 107%°, From the figure, it is found
that the algorithm could presume the error.

4.4 Accuracy of Algorithm 2

In this example, we compute the exponential of 51 test matrices from MatrixDepot.jl [25]. The size of these
matrices is 10 x 10, and they are shifted as A’ = A — Ayjgn ] before the computation. We computed e’ by using
Algorithm 2 with & = 1078, 1076, For reference, we also computed e?” with exp function in Julia, which uses the
scaling and squaring algorithm [11].

Figure 5 shows the error of this example. It is observed that the error of Algorithm 2 is less than 1078 for
most matrices when & = 107%. This indicates that Algorithm 2 could control the error. In addition, when
€ = 1071, the accuracy of Algorithm 2 is comparable to that of exp function.

Error Presumption

; Accuracy of Alg. 2 (A1, £=10719)
107° g
oA 10° +6 presumed value
’g 10—7_§ < A fe) ’g o) Q error
o E 6 o
T 1078 3 o} <
o 3 o) o -5
T 3 — 1073 { o
5 10 % o! 5
4 0] 40 4
< Eps 6 B o-1o
3 1 - -
-Q T T T T T O]
1071 107° 107® 1077 10°° 5 10
Tol. € 1/h

Figure 4: The accuracy of Algorithm 2. The left figure shows the accuracy dependence on the input tolerance € and the error of the
computational results. The right figure shows the error and its presumed value of the case when A = A; and & = 10-1°, The horizontal
axis is the inverse of the selected mesh size, and the vertical axis is the error.
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Figure 5: The error | X—e||, of Algorithm 2 and exp function in Julia, which uses the scaling and squaring algorithm in [11].

4.5 A comparison of the DE formula with the Cauchy integral for non-Hermitian

matrices

In this example, we compute e# for non-Hermitian matrices by using Algorithm 1 (denoted by DE) and an
algorithm based on the Cauchy integral.

d=0.0005, c=

20

[0.2,0.2]

N
E
_20 T T T T
-10 -8 -6 -4 -2 0
Re(z)
d=0.01, ¢c=[0.2,0.2]
10
5_
.'Jo.ooo..
T\T ....o ......o
= 0 A -"'3
-— (N PR
.“..oooo
_5_.
_10 T T T T
-100 -80 -60 -40 -20 0
Re(z)

Figure 6: Eigenvalues of the test matrix M~'K in Section 4.5.
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.. .. ;.‘ o, L] ° ......:
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-10 -8 -6 -4 -2 0
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0 "...-_,__,,. . .,,, ,,_.;,‘o',',-,q,*“-_:;i:
., % 0 So .M...é
-5 1 .'..:....00'
_10 T T T T
-100 -80 -60 -40 -20 0
Re(z)
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d=0.001, c=[0.2,0.2] d=0.001, c=[0.4,0.4]
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© (0]
10-15 4 N7V
T T 10_15 T T
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Figure 7: Convergence histories of DE and Talbot for the problem exp(M-'K) in Section 4.5.

The matrices are generated from the convection-diffusion problems

ou
T diu - ¢"Vu in Q = (0,1)?%,
u=0 on 0%,

u(0, x) = up(x),

where d = 0.001, 0.01, and ¢ = [0.2, 0.2], [0.4, 0.4]. By using the finite element method, we have a linear evolu-
tion equation Mu'(t) = Ku(t) whose solution is exp(tM1K)u(0). We use FreeFEM++ [10] for the discretization,
and the eigenvalues of MK is illustrated in Figure 6.

For DE, we set 0 = -2.5 and & = 2.2 x 1076, For the Cauchy integral:

1
A—- _— |pz -1
e Py Ie (zI + A)'dz,
T
whereT is a contour enclosing the eigenvalue of A, we used the algorithm (denoted by Talbot) proposed in [5].
Talbot employs the midpoint rule on the Talbot contour

m(=G + [i6 cot(@8) + vif) : —% <6< -g ,

T'=

where m is the number of abscissas, and &, [, @, V is selected to minimize the error of the midpoint rule.
Although Talbot is not designed for non-Hermitian matrices, it is not entirely inapplicable to them. Because of
the optimality of the integral path of Talbot, its convergence is faster than that of DE, provided that the
eigenvalues do not cross the contour. Here, we intend to show an example illustrating the limitations of Talbot
and its performance compared to DE.
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Figure 7 illustrates the convergence histories of these algorithms for ¢ = 1. For d = 0.01, both DE and Talbot
give accurate results, and Talbot converges faster than DE. For d = 0.001, DE still gives accurate results while
Talbot does not converge. Hence, our algorithm can be a choice of quadrature-based algorithms for non-
Hermitian matrices having non-trivial eigenvalue distribution.

5 Conclusion

The DE formula was considered for the computation of e4. To utilize the DE formula, we analyzed the
truncation error and proposed algorithms. Numerical results showed the validity of the algorithm.

Future work includes improvement of the change of variable of the DE formula for e4 and comprehensive
performance evaluations of the proposed algorithms on parallel computers for practical problems.
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Appendix
A Derivation of the integral representation (1)

From [6, p. 758], it holds that

_ebl/Z _ 0 _ 1/2
e 1 _ Ism(e( w2y 1 (AD)
b u b-u

where b'/2 is the principal square root. Because (A1) is based on the Cauchy integral for (e“’bm - 1)/b, see the
proof of [6, Prop. 1], we have

0
B -1 = |

—00

3 —1\1/2
sm(GST u)'’4) B - ulyldu,

u

where all the eigenvalues of B'/? are in the open right half plane. By differentiating both sides twice with
respect to 0 and then substituting 6 = 1, we have

0 ©
e B = %‘[ sin((-u)Y2)(B - ul)du = % x sin(x)(x%I + B)dx, (A2)
—00 0

where u = -x%. We have (1) by substituting A = -B"? into (A2).

B Derivative of the change of variable

Let v(t) = -2t - a(l-e"% - B(e! =1). Then, the transformation (3) for the DE formula is x,(t) =
nit/h(1 - exp(v(t))) and its derivative is

m1-e'® + ty(t)ev®

h (@O -1y

X () =

Because exp(v(t)) - 1 ast — 0, we would use x3(0) = m/h(a + B + 2) and

T a*+2af +5a+ B>+ 36 +4
2ha’ +2af + 4a + B>+ 48 + 4~

Xy (0) =

When v(t) < log(1 - 1/4/2)(<0), the transformation (3) holds the inequality Xp(t) < 2m/h that is used in
Proposition 1. First, we note that v(t) monotonically decreases for t > 0 because v'(t) = -2 — ae™* - Bet < 0,
where a > 0 and B > 0. Therefore, for t > t,, where t,(>0) be such that v(ty) = log(1 - 1/4/2), it leads
1/(1 - e'®)? < 2. Finally, we have

Table A1: The value of ¢y, which is the solution of v(¢t) = log(l—llﬁ), for several h

h to

100 0.493
101 0.514
102 0.524

10-3 0.526
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h 1- O + tv/(t)e’®
—x;(t) = g
s (1 - ev®)

<201 - O + tv'(t)ev®) < 2,

Experimentally, the value t, will be about 0.5 as in Table Al, and the right truncation point ¢ = rh is larger than
3. Hence, the transformation (3) will satisfy the assumption of Proposition 1 in practical cases.
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