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Abstract: We consider two types of joins of graphs G; and G,, G; ¥ G, — the neighbors splitting join and
G1 V G, — the nonneighbors splitting join, and compute the adjacency characteristic polynomial, the Laplacian

characteristic polynomial, and the signless Laplacian characteristic polynomial of these joins. When G, and G,
are regular, we compute the adjacency spectrum, the Laplacian spectrum, the signless Laplacian spectrum of
G1 V Gy, and the normalized Laplacian spectrum of G; ¥ G, and G; vV G,. We use these results to construct

non_regular, nonisomorphic graphs that are cospectral with respect to the four matrices: adjacency, Laplacian,
signless Laplacian and normalized Laplacian.
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1 Introduction

Spectral graph theory is the study of graphs via the spectrum of matrices associated with them [3,6,8,22,27]. The
graphs in this article are undirected and simple. There are several matrices associated with a graph, four of
which are considered here: the adjacency matrix, the Laplacian matrix, the signless Laplacian matrix, and the
normalized Laplacian matrix.

Let G = (V(G), E(G)) be a graph with vertex set V(G) = {vy, vy, ...,vp} and edge set E(G).

Definition 1.1. The adjacency matrix of G, A(G), is defined as follows:

1, if v; and v; are adjacent;

A(G)); =
(A6 0, otherwise.

Let d; = dg(v;) be the degree of vertex v; in G, and let D(G) be the diagonal matrix with diagonal
entries dj, do, ..., d,.
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Definition 1.2. The Laplacian matrix, L(G), and the signless Laplacian matrix, Q(G), of G are defined as
L(G) = D(G) - A(G) and Q(G) = D(G) + A(G), respectively.

Definition 1.3. [6] The normalized Laplacian matrix, £(G), is defined to be £(G) = I, - D(G)‘%A(G)D(G)‘%
(with the convention that if the degree of vertex v; in G is 0, then (di)‘§ = 0). In other words,

1, ifi=j and d; # 0;
1
(LG =1~ 7> if i#j and v; is adjacent to v,
v dd;
0, otherwise.

Notation 1.4. For an n x n matrix M, we denote the characteristic polynomial det(xl, - M) of M by f;,(x),
where I, is the identity matrix of order n. In particular, for a graph G, fy)(x) is the X -characteristic

polynomial of G, for X € {A,L, Q, L}. The roots of the X-characteristic polynomial of G are the
X -eigenvalues of G and the collection of the X -eigenvalues, including multiplicities, is called the X-spectrum
of G.

Notation 1.5. The multiplicity of an eigenvalue A is denoted by a superscript above A.
Example 1.6. The A-spectrum of the complete graph K, is {n — 1, (-1)["*"1}.

Remark 1.7. If
A(G) 2 (622 2,(G),
1,(G) = (G)= <1, (G),
Vi(G) 2 vo(G)2 2w (G),
61(G) £ 6(G)=+-<6p(G)
are the eigenvalues of A(G), L(G), Q(G), and £L(G), respectively. Then, Y;-;A; = 0, U(G) = 0, v(G) 2 0, and
61(G) = 0, 6,(G) < 2 (equality iff G is bipartite).
Remark 1.8. If G is an r-regular graph, then i;(G) = r - A4,(G), vi(G) = r + A(G), and 6;(G) =1 - %A(G).

Definition 1.9. Two graphs G and H are X -cospectral if they have the same X -spectrum. If X-cospectral
graphs are not isomorphic, we say that they are XNICS.

Definition 1.10. Let S be a subset of {4, L, Q, £}. The graphs G and H are SNICS if they are XNICS for all X € S.

Definition 1.11. A graph G is determined by its X -spectrum if every graph H that is X -cospectral with G is
isomorphic to G.

A basic problem in spectral graph theory, [28, 29], is determining which graphs are determined by their
spectrum or finding nonisomorphic X-cospectral graphs.

Theorem 1.12. [28] If G is regular, then the following are equivalent;
* G is determined by its A-spectrum,
* G is determined by its L-spectrum,
* G is determined by its Q-spectrum,
* G is determined by its L-spectrum.

Thus, for regular graphs G and H, we say that G and H are cospectral if they are X-cospectral with respect
toany X € {A, L, Q, L}.
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Proposition 1.13. [28] Every regular graph with less than ten vertices is determined by its spectrum.

Example 1.14. Graphs in Figure 1 are regular and cospectral. They are nonisomorphic since in G, there is an
edge that lies in three triangles but there is no such edge in H.

(a) (b)

Figure 1: Two regular nonisomorphic cospectral graphs. (a) (G) and (b) (H).

In recent years, several researchers studied the spectral properties of graphs which are constructed by
graph operations. These operations include disjoint union, the Cartesian product, the Kronecker product, the
strong product, the lexicographic product, the rooted product, the corona, the edge corona, the neighborhood
corona, etc. We refer the reader to [1,2,8,9,12,13,16,21,23-26] and the references therein for more graph opera-
tions and the results on the spectra of these graphs.

Many operations are based on the join of graphs.

Definition 1.15. [14] The join of two graphs is their disjoint union together with all the edges that connect all
the vertices of the first graph with all the vertices of the second graph.

Recently, many researchers provided several variants of join operations of graphs and investigated their
spectral properties. Some examples are Cardoso [5], Indulal [17], Liu and Zhang [18], Varghese and Susha [30],
and Das and Panigrahi [11].

Butler [4] constructed nonregular bipartite graphs, which are cospectral with respect to both the adja-
cency and the normalized Laplacian matrices. He asked for examples of nonregular {4, L, £L}NICS graphs. A
slightly more general question is

Question 1.16. Construct nonregular {4, L, Q, L}NICS graphs.

Such examples can be constructed using special join operation defined by Lu et al. [19] and a variant of this
operation, suggested in this article.

Definition 1.17. [19] Let G; and G, be two vertex disjoint graphs with V(G;) = {w, u, ...,u,}. The splitting
V-vertex join of G; and G,, denoted by G; ¥ G, is obtained by adding new vertices uy, u,,..., u,; to G; vV G,
and connecting u; to u; if and only if (w;, u;) € E(G1).

We refer to the splitting V-vertex join as neighbors splitting (NS) join and define a new type of join,
nonneighbors splitting (NNS) join.

Definition 1.18. Let G; and G; be two vertex disjoint graphs with V(G1) = {u, W, ...,up}. The NNS join of G; and
G,, denoted by Gy V G, is obtained by adding new vertices uy, u,..., U, to G; V G, and connecting u; to u;

iff (u,-, uj) Z E(Gl).
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Example 1.19. Let G; and G be the path P, and the path P,, respectively. The graphs P, vV P, and P v P, are
given in Figure 2. )

(a) (b)

Figure 2: The graphs P, ¥ P, and P, v Py.(a) P, ¥ Py and (b) P, v p,.

The structure of the article is as follows; after preliminaries, we compute the adjacency characteristic
polynomial, the Laplacian characteristic polynomial, and the signless Laplacian characteristic polynomial of
G1V Gy and Gy ¥ Gy, and use the results to construct {4, L, Q}NICS graphs, and finally, under regularity

assumptions, we compute the A-spectrum, the L-spectrum, the Q-spectrum, and the £-spectrum of NS and
NNS joins and use the results to construct {4, L, Q, L}NICS graphs.

2 Preliminaries

Notation 2.1.
* 1, denotes n x 1 column whose all entries are 1,

* ]sxt = 15‘1{y ]3 =]SXS’
¢ Osx; denotes the zero matrix of order s x t,
* adj(A) denotes the adjugate of A.

+ G denotes the complement of graph G.
Definition 2.2. [7,20] The coronal I};(x) of an n x n matrix M is the sum of the entries of the inverse of the
characteristic matrix of M, i.e.,

Ty(x) = 12 (xL, - M)™,. 2.1

Lemma 2.3. [7,20] Let M be ann x n matrix with all row sums equal tor (e.g., the adjacency matrix of a r-regular
graph). Then,

n
Iy(x) = -7

Definition 2.4. Let M be a block matrix
(A B
u=[¢ 3)
such that its blocks A and D are square. If A is invertible, the Schur complement of A in M is
MJA =D - CA'B,

and if D is invertible, the Schur complement of D in M is

M/D =A - BDIC.
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Issai Schur proved the following lemma.

Lemma 2.5. [15] If D is invertible, then
detM = det(M/D)detD,

and if A is invertible, then

detM = det(M/A) detA.

Lemma 2.6. Let M be a block matrix

A B Jun
M = B C Onlxnz y
]n2><n1 0"2*"1 D

where A, B, and C are square matrices of order ny and D is a square matrix of order ny. Then, the Schur
complement of xI,, — D in the characteristic matrix of M is

Xl = A -Ip(x)f, -B
-B xI, - C|

Proof. The characteristic matrix of M is
xI, - A -B ~Jnyxn,

XIZH1+H2 -M= -B XIn1 -C Onlxnz
_]n2><n1 Onpxny XIn, =D

The Schur complement of (xI,, — D) is

xI,, — A -B I
yngen, = M)/(XIy, - D)= ]—[ e

Onlxnz

xI, ~A -B ] 1,15,

-B Xy, - C ((XInz - D)_l)[lnzlnlr 0n1><n1]

Onlx n

xIn, = A = Ip(X)J,,, -B

- -B Xl - C| =
Lemma 2.7. [8] If A is an n x n real matrix and a is an real number, then
det(A + af,) = det(A) + a1fadj(A)1,. 2.2)

3 The characteristic polynomials of the NNS and NS joins

Lu et al. [19] computed the adjacency, Laplacian, and signless Laplacian characteristic polynomials of G; ¥ G,
where G; and G; are regular.

Here, we compute the characteristic polynomials of G; vV G, and G; ¥ G5, where G; and G, are arbitrary
graphs. The proofs for the two joins (NS and NNS) are quite similar and use Lemma 2.5 (twice) and Lemmas 2.6
and 2.7. The results are used to construct nonregular {4, L, Q}NICS graphs.
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3.1 Adjacency characteristic polynomial

Theorem 3.1. Let G; be a graph on n; vertices for i = 1, 2. Then,

@ Fygnion() = Xy () det|xh, - AG) - %AZ@)][l - Lueo )T 1stcy@)

D) fae, v o) = X"y, (x) det

1
Xy, = AG) - ;AZ(Gl)][l - Lol dtioy @)

Proof. We prove (a). The proof of (b) is similar.
With a suitable ordering of the vertices of G, v G,, we obtain
AG1) AGY)  Jyn,
A(G, \=/ Gy) = A(él) Onlxnl 0n1><nz .
]nzxnl Onzxnl A(GZ)

Thus,
fA(leGZ)(X) = det(xhp,+n, — A(Gq \=/ G2))
XIn, = A(Gy) -A(Gy)
= det _A(El) XIH1 Onlxnz

_]nzxnl Onzxm | XInz - A(GZ)
= det(xXIp, = A(G2))det((Xhn,+n, = A(G1 V G2))/(xIn, = A(G2)))

_] nyxny

by the Lemma of Schur (Lemma 2.5).
By Lemma 2.6,

XInl - A(Gl) - FA(Gz)(X)]nlxnl _A(Gl)
_A(Gl) XIn1

(Xlanyin, = A(G1 V G2))/(Xln, = A(G2)) = [

Using again Lemma 2.5, we obtain

det((xIpy+n, = A(Gq v G2))/(XI, — A(Gy))) = det(xIp,)det

1.
XIn, = A(G1) = La6) (X pysn, ~ ;Az(Gl)]-

By Lemma 2.7, we obtain

det((Xhany+n, = A(G1 V G2))/(XIn, = A(G2)))

= an

1 . .
det(xly, — AG)) - 4(Gn) - Lyp(O1p,adj

= 4G - 4G

= x"udet

1 . 1.
xI, = A(Gy) - ;AZ(Gl)][l = Ly Oy (X, = A(Gy) - ;AZ(Gl))_llnl]

= x"det

1.
xIn, = A(Gy) - ;AZ(GO][l = LyeOI, A(Gl)+§A2(61)(X)]-

Thus,

1.
fA(Glycz)(X) = anfA(Gz)(X) det|xI,, — A(Gy) - ;AZ(GI)][l - FA(GZ)(X)FA(61)+}Az((?l)(x) . U

3.2 Laplacian characteristic polynomial

In this section, we derive the Laplacian characteristic polynomials of G; ¥ G, and G; vV G, when G;and G, are
arbitrary graphs.
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Theorem 3.2. Let G; be a graph on n; vertices for i = 1, 2. Then,

(@
Ji6v e, (0 = det((x = nly, = L(G2))det((x = ny + Dl + D(G1))
det((x - g = nz + DIy, - L(G1) + D(G1) - A(G)((x - my + DI, + D(G1)'A(G))
[1 = Tie)(X = MIL(6y)-D(G1)+AG(Ge-n+ D+ DG @)X ~ T~ Mz + D]
(b)

]’L(G1 VG det((x — m)I, — L(Gy))det(xI,, — D(G1))
det((x = nly, - L(Gy) = D(Gy) = A(Gy)(XI, — D(G1))"A(G1))

[1 = Tie)(X = M3 6,)+p(61)+AG 0 -DG Y AGHX ~ T2)]-

Proof. (a) With a suitable ordering of the vertices of G; V G,, we obtain

(ng + np = DI, + L(G1) - D(Gy) -A(Gy) ~Jnyxn,
L(Gy M Gy) = -A(Gy) (i = DI, - D(Gy) Oy
_]nzxm Onyxmy Mk, + L(G)

The Laplacian characteristic polynomial is
fL(Gl\_/Gz)(X) = det(xhpy+n, — L(Gy \=/ Gy))
= det((x — )k, = L(G)det((Xhany+n, = L(G1 V G2))/(X = M), = L(G2)))

by the Lemma of Schur (Lemma 2.5).
By Lemma 2.6,

(Klangen, = L(G1 V G2 )I((X — M), = L(G2))
(X = = ny + DIy, = L(G1) + D(G1) = I16)(X = M)y, A(Gy)
) A@G) (x = 1y + Dl + D(Gy)]
Using again Lemma 2.5, we obtain
det((xhznyn, = L(G1 V G)((X = )y, = L(G2))) = det((x = ny + DIy, + D(G1))det(B ~ 16X = Mu)yyxn, )
where
B=(x-n - ny+ Dhy, - L(Gy) + D(G1) = A(G1)(X = ny + DI, + D(G1))A(GY).
By Lemma 2.7, we obtain
det((hany+n, = L(G1 Vv G2))/((X = t)ly, = L(G2)))
= det((x - ny + Dy, + D(G1)(det(B) - Iy, (x - n)1yadj(B)1,,)
= det((x = ny + DI, + D(Gy))det(B)[1 — I gy(X — n)1;B1,]
= det((x - my + DI, + D(Gy))
det((x = ny = ny + DI, = L(G1) + D(Gy) = A(G)((X = ny + DIy, + D(G1))"A(G1))
[1 = Tip(X = M)IL(6))-D(Gr)+AG(-m+ Dy + DG aGHX — Tu = Mg + D).
Thus,
fievey®) = det((x = m)l, = L(G))det((x = ny + DIy, + D(G1))
det((x - my = ny + DI, = L(Gy) + D(Gy) = A(G)((x = ny + DI, + D(G1))A(Gy))

{1 = Iiey(X = M)I161)-D(G61)+AGH(x-ny+ DIy + DGy aGHX ~ T~ Mg + D).

The proof of (b) is similar. O
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3.3 Signless Laplacian characteristic polynomial

Theorem 3.3. Let G; be a graph on n; vertices for i = 1, 2. Then,

(@
FotGrvop 00 = det(Ox = )y, = Q(G2)det((x = 1y + Dy, + D(G1)
det((x — ny - ny + DIy, = Q(G1) + D(Gy) = A(G)((x — my + DI, + D(G1))'A(Gy))
[1 - Ipey(x - nl)FQ(Gl)—D(Gl)+A(51)((x—n1+1)In1+D(G1))'1A(§1)(X -m-ny+ 1))
(b)
Jo: v 6,) = det((x = n)ln, = Q(Gy))det(xIy, = D(G1))
det((x — n)hy, — Q(G1) = D(Gy) — A(G)(XLy, — D(G1))"A(G1))
[ = To@n (X = M)Io(6y)+b(G1)+AG 00 -DGoT aGH(X ~ T2)]-
Proof. The proof is similar to the proof of Theorem 3.2. O

Corollary 3.4. Let F and H be r-regular nonisomorphic cospectral graphs. Then, for every G,
(@ GYFandG ¥y H are {A, Q, L} NICS.
(b) GV FandG Vv H are{A, Q, L} NICS.

Proof.(a)G ¥ F and G ¥ H are nonisomorphic since F and H are nonisomorphic. By Theorems 3.1, 3.2, and 3.3,
fae v X = fae v OO fro v ) = fr6 v (), and fQ(G v p(X) = fQ(G v g(X) since the matrices A(F) and
A(H) have the same coronal (Lemma 2.3) and the same characteristic polynomial. This completes the proof
of (a).

The proof of (b) is similar. O

Corollary 3.5. Let F and H be r-regular nonisomorphic cospectral graphs. Then, for every G,
(@ FYGandH v G are {A, Q, L} NICS.
(b) Fv Gand HV G are{A, Q, L} NICS.

Proof. The proof is similar to the proof of Corollary 3.4. O
Remark 3.6. The following examples demonstrate the importance of the regularity of the graphs F and H.

Example 3.7. The graphs F and H in Figure 3 are nonregular and A-cospectral [10]. The joins K, ¥ F and K; ¥ H
in Figure 4 are not A-cospectral since the A-spectrum of K; ¥ F is {-2.2332, -2, -1.618, 0131, 0.577, 0.618, 4.6562}
and the A-spectrum of K; ¥ H is {-2.7039, —-1.618, —1.2467, 0[31, 0.2526, 0.618, 4.698}. The joins K; v Fand K, v H

in Figure 5 are not A-cospectral since the A-spectrum of K; v F is {(-2)[21, -1, 0[4], 0.4384, 4.5616} and the
A-spectrum of K, v H is{-2.6056, (-1)[,, 0151, 4.6056}. The joins F ¥ K, and H v K; in Figure 6 are not A-cospectral

since the A-spectrum of F v K, is {-3.2361, -2.5205, -1, —0.5812, 0%, 1.0895, 1.2361, 5.0122} and the A-spectrum of
H v K; is {-3.5337, -2.1915, -1, 061, 0.3034, 1.3403, 5.0815}, and the joins F v K, and H v K; in Figure 7 are not

A-cospectral since the A-spectrum of F V K; is {-3.1903, -2.4142, -1.2946, (-1)[%], 0.4046, 0.4142, 121, 1.8201, 5.2602}
and the A-spectrum of H V K; is {-4.1337, (-1)P%], 0, 0.8194, 1], 5.3143}.
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(a) (b)

Figure 3: Two nonregular A-cospectral graphs F and H. (a) F and (b) H.
o D, 2, ®
m O .\
® o /
o (
8]
o

) .>‘/‘

(a) (b)

Figure 4: Two non-A-cospectral graphs K; ¥ F and K, ¥ H. (a) K; ¥ F and (b) K; ¥ H.

@] o
(a) (b)

Figure 5: Two non-A-cospectral graphs K; V F and K; vV H. (@) K; V F and (b) K, v H.

-_ 9
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0/ \0 °

(a) (b)

Figure 6: Two non-A-cospectral graphs F v K; and H ¥ K;. (a) F ¥ K; and (b) H ¥ K;.
y. *
@ //\M

/X<

(a

Figure 7: Two non-A-cospectral graphs F vV K; and H V K;. (a) F V K; and (b) H V K;.

Remark 3.8. Numerical computations suggest that in the Corollaries 3.4 and 3.5, {4, Q, L} can be replaced
by {4, Q. L, L}.

Conjecture 3.9.
(@) Let Hy and H, be regular nonisomorphic cospectral graphs. Then, for every G, G ¥ H; and G ¥ H, are
{A, Q, L, LINICS and G v H, and G v H, are {A, Q, L, L}NICS.

(b) Let Gy and G, be regul(;r nonisomo}phic cospectral graphs. Then, for every H, Gy ¥ H, and G, ¥ H are
{A,Q,L, L} NICS and G, v H and G v H are {A, Q, L, L}NICS.

4 [-Spectra of NS joins

Let G; and H; be ri-regular graphs, i = 1, 2. Lu et al. showed that if G; and H; are cospectral and G, and H, are
cospectral and nonisomorphic, then G; ¥ G, and H; ¥ H; are {A, L, Q}NICS. In this section, we extend this
result by showing that G; ¥ G, and H; ¥ H; are {A, L, Q, L}NICS. To do it, we determine the spectrum of the
normalized Laplacian of the graph G; v G,.
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Theorem 4.1. Let G, be an ri-regular graph with n; vertices and G, be an r,-regular graph with n, vertices. Then,

the normalized Laplacian spectrum of G, ¥ G, consists of:
r2(8i(G2) - 1)
n+ry

(6:(G1) ~ (Y Orf + drny + 1)
2(2ry + ny)

(1= §(G)(Ir{ + dring — 1)

* 1 + 2(2ry + ny)

s the three roots of the equation

o1+ fori=23,..,ny;

¢ 1+

fori=2,3,..,n;

fori=2,3,..,n;

@nr, + 2rmy + ngry, + mng)x® — (3nr, + 510y + 20y + 3mny)x? + (3rny + nory + 2mng)x = 0.

Proof. Let uy, W, ..., up,be the vertices of Gy, uj, uy,..., u; be the vertices added by the splitting, and vy, vy,..., vy,
be the vertices of G;. Under this vertex partitioning, the adjacency matrix of G; ¥ G, is

2

A(Gl) A(Gl) ]nlxnz
A(Gy ¥ Gy) = |A(G1) Onixny Opyxn,
]nzxnl Onzxnl A(GZ)

The corresponding degrees matrix of G; ¥ G, is,

(2)’1 + nZ)Im Onlxnl Onlxnz
D(G1 ¥ Gp) =| Onxn Nl Onyxn,
Onyxny Opyxny, (12 + Ny,

By simple calculation, we obtain

_ AGY -A(Gy) ~Jryxny
"ot n, n@r+ g J@n+ )+ ny)
LG G| I 0
1< U2 r1(2r1 + nz) n nyxny
_]flzxfh A(Gz)
Onzxm ny -
V@ + )1 + ) n+n

We prove the theorem by constructing an orthogonal basis of eigenvectors of £(G; ¥ G3). Since G, is
r;-regular, the vector 1,, is an eigenvector of A(G,) that corresponds to 41(G,) = rz. Fori = 2, 3,..., ny,let Z; be an
eigenvector of A(G) that corresponds to A;(Gz). Then, 1,T,ZZi =0 and (01xp,, O1xny, ZI)T is an eigenvector of

. . (G

L(G; ¥ Gy) corresponding to the eigenvalue 1 - rz(Tf&

r(6i(G2) - 1)
n+ry

By Remark 1.8, 1 +
Fori = 2,..., ny, let X; be an eigenvector of A(G,) corresponding to the eigenvalue A;(G;). We now look for a

are eigenvalues of £(G; ¥ Gy) fori=2,..., n,.

T, .
nonzero real number a such that (XiT ax? 01xn,) is an eigenvector of £(G1 ¥ Gy).

X - A(Gy) X - A(Gpa x| |i- AG)  A(Gpa
L)X |= _ A(Gy) X+ aX = Gy ‘1 aX;
Onle Onle

then, a must be a root of the equation
_ MG MGoa MGy
n+ny  \Jn@n+ ny) a\/n(2r + ny)

4.1
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L2+ npa+ Jra - 2+ ny = 0.
Thus,

242 + ny =242+ ny
A= —0ra= —F———.
Jonr + 4n, + \/71 Jon + 4ny, - \/71

Substituting the values of a in the right side of equation (4.1), we obtain, by Remark 1.8, that

. (8i(Gy) = D(9r + 4nny + 17) 1+ (1 = 8(G)(9rf + 4rny - 1)

1
n+n 2(2r + ny)

are eigenvalues of £(G; ¥ Gy) fori =2,3,..., n;.

So far, we obtained ny - 1 + 2(ny — 1) = 2n; + ny — 3 eigenvalues of £(G; ¥ Gy). Their eigenvectors are
orthogonal to (17, O1xny, O1xn,)T, (O1xys 1s O1xn,)Ts ANA (g, Oty 17T

To find three additional eigenvalues, we look for eigenvectors of £(G; ¥ G,) of the form ¥ = (a1y, f15, y1;)T
for (a, B,y) # (0, 0, 0). Let x be an eigenvalue of £(G v G;) corresponding to the eigenvector Y. From LY = xY, we
obtain

n n ny

a- a - - =
2r + ny Jn@n + ny) 4 J@r+ )y + my) y
-n
—————a + B =Px
Vn@n + ny)
-m a4ty 14 = vx
(2r + n)(rz + ny) Y n+ an -

Thus,

n ria mny(r, + npa
a- a+ + = ax.
2+ ny nC2r+n)x-1) @+ n)m+ n)((x - D+ ny) + 1)

Note that a # 0, since ifa = 0, thena = f =y = 0, and also x # 1, since x = 1 implies that a = 0.
Dividing by a, we obtain the following cubic equation

@2y + 2nng + nory + nlf'lz)X3 - 3nr, + 5y + 2rny + 3n1n2)x2 + (Bnny + nory + 2nny)x = 0,

and this completes the proof. O
Now we can answer Question 1.16 by constructing pairs of nonregular {4, L, Q, L}NICS graphs.

Corollary 4.2. Let G; and H; be ri-regular graphs, i = 1, 2. If, Gy and H; are cospectral and G, and H, are cospectral
and nonisomorphic then Gy ¥ G, and H, ¥ H, are {A, L, Q, L} NICS.

Proof. G; ¥ G, and H; ¥ H, are nonisomorphic since G, and H, are nonisomorphic. By Theorem 4.1 and
Theorems 3.1-3.3 in [19], the graphs H; v H, are {A, L, Q, L}NICS. O

Example 4.3. Let G; = H; = C,, and if we choose G, = G and H, = H, where G and H are graphs in Figure 1, then
the graphs in Figure 8 are {4, L, Q, L}NICS.
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—/ " \"‘/
2 S

(2) (b)

Figure 8: Nonregular {A, L, Q, LINICS graphs. (a) C; ¥ G, and (b) C; v Hy.

5 Spectra of NNS joins

In this section, we compute the A-spectrum, L-spectrum, Q-spectrum, and £-spectrum of G1 V' G, where G and G, are regular.
We use it to answer Question 1.16 by constructing pairs of nonregular {4, L, Q, £} NICS graphs.

5.1 A-spectra of NNS join

The adjacency matrix of Gy v G, can be written in a block form

A(G) AG)  Jypn,
A(G1V Gy) = A(G1) Onpxny Oy |- o0
]nzxm Onyny - A(G2)

Theorem 5.1. Let G; be an ri-regular graph with ny vertices and G, be an ry-regular graph with n, vertices. Then,
the adjacency spectrum of G, V G consists of:

() A(Gy) for each j = 2,3,..., ny;
(ii) two roots of the equation
X2 = A(G))x = AHGY) + 24(G) + D = 0
foreachi=2,3,..,ng
(iii) the three roots of the equation

-+ +rn-Mm-n-1D2-mmx+nm-rn-1%=0

Proof. By Theorem 3.1, the adjacency characteristic polynomial of G, v G is

1.
s 00 = Xy GOt = AG) = G|t = Taos (00T e )

)
= x" [](x = 4(Gy))det
j=1

1.
Xy, = AG) - ;AZ(Gl)][l - Taep (00T 1)
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Since G, and G, are regular, we can use Lemma 2.3 to obtain

1- o n
Z 1
X=T x-rn-(m-rn-1)7>

ny 1 .
faGvey ) = XM [1(x = A(Go)det|xT,, - AGy) - ;AZ(Gl)
v j1

2 1 mn
= XM - A(Gy))det|xI,, - A(Gy) - =(J - I - AG 2]1— 1
X ]E|1(X i(Go))det|x. (G X(/ (G) YN %(nl - 1)2)]
= x™ |_2|(x — X{(Gy))det|xI,, - A(Gy) - %(/2 — 2 +1-2n] + 2A(Gy) + AZ(Gl))]
j=1
1- nny
=) -1 = (-1 - D?)

= x™ |_2|(x - 4(Gy))|det(B) - %(n1 -2- 2r1)1£1adj(B)1ml
j=1

1- nn,
X-mOx-r-(u-n-1)

where B = (x - %)I,,1 -1+ %)A(Gl) - %AZ(Gl).
Thus, based on Definition 2.2 and Lemma 2.3, we have

Fueivy 00 = 17 [0 = 4G - %] - [1 . %]Mcl) - %AE(Go]
- j=1 i=1

1 nny
1—_(711_2_27'1)111“ 2 142 (X)l_
[ X xIi ]+(1+X)A(Gl)+XA (G1) (X _ rz)(X _ rl _ %(nl — rl — 1)2)
= o= Gl - 2 - [+ 2o - 2nepfp - mm22n o
=x ‘_(x i( 2))‘_ X= . i(G1) Xi(l) 1 ;7
j=1 i=1 X 1 % X
nny
1- 1
x-n)x-n-(n-nr- 1)2)‘

51

[

i=1

1] [ 2

-Z-h1+Z

b% b%

x - n)x(x-nr) = (m -n -1 - mnx
X - -n)-m-nr-1%

= |_2|(X = 4i(G2))x™ Ai(Gy) - %AiZ(Gl)]
j=1

m(ny - 2 - 2n)
xXt-rx-rt-2rn-1

1_

= M- 4@ - 1- (x + DAED) - AXG)
j=2 i=2

(x = )(X(x = 1) = (m = 1 = D?) = mnyx
x - )X(x-nr) - (m-r -1 - mnx

(X(x - nr) - (m-n-1%

=TT 0= 4G - 1- (x + DA - AXG)
j=2 i=2

((x - R)X(x - 1) - (- 1= 1)?) - mnyx)

= [1x = 4G[]0 = A(G)X = AF(Gy) + 24:(Gy) + 1))

j=2 i=2

O3 - (r+mx2+mr - -n-1%-mnx + (i -n-1)9).0
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5.2 L-spectra of NNS join

The degrees of the vertices of G; v G; are as follows:
deve,(U) =m+mp =1, i=1..,m,
dGl\_,Gz(ui’) =nm-—n- 1, i= 1,.., ny,
dG1\_/Gz(vj) =n + n, j= 1)'--7 ny,

so the degrees matrix of G; V G, that corresponds to equation (5.1) is

(nl Ty - 1)In1 Oanl On1><n2
D(G1V Gy) = Onyxny (- - DI, o (5.2)
Onzxm Onzxnl (rZ + nl)Iflz

Theorem 5.2. Let G, be an ry-regular graph with n, vertices and G, be an r,-regular graph with n;, vertices. Then,
the Laplacian spectrum of G1 V G, consists of the following:

o g+ yj(Gz) for each j =2,3,...,ny;
* two roots of the equation

X2+ (2r = 20y = ny = (Gy) + 2)x + nf = 2rng - 2ng + g - iy — g + (G + 1+ 1 - w(Gy) = 0

foreachi=2,3,..,n;
* the three roots of the equation

X3+ (2r - 3ny - ng + 2)x2 + (mny - ngry — ny + 2nf - 2rny — 2n9)x = 0.

Proof. By substituting D(G;) = ril,, in Theorem 3.2, the Laplacian characteristic polynomial of Gy v G, is

fL(Glycz) (x) =det((x — nIn, — L(Gy))det(x - ny + 1 + 1)l

det|f(x -ny—-ny+n + 1)1,11 - L(Gy) -

———A(G
X-m+n+l ( 1)]

[1 —Iepy(X — Mot @)X — M —ng+1+1)

X-ng+1+ry
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Using Lemma 2.3, we obtain

Siervey (00 = det((X = m)ly, = L(G2))(x = ny + 11 + 1)

-det

X-m-ny+n+Dh, - L(Gy) - AZ(Cl)]

X-m+n+1

o
. 1 -

x=-n|x-m-mp+1+n-

(-1~ 17 ]

X-m+rn+1

n

= [10c = m = p(G)(x = my + 1 + 1y
j=1

(m-n-17°

X-m-n+l+n)-
( ) x-m+n+1

n

s

WGy - nr - 1)2]

X-m-nm+l1+n-u(G) -
‘ul( ) X-m+n+1

2

o

x-—n|x-—m-mp+1+n-

(m-ri- 17 ]

X-m+rn+1
n n

= [T = m = G103 + @ - 2m = np = w(Gy) + 2)x + nf - 2nmy
j=2 i=2
- 2m + mny - nng - np + (G + i+ 1 - 1(Gy)))

X3+ (2r - 3m - ng + 2)x2 + (mny - nory — ny + 2nf - 2rny - 2n))x].

This completes the proof. O

5.3 Q-spectra of NNS join

Theorem 5.3. Let G, be an ri-regular graph with ny vertices and G, be an ry-regular graph with n, vertices. Then,
the signless Laplacian spectrum of G; V G, consists of the following:

* my + Vi(Gy) for each j = 2,3,..., ny;
« two roots of the equation x*+ (2r - 2n; — ny — v(Gy) + 2)x + nf -2y = 2ng gy — nny — ng + 4 +
Vi(G)(ny + =3 -v(Gy) =0 for eachi =2,3,...,ny;
* the three roots of the equation
X3+ (2-3n; - ny - 2r)x2 + (mny — ngry — ny + 2nf + 2rny - 20y — 21 - 22 + Ay — 4ny + 25ny)X

+ 2mr? + 2rng - 2nnd - 2nmng + 2nnn, + 2nny + 4nrt + Anr, - 4rnng = 0

Proof. The proof is similar to the proof of Theorem 5.2. O

5.4 L-spectra of NNS join

Let G be an r;-regular graph on order n;. Let S be a subset of {2, 3, ...,n;} such that §;(G,) =1 + rll fori € S and

denote the cardinality of S by n(S). Let G, be an ry-regular graph on order n,. In the following theorem, we
determine the normalized Laplacian spectrum of G; V G, in terms of the normalized Laplacian eigenvalues of

G1 and G,. The proof is slightly more complicated than the proof of Theorem 4.1, and we consider three cases.
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Theorem 5.4.

(@) If S = @, then the normalized Laplacian spectrum of G V G, consists of the following:
. r2(6i(G2) -1
1+
(i) 1+ 21+~ 16i(Gy))
(L= 8(GD)(n - 1= D F \(ng - 11 = DI - 8(G1))2( - 11— 1) + 4L+ 11 = i8i(G)A( + ng — )]
(iii) the three roots of the equation

foreachi=2,3,..,ny

for eachi=2,3,..., ng;

(N + mny - ny + BNy + Ry - B)X3 = (3nk + 3mny — 3y — [y + 2N + 210y — 20 — 1E)XE

+(2n? + 2mny - 2ny - riny + BRY)X = 0.

(b) If S =1{2,3, ...,m}, then the normalized Laplacian spectrum of Gy v G consists of the following:

. r2(6i(G2) - 1) . .
@1+ T for eachi=2,3,..., ny;
i 1 - 2+ 2mny + ronp - n
=11 ln+1] n g + iy —
@@ 1+ n1+n2_1) 1= olutll and T oD
() IfS#dand S #{2,3, ...,ny}, then the normalized Laplacian spectrum of G; vV G consists of the following:
. r(8i(Gy) - 1) . _ .
@ 1+ T for eachi=2,3,..., ny;
- " 2
(i) 1+ 20+ 1 - 16(Gy) for each i € {2, 3, ... m}\S;

ni(1 = 8(G))(m ~ 1= D F /(g = 1y = DIF(L - §(G))*(u ~ 11— 1) + 4L+ 11 = i§(G))X(ru + 1z = D]
(i) 1" and (1 + ———)InS),

n+ny-1
(iv) the three roots of the equation

(nf + mny - ny + ng + nny - X3 - (3n? + 3mny - 30y — AN + 200y + 200y - 21, — 1R)X2

+(2n? + 2mny - 21y - rny + BRR)X = 0.

Proof. (a) If S = &, then §;(G,) # 1 + %for eachi=2,3,...,n,50 A4;(Gy) # -1 foreachi = 2, 3,..., n,. The normal-
ized Laplacian matrix of G; vV G; is:

_ A(Gy) —A(Gﬂ _]nlxnz
oyt -1 J+n-Dm-n-1 Jou+n-Drn+n)
-A(Gy)
= I O X

£ M G2) Joy+n-Dm-r-1) " e
_]nz><n1 A(Gy)
Onzxm Inz T L
Ju+np - D+ ny) B+

Since G, is n-regular, the vector 1,is an eigenvector of A(G,) that corresponds to A(Gj) = r.
For i=2,3,..,n; let Z; be an eigenvector of A(G,) that corresponds to A;(G;). Then, 1ZZZI~= 0 and

Ai(G2)
ra+mn

(01xny> O1xnp, ZT)T is an eigenvector of £(Gy v G,) corresponding to the eigenvalue 1 - . By Remark 1.8,

r3(8i(Gz) - 1)
n+ry

Fori = 2,..., ny, let X; be an eigenvector of A(G;) corresponding to the eigenvalue 4;(G;). We now look for a
nonzero real number a such that (X aX{ lenz)T is an eigenvector of £(G; v Gy). Note that a # 0, since if
a = 0, then 4;(Gy) = -1

1+ are an eigenvalues of L(G; V Gy) fori = 2,..., n.
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- AG) 1+ A(Gy) :
X; ! n+n-1 ! \/(n1+n2—1)(n1—r1—1) '
L] aX; | = 1+ A(Gy) X + aX;
Onyxt Jg+ g -Dm-n-1
0n1><1
__AGy 1+ A(Gy) a
n1+nz-1 \/(n1+n2—1)(n1—r1—1) Xi
= 1+ /11(61) aXi .
+1
aj(m+n -y -n-1) Onyx1
0n1><1
Thus,
MG, 1+ 4(Gy) . 1+ 4Gy +1 (5.3)
m+m-1 Jm+n-Dm-n-1)  afu+n-Dn-n-1)
__AG) 1+ A(Gy) 0= 1+ A(Gy)
m+n-1  Jy+n-Dm-n-1) aJ(n +np - Dy -1 - 1)
a’(1 + A(Gy)) - (1 + A(Gy)) (V)
afm+n-Dm-n-1) m+np-1
A+ 4G + np - 1a? - 4(G)ym -1 - 1a - 1+ A(G))yym + n; =1 = 0,
S0

SR N W \/ MG — 11 = 1)
20+ MG+ -1 A1+ A(G)A(y + ny - 1)
Substituting the values of a in the right side of equation (5.3), we obtain by Remark 1.8 that
2(1 + 11 — 16i(G1))*
n1 -G -n-1F \/ (m = 1 = DA = §(GYA(ny = 11 = 1) + 41 + 1y = n8(G))*(my + ny = 1)]

1+

are eigenvalues of £(G; v G,) foreachi=2,3,..., n.
So far, we have obtained n; — 1 + 2(ny — 1) = 2ny + ny — 3 eigenvalues of £(G, v G,). The corresponding

eigenvectors are orthogonal to (1, Otxny, O1xn)"s (O1xmys 1hs O1xn,)T aNA (O1xpy, Oty 17)T. To find three
additional eigenvalues, we look for eigenvectors of L(GiV Gz) of the form Y= (aly, Bly, y1y)"
for (a,pB,y) # (0,0,0). Let x be an eigenvalue of L(G V G3) cz)rresponding to the eigenvector Y. From
LY = xY, we obtain )

an A+n-n)p nyy

- + - = ax 5.4
n+n-1 \/n1+n2—1\/n1—r1—1 \/(n1+n2—1)(rz+n1) A

(1+n-nja
+ B =pBx 5.5
\/nl—rl—l\/n1+n2—1 ﬁ ﬁ 55)
-ma oy ny X 56
Jhtmyn+n -1 y r2+n1y .

Thus,
an a(m —-1-n a(mn
- 1 . (m VN (nny) - .

m+n-1 M+n-Dx-1) M+n-D0n+nuix-1)
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Note that a # 0, since if a = 0, thena = f =y = 0, and also x # 1, since x = 1 implies that a = 0.
Dividing by a, we obtain
n + n — 1- n + nmny _
m+mp-1 (Mm+n-Dx-1) (@+n-D0n+nx-1)

X.

Then,
(nf + mny = m)(x = 1) + (X + Bipx - nx + rn)(x = 12 + (rx - nf + ng + rng - in)(x - 1)
- rg(nl -1- rl)x =0,
then, by simple calculation, we see that x is a root of the cubic equation
(N + mny — ny + ng + nny - X3 - 3 + 3mny - 3ny - AN + 200y + 2n0y - 21, — 1)XE
+(2n? + 2mny - 21y - Ay + BR)X = 0,

and this completes the proof of (a).

(b) The proof of (i) is similar to the proof of (i) in (a). Now we prove (i). If S=1{2,3, ...,n;}, then
61(G) =1+ % for each i =2,3,...,ny, so A4(Gy) = -1 for eachi=2,3,...,m, ie, Gy=Kp, and n=n; - 1. So
the normalized Laplacian matrix of G, v G, is as follows:

_AGY 0 Iy,
"ot -1 e g+ ng = D)+ ny)
.[:(61 \_/ Gz) = Onlxnl Onlxnl Onlxnz
) _]nzxnl _ @

Ju+n-Dn+n) 0" "ontn

For i=2,..,n;, let X; be an eigenvector of A(G;) corresponding to the eigenvalue A;(Gy) = -1.

So (XiT O1xn, lenz)T is an eigenvector of L(G; V Gy) corresponding to the eigenvalue 1 + and

ni+ny—-1

(O1xn, xr lenz)T is an eigenvector of £L(Gy v G,) corresponding to the eigenvalue 0 because,

Ai(G)X;
Xio| | Xi- % 1 X; Oppxt| | Onpa
L|Onx1| = 1 =11+ ———||Onx1| and £| Xi |=0nxl.
0n1><1 n+n-1
On,x1 Oy Onyx1 Onyx1]  {Onypx1
ngx

1
Therefore, (1 + —

So far, we have obtained n; - 1 + 2(ny — 1) = 2ny + n, — 3 eigenvalues of L(G; v G,). Their eigenvectors

)1 and 0im-1 are eigenvalues of £(G1 V G»).

are orthogonal to (17, O1xp,, O1xn,)7s (O1xnys 1 O1xn,)T, @A (O1py, O1xny, 17,)7. To find three additional eigenva-
lues, we look for eigenvectors of £(G v G) of the formY = (a1y, B17,, y17, ) for (a, B, y) # (0,0, 0). Let x be an
eigenvalue of L(G v G») corresponding to the eigenvector Y. Then, from LY = x¥, we obtain

na yny

) n+n-1 ) \/(n1 +my - D+ ny) I 5.7
px =0 (5.8)

- r
= - 5.9

+
J + ng = D) + ny) v o+

If B # 0, then (0, B, 0) is a one of the solutions of the above three equations, so (01xp,, /31,{1, 01xp,)T is an
eigenvector corresponding to the eigenvalue 0. On the other hand, if f = 0, we obtain

n _ Y
m+n-1)  (n+n- D+ ny)

all - x - (5.10)
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n
n+tn

- any
J+n-Dn+n)

By solving the above two equations, we obtain the following equation:

(511

y[l—x—

(r + n)(ny + ny = Dx* + (g = nng - 2y = nx = 0,

2
2 -
whose roots are 0 and Z 22t

(rz+n)(ng +ny - 1)

This completes the proof of (b).
(c) The proofs of (i), (i), and (iv) are similar to the proofs of (i), (ii) and (iii) of (a), respectively. Now we
prove (iii), Let S # @ and S # {2, 3, ...,my}. Ifi € S, then1 +

if X; is an eigenvector corresponding to the eigenvalue &;(G;), then

- and 1 are eigenvalues of £(G v G,) because

Xi
Xi Xi + n+n - 1 1 Xl 0n1><1 0n1><1
L|Onx1| = ={1+ ———|Onx1| and £ X [=]| Xi
0n1><1 I’l1 + n2 - 1
0n;><1 OnZX1 0n2><1 Onle
0n;><1
So, 1) and (1 + nl+12_1)[”(5)] are eigenvalues of £(G V G,), and this completes the proof of (c). O

Now we can give another answer to Question 1.16 by constructing several pairs of nonregular
{A, L, Q, LINICS graphs.

Corollary 5.5. Let G; and H, be cospectral regular graphs and G, and H; be nonisomorphic, regular, and
cospectral graphs. Then, G, v G, and H; v H, are nonregular {A, L, Q, L}NICS.

Proof. G; vV G, and H; Vv H, are nonisomorphic since G, and H, are nonisomorphic. By Theorems 5.1-5.4, we
obtain that G, v G, and H; v H, are nonregular {A, L, Q, £} NICS. O

Example 5.6. Let G; = H; = C,, and if we choose G, = G and H, = H, where G and H are graphs in Figure 1, then
the graphs in Figure 9 are {4, L, Q, L}NICS.

A S

AR
BN

(a) (b)

Figure 9: Non regular {A, L, Q, L} NICS graphs. (a) C4 v G, and (b) Cy v H,.
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