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Abstract: Edges in the graph associated with a square matrix over a field may be classified as to how their
removal affects the multiplicity of an identified eigenvalue. There are five possibilities: +2 (2-Parter); +1
(Parter); no change (neutral); —1 (downer); and —2 (2-downer). Especially, it is known that 2-downer edges
for an eigenvalue comprise cycles in the graph. We investigate the effect for the statuses of other edges or
vertices by removing a 2-downer edge. Then, we investigate the change in the multiplicity of an eigenvalue
by removing a cut 2-downer edge triangle.
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1 Introduction

Throughout, G denotes a simple, undirected graph on n vertices, and we denote by S(G) the set of all n-by-n
real symmetric matrices, H(G) the set of all n-by-n Hermitian matrices, the graph whose off-diagonal
entries has an edge {i, j} iff a;ja; # O for A = [aj]; no restriction is placed on the diagonal entries, other
than that they be real. For a given matrix A, we denote the multiplicity of an eigenvalue A of A by ms(A).

When a graph G is a tree T, there are many papers relating the structure of T to the multiplicities of the
eigenvalues of the matrices in S(T).

In this article, we consider a general simple graph G. There are papers that relate the structure of G to
the multiplicities of the eigenvalues of the matrices in S(G), [1,2,4,6,8-12, etc.]. When a vertex v is removed
from G, the remaining graph is denoted by G(v), and we denote by A(v) the (n — 1)-by-(n — 1) principal
submatrix of A € S(G), resulting from deletion of the row and column corresponding to v. When an edge ¢;
is removed from G, we denote the remaining graph by G(e;); then A(e;) € S(G(e;)) denotes the matrix
obtained from A by changing the entries corresponding to e; to zero. Further, when a vertex v and an edge
e¢; are removed from G, we denote the remaining graph by G(v, e;) and the corresponding submatrix by
A(v, ;). For an identified A € S(G), we often speak interchangeably about the graph and the matrix, and
we identify vertices in a graph with indices of a matrix, for convenience.

From the interlacing inequalities for a symmetric matrix, the multiplicity of an eigenvalue may change
by at most 1, when a particular vertex is deleted. A vertex v of a graph G is called Parter (respectively neutral,
downer) in G for an eigenvalue A of A € S(G), if

Mya)(A) = ma(A) + 1(resp. ma(A), ma(A) — 1).

* Corresponding author: Kenji Toyonaga, Department of Computer Science and Engineering, Toyohashi University of
Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aich, 441-8580, Japan, e-mail: toyonaga@cs.tut.ac.jp

8 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/spma-2022-0186
mailto:toyonaga@cs.tut.ac.jp

2 —— Kenji Toyonaga DE GRUYTER

We call these the status (or classifications) of the vertex v for the eigenvalue A relative to A. We denote
Parter, neutral, and downer by P, N, and D, respectively.
The change in the multiplicity of an eigenvalue when an edge is removed was investigated in [3].

Lemma 1. 3] Let G be a graph, and A € H(G). For an edge e; in G, and A € o(4),

my(d) -2 < Ma(en) < mu(A) + 2.

We can define the status of an edge. An edge ¢; is called 2-Parter (resp. Parter, neutral, downer, 2-
downer) for A relative to A, if for A € H(G) and A(e;) € H(G(ey)),

Mace;)(A) — ma(A) = 2(resp. 1, 0, -1, -2).

If the status of a vertex or an edge is neutral, Parter, or 2-Parter, then the status of it is called at least
neutral.

The classification number of a vertex or an edge is described in [6]. Given A € S(G), and A € o(A), the
classification number of a vertex is defined in a natural numerical way, Parter is 1, neutral 0, and downer —1.
In particular, we may numerically classify a vertex i in A relative to the identified eigenvalue A, S;(i), as
follows:

Sa(®) = ma(A) — ma(d).

An edge’s classification number is defined as 2, 1, 0, —1, and -2, depending on whether the edge is 2-Parter,
Parter, neutral, downer, or 2-downer, respectively. We may numerically classify an edge e;, Sa(ey), as
follows:

Sa(€;) = Mage;)(A) — ma(A).

There is a relationship between the classification number of an edge and the classification number of the
incident vertices,

Sa(e) = Sa(@) = Saep(@ = Sa(j) = Saep(h)- 1

If vertex j is a neighbor of vertex i in G and j is a downer vertex for A in A(i), then we call j a downer
neighbor of i for A € S(G) and A [5].

Definition 2. Let G be a graph, A € S(G), and A € g(A) with my(A) > 2. If there is a cycle T in G whose edges
on I are all 2-downer edges for A relative to A, then we call I' a 2-downer edge cycle for A relative to A.

As a simple example of a 2-downer edge cycle, there is a cycle C,, with n vertices whose eigenvalues are
2cos 27"j (j =1, ...,n), and every edge of C, can be a 2-downer edge of a certain double eigenvalue.

Definition 3. Let G be a graph, A € S(G), and A € 0(A) with my(A) > 2. If T is a 2-downer edge cycle for A
relative to A and it is not connected to other 2-downer edge cycles with 2-downer edges for A, then we call T
a primitive 2-downer edge cycle for A relative to A.

As an example of a primitive 2-downer edge cycle, we refer to Example 1 in Section 4, in which the
triangle 1, 2, 3, and the triangle 8, 9, 10 are primitive 2-downer edge cycles for the eigenvalue 1.

We note that if T is a primitive 2-downer edge cycle for A, it is separated from other 2-downer edge
cycles, then edges incident to vertices on I' that are not on I' are edges other than 2-downer edges.

We are interested in a 2-downer edge cycle in this article, and in Section 2, we investigate the effect of
removing a 2-downer edge from the cycle, the change of the statuses of other edges or vertices. Then we
investigate the change in the multiplicity of an eigenvalue by removing a cut 2-downer edge triangle in
Section 3.
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2 Removing a 2-downer edge from a cycle

In this article, we are particular about in a 2-downer edge cycle and focus on the effect of removing a 2-
downer edge in a cycle or a 2-downer edge triangle. In [11], the possible classification for an edge e; for A
relative to A € H(G) is given as in Table 1, when the classifications of adjacent vertices i and j are known.
Here, we refer to the two theorems we require later.

Theorem 4. [11, Theorem 6] Let G be a connected graph, A € H(G), and A € o(A) withmy(A) = 2. An edge g;
is 2-downer for A in G if and only if the status of i is downer for A in G, and j is a downer neighbor of i in G. Here,
i and j are interchangeable.

Theorem 5. [11, Theorem 7] Let G be a graph, A € H(G), and A € o(A). If an edge e;; is 2-Parter for A in G, then
each of i and j are Parter for A in G, and each is a downer neighbor for the other in G.

We need a necessary and sufficient condition for a Parter vertex.

If a graph is a tree T, a Parter vertex v for A relative to A € S(T) is characterized by the existence of a
downer branch at v [5]. However, when G is a general graph, a necessary and sufficient condition for a
vertex to be a Parter vertex is given in [12]. We give the proof of it to be self-contained here.

Theorem 6. [12, Theorem 3] A vertex i is Parter for A in G relative to A € S(G) if and only if there is a downer
neighbor j ati and the edge e; is at least neutral for A in A (i.e., Mae;)(A) = ma(A)).

Proof. Wlog, we may assume that the index of i is 1, A = 0 and that A has the following form:

_la X
A-[X B], @

in which the x is a nonzero column vector, a is a scalar, and the B is a square matrix.

If the index 1 is Parter for A in A, there has to be at least one downer neighbor j adjacent to 1 in B.
Because if there is no downer neighbor adjacent to 1 in B, then all adjacent vertices to 1 are neutral or Parter
for A in B. Then, every column (resp. row) relative to the adjacent vertex in B is not a linear combination of
the remaining columns (resp. rows). Let RS(B) (resp. CS(B)) denote the row space (resp. column space)of B.
Then, ef € RS(B), (resp. e; € CS(B)), in which e, is a normal unit vector and k corresponds to some indices
to which index 1 is adjacent in B. Since x’ is a linear combination of some els (k > 1), x € RS(B), a
contradiction because the index 1 is Parter in A. Furthermore, e;; cannot be a downer or a 2-downer
edge in A, since 1 is Parter. Therefore, e;; is at least neutral for A in A.

Next, we give a proof for sufficiency. Suppose that there is a downer neighbor j of 1in B and ey; is at least
neutral.

To reach a contradiction, suppose that the index 1 is not Parter for A in A satisfying the aforementioned
conditions. If the index 1 is neutral for A in A, then x’ € RS(B). When e;; is removed from G,

Table 1: Possible classification for edges in H(G)

Possible classifications for edge e;

-
~.

2-Parter or neutral

Parter or neutral

Neutral

Parter or neutral

Downer

2-downer, downer, or neutral

O == U U
OO =0 ="

P: Parter vertex, N: neutral vertex, D: downer vertex.
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X - ajie] ¢ RS(B), sincee] ¢ RS(B), because j is a downer neighbor of 1in B. Then index 1 becomes Parter
in A(eyj) and Sy(ey;) = Sa(1) — Sace,p(1) = —1. This means the edge ey; is a downer edge in A, a contradiction to
the assumption.

Next, if index 1is downer for A in A satisfying the aforementioned conditions, then x’ € RS(B). When ey
is removed from G, xT — alje]«T ¢ RS(B), since e]-T ¢ RS(B) because j is a downer neighbor at 1in B. Then index
1 becomes Parter in A(ey;). Therefore, Sy(ey;) = Su(1) - SA(elj)(l) = -2, which means the edge e;; is a 2-downer
edge in A, a contradiction to the assumption.

Thus, when the conditions are satisfied, index 1 must be Parter in A. |

In [12], it was observed that if there is a 2-downer edge in a graph G for A relative to A € S(G), then there
is a 2-downer edge cycle for A in the graph. To be self-contained in this article, we give the proof here.

Theorem 7. [12] Suppose G is a graph, A € H(G) and A € a(A) withmy(A) > 2. Then each 2-downer edge for A
is contained in a 2-downer edge cycle of G or it is on a path connecting 2-downer edge cycles.

Proof. Let e; be a 2-downer edge for A in A € H(G). Then, i and j are downer for A in A and downer
neighbors for each other. When the edge ¢;; is removed from G, the status of i changes to Parter . Then, there
has to be a downer neighbor k distinct from j in A(e;) by Theorem 6. Then, we note that k is also a downer
neighbor of i in A, and i is originally downer in A. Thus, ey is a 2-downer edge in A by Theorem 4.

From a similar argument, there must be another 2-downer edge incident to e; at j. Thus, 2-downer edges
are connected sequentially and compose a cycle in G in the end. O

2.1 Change in status by removing a 2-downer edge

First, we see that when a vertex on a 2-downer edge cycle I is removed, other 2-downer edges on T in G are
not 2-downer in the remaining graph G(v).

Lemma 8. Let G be a graph, A € S(G), and A € a(A) with my(A) > 2. Let T be a primitive 2-downer edge cycle
in G for A relative to A. If a vertex v on T is removed from G, then the rest of the edges onT in G(v) are not 2-
downer for A relative to A(v).

Proof. If there is a 2-downer edge on I'(v) in G(v), then there must be a 2-downer cycle in G(v). Then there is
a 2-downer edge e; in which i is on I'(v) and k is outside I'(v).
Since ey, is 2-downer in G(v), i is downer in G(v) and k is downer in G(v, i) by Theorem 4. Then,

Ma@,ilod) = mu(A) - 3. 3)

However, k is not downer in G(i) from the assumption that I is a primitive 2-downer edge cycle in G and k is
not onT'. Then k is neutral or Parter in G(i). Thus, my k(A1) > ma(A) — 3 has to hold. That is a contradiction
to (3). Therefore, the rest of the edges on I' in G(v) are not 2-downer edges in G(v). O

Let I be a primitive 2-downer edge cycle for A in a general simple graph G, and I’ be a subgraph of T
obtained by removing an edge e; on I'. Then let G’ = G(ey).

Lemma 9. Let G be a graph, A € S(G), and A € 0(A) withmy(A) = 2. Let T be a primitive 2-downer edge cycle
inG for A relative to A. If a 2-downer edge e;; onT is removed from G, then the statuses of vertices and edges on

I are at least neutral in G' for A relative to A(ey).
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Proof. Let v be a vertex on T, then v is downer for A. If v is removed from G, all the edges on I are not 2-
downer for A by Lemma 8. Then

Mv,ep)A) # ma(d) - 3.

Since mA(e,-,—)(/l) = mu(A) — 2, v cannot be downer in A(e;). Then the status of vertices on I is at least neutral
inG.

If an edge on I is downer or 2-downer for A, the status of incident vertices has to be (N, D) or (D, D) (cf.
Table 1). From the preceding argument, the statuses of vertices on I are not downer. Therefore, the edges
onI” are at least neutral for A in G'. O

It is known that when a neutral vertex is removed from G, a downer vertex in G stays in the remaining
graph, and vice versa [4].

Lemma 10. [4] Let A be an n-by-n Hermitian matrix. If i is neutral, then j + i is downer for A if and only if j is
downer for A(i).

Theorem 11. Let G be a graph, A € S(G), and A € a(A) with my(A) > 2. Let T’ be a primitive 2-downer edge
cycle in G for A relative to A, and I be a subgraph of T obtained by removing an edge e; onI. The statuses of
all edges in G' incident to the vertices onT" are at least neutral for A relative to A(e;).

Proof. From Lemma 9, the edges onI” are at least neutral for A. We examine the status of an edge outside I
that is incident to a vertex on I".

We know that the statuses of vertices on I are Parter or neutral from Lemma 9. If a vertex on I" is Parter,
it is obvious that edges incident to it are at least neutral from Table 1. Therefore, we suppose that there is a
neutral vertex k on I’ that is not i or j because i and j are Parter in G(e;) by (1).

To attain a contradiction, we suppose that there is a downer edge incident to k in G(e;). Let the edge be
ew. Then the status of [ has to be downer in G(e;;) (cf. Table 1). Then

My(e;,k,nA) = Mu(A) = 3, (4)

because a downer vertex is still downer after removing a neutral vertex by Lemma 10.

On the other hand, k is downer in G since k is on I', and the status of [ is not downer in G(k) since T is
primitive. So [ is Parter or neutral for A in G(k). If I is Parter in G(k), Ma.1,e;)(A) > ma(A) - 3, then (4) does
not hold. Thus, in the case for (4) to hold, I must be neutral in G(k) and e; has to be 2-downer in G(k, I), then
we note that

Mag,1,i,5)A) = mu(A) - 3 5)

holds by Theorem 4.
Next, we focus on the status of the vertex i in G(k).



6 —— Kenji Toyonaga DE GRUYTER

If i is Parter in G(k), ma,i(A) = ma(A), then myq ;j,1(A) > ma(A) — 3, soi has to be neutral or downer in
G(k) for (5) to hold. We note that [ is neutral in G(k) from the prior argument. If i is neutral in G(k), then in
G(k, 1), 1 is neutral or Parter, because ! cannot be downer in G(k,i) from Lemma 10. Then we have
Mak,i,1,j(A) > ma(A) — 3. So (5) does not hold. Therefore, for (5) to hold, i has to be downer in G(k). By
Lemma 8, g; is not a 2-downer edge in G(k), so j is not downer in G(k, i), then j is neutral or Parter in G(k, i).

If j is neutral in G(k, i), then [ can be Parter or neutral in G(k, i, j), because I cannot be downer from
Lemma 10. Then my,;j,n(A) # ma(A) — 3.

If j is Parter in G(k, i), then my,;;(A) = ma(Ad) — 1, so my,i,j,n(A) # ma(A) — 3. Therefore, (5) cannot
hold. It is a contradiction.

So, we have a conclusion that ey cannot be a downer edge in G(e;). (|

If edges in G’ are incident to the removed 2-downer edge in G, we can see their statuses more accurately.

Corollary 12. Let G be a graph, A € S(G), and A € a(A) with my(A) > 2. Let T be a primitive 2-downer edge
cycle in G for A relative to A andT" be a subgraph of T obtained by removing an edge e;; onT. The edge incident
toi or j onT' is Parter or 2-Parter, and other edges incident to i or j are neutral in G' for A relative to A(ey).

Proof. The status of i and j is Parter in G(e;) by (1). Let k and m be vertices on I adjacent to i and j,
respectively. We refer to the following figure.

If e is neutral in G(e;), then i is Parter in G(ej;, ex) by (1). However, since I is primitive, there is no
downer neighbor ati in G(ey;, e;). Soi cannot be Parter in G(ej;, ex) by Theorem 6. It is a contradiction. So, ey
is Parter or 2-Parter for A in G(e;). By a similar argument, e;, is Parter or 2-Parter for A in G(ey).

Let e; be an edge incident to i that is not on I"'. Then [ is not downer neighbor at i in G(ey), since T is
primitive. So e; cannot be a 2-Parter edge from Theorem 5. Next, we show that e; cannot be a Parter edge for
Ain G(ey). If e is a Parter edge with (P, N) in G(ej), i is neutral and [ is downer in G(e;;, ey). Further, wheni is
removed from G(e;;, ey), | is downer in G(e;, ey, i) by Lemma 10. It means that [ is a downer neighbor at i in
G(ey), a contradiction. So, e; cannot be a Parter edge in G(e;). Then e; is neutral by Theorem 11. O

Next, we investigate the status of vertices adjacent to I'".

Theorem 13. Let G be a graph, A € S(G), and A € 0(A) with my(A) > 2. Let T be a primitive 2-downer edge
cycle for A relative to A, and T' be a graph obtained by removing an edge e; onT. The statuses of all vertices
adjacent to T" in G' are at least neutral for A relative to A(ey). Furthermore, the edges between the vertices
adjacent to T' are also at least neutral for A relative to A(e;).

Proof. From Lemma 9, vertices on I” are at least neutral in G'. Let k be a vertex on I" and I be a vertex that is
not on I and adjacent to k.
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To reach a contradiction, if we suppose that [ is downer in G’ for A, then MyGe;n(A) = ma(A) - 3. Then,
Ma(,e;)(A) = ma(A) - 3, so | has to be downer for A in G and e; be 2-downer in G(I).

We note that k is not downer in G(I), because I is not downer in G(k). Since k is not downer in G(I), T is
not a 2-downer edge cycle in G(1).

If e; is a 2-downer edge for A in G(I), then there is a 2-downer edge ey, in which the vertex m (possibly i
or j)is onT and the vertex r is adjacent to m that is not onI'. Then we have my,m /(1) = ma(A) — 3 sincel is
downer in G and ey, is 2-downer in G(I) from the assumption. Then myn, r)(A) = ma(A) — 2 must hold to be
My, m,r)(A) = ma(A) — 3, thenr is a downer neighbor at m in G. But r cannot be a downer neighbor atm in G,
since I' is primitive. It is a contradiction, so e; is not a 2-downer edge in G(I). Therefore, I is not downer in
G(e;), then [ is at least neutral in G(ey).

When the vertices adjacent to I are at least neutral in G', the edges between them are at least neutral
from Table 1. So, the edge e; in the figure is also at least neutral in G'. O

2.2 The same status by removing an edge

Next, we observed that when an edge of a certain status for A relative to A is removed from G, there are
edges or vertices whose statuses stay same in the resulting graph.

Theorem 14. Let G be a graph, A € S(G), and A € 0(A) with my(A) > 2. Let e; be a 2-downer edge for A
relative to A. Let G be a graph obtained by removing the edge e from G. The statuses of neutral or Parter
vertices in G for A relative to A stay in G for A relative to A(ey).

Proof. Since e; is a 2-downer edge in G, i and j are downer for A in G, and my j(A) = ma(A) — 2. Let k be a
Parter (resp. neutral) vertex in G. We note that k is Parter (resp. neutral) in A(i, j), because Parter (resp.
neutral) vertices stay after removing a downer vertex. Then,

My ji0A) = ma(A) - 1, (resp. my(A) - 2). (6)

On the other hand, i is downer for A in A(k), because downer vertices stay after removing a Parter (resp.
neutral) vertex (cf. Table 1 [8]). Then j has to be downer in A(k, i) for (6) to hold. Thus, j is a downer
neighbor at i in A(k). Then e; is a 2-downer edge in A(k). Therefore, 2-downer edges stay after removing a
Parter (resp. neutral) vertex from G.

Through converse consideration, a Parter (resp. neutral) vertex stays after removing a 2-downer edge
from G, because the change in multiplicity is consistent after removing a 2-downer edge first and a Parter
(resp. neutral) vertex. O
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In Theorem 14, it was observed that the status of a Parter (resp. neutral) vertex does not change after
removing a 2-downer edge for A from G.

Furthermore, we noticed that there is another case in which the status of the vertex does not change
after removing an identified status of edge.

Theorem 15. Let G be a graph, A € S(G), and A € o(A). If a 2-Parter edge or a Parter edge for A relative to A is
removed from G, then the statuses of downer vertices for A in G stay in the resulting graph for A relative to the
corresponding matrix.

Proof. Let e; be a 2-Parter edge in G. Let k be a downer vertex in G. If we assume that the status of k changes
to neutral or Parter after removing e; from G, then

MGe;0A) = mu(A) + 2. @)

However, since k is downer for A in G, myy(A) = ma(A) — 1. Then, mA(k,eij)(A) < my(A) + 1. That is a contra-
diction to (7). Therefore, k stays downer in G(ey).
Next, let e;; be a Parter edge in G and k be a downer vertex in G. A pair of statuses of i and j can be (P, N)

or (N, N) from Table 1.
If we suppose the status of k changes to Parter in G(e;;), then

My(e;,l0(A) = mu(A) + 2. (8)

However, since k is downer for A in G, my) (1) = ma(A) — 1. Then, mye;(A) < ma(A) + 1. That is a contra-
diction to (8). So, k cannot be Parter for A in G(e;).
Next, we suppose that k changes to neutral in G(e;). Wlog, let j be neutral for A in G sincei or j is neutral

when ¢; is a Parter edge. In G(ey), j is downer by (1), then
Ma(e;jl0(A) = ma(A), 9)
because the status of k stays neutral in G(ey, j), it can be said by using Lemma 10. However, we note that
Ma(e;j. o) = MagjnA) = ma(A) - 1, (10)

because k is downer and j is neutral in G, and k stays downer in G(j). This is a contradiction to (9). So, k
cannot become neutral in G(e;). Therefore, k stays downer in G(e;). (|

If we conversely see Theorem 15, then we have the next result. The change in the multiplicity of an
eigenvalue is independent of the order of removing a vertex and an edge.

Corollary 16. Let G be a graph, A € S(G), and A € a(A). If a downer vertex for A relative to A is removed from
G, then 2-Parter edges or Parter edges for A in G stay in the resulting graph for A relative to the corresponding
matrix.

Next, we observe that when a 2-downer edge is removed from G, some edges do not change in their
statuses.

Theorem 17. Let G be a graph, A € S(G), and A € 0(A) with mu(A) > 2. Let e; be a 2-downer edge in G for A
relative to A. Let G be a graph obtained by removing the edge e; from G. The statuses of 2-Parter edges or
Parter edges in G for A relative to A stay in G for A relative to A(ey).

Proof. Let ey be a 2-Parter edge in G. Then the statuses of k and [ are Parter. When a 2-downer edge e; is
removed from G, the status of a Parter vertex stays in G by Theorem 14. So, ey, is 2-Parter or neutral in G(e;;) from
Table 1. However, we show that ej; cannot be neutral in G(e;). If we suppose that ey is neutral in G(e;), then
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mA(ei,-,ekl)(/\) = mA(/\) - 2‘ (11)
However, since ey, is 2-Parter for A,
mA(e;d,ei,-)(A) 2 mA(A)' (12)

considering Lemma 1. So, (11) is contradictory to (12). Therefore, ey is a 2-Parter edge for A in G(ey).
Next, we consider Parter edges in G. Let ey be a Parter edge for A in G. There are two types of Parter
edges with (P, N) and (N, N) as a pair of the statuses of the adjacent vertices from Table 1. When the 2-
downer edge ¢; is removed from G, Parter vertices and neutral vertices in G stay in G(e;) by Theorem 14. So
the status of e; is a Parter edge or a neutral edge in G(e;) with (P, N) or (N, N) by Table 1. However, we show
that it cannot be a neutral edge in G(ey).
If we suppose that ey is neutral in G(e;), then

Myeye)(A) = Ma(A) = 2. 13)
But, since ey, is a Parter edge in G,

M(e,en(d) = ma(A) - 1, (14)
then (13) is contradictory to (14). Therefore, ey is a Parter edge in G(ey). O

Considering Theorem 17 conversely, when a 2-Parter edge or a Parter edge is removed from G, 2-downer
edges stay in the resulting graph. Thus, we have the next result.

Corollary 18. Let G be a graph, A € S(G), and A € a(A) with my(A) > 2. If a 2-Parter edge or a Parter edge for
A relative to A is removed from G, original 2-downer edge cycles for A in G stay in the resulting graph for A
relative to the corresponding matrix.

3 Removing a cut 2-downer edge triangle

Next, we focus on a 2-downer edge cycle with three vertices, called a 2-downer edge triangle here. When
three edges on a triangle are removed from G, if the number of components of G increases, then we call it a
cut triangle in G. Now, we give a simple observation for a cut triangle that is used later.

Lemma 19. Let T be a cut triangle in G, then there is an edge onT', which is a cut edge after removing the rest of
the edges on T from G.

Proof. Let the vertices of T bei, j, and k. Wlog, we suppose G is a connected graph. Let G’ = G(ey), then G is
connected. We refer to the following figure as a part of G that includesT'. If ey is not a cut edge in G', then ey
is a cut edge in G(ey;, ey) since I' is a cut triangle.

If ey is a cut edge in G/, then ey is an edge that is included in one component of G(ej;, ;). Then we note
that ey is also a cut edge in G(ej, ejr). O

When a cut edge in G is removed, the change in multiplicity of an identified eigenvalue is observed in
[7, Lemma 19].
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Lemma 20. (7, Lemma 19] Let G be a graph and A € H(G). If e; is a cut-edge in G and A € o(A), then
mA(/l) -1< mA(ei}.)(/l) < mA(A) + 2.

This lemma indicates that if there is a cut edge in G, it cannot be a 2-downer edge for an eigenvalue
of A € H(G).
The condition for a cut edge to be a downer edge is shown in [7, Theorem 20].

Lemma 21. [7, Theorem 20] Let G be a graph, A € H(G), and A € o(A). A cut-edge e; in G is downer for A
relative to A if and only if the statuses of i and j in G are (D, D) for A relative to A.

Lemma 22. Let G be a graph, A € S(G), and A € a(A) withmy(A) > 2. Let T be a cut primitive 2-downer edge
triangle in G for A relative to A. If one edge onT is removed from G, then the rest of the edges onT' are Parter
edges in the remaining graph for A relative to the corresponding matrix.

Proof. Let the vertices of I' be i, j, and k. From Corollary 12, if an edge e;; is removed, the rest of the edges e
and ey are Parter or 2-Parter.

We note thati and j are Parter vertices in G(e;). If ey is a Parter edge, then k has to be neutral for A, and
if ey is 2-Parter, then k has to be Parter for A (cf. Table 1). Thus, the statuses of two edges e and ej, have to
be the same when ¢; is removed. We note that if e; and ej are Parter in G(e;), then e; and ej are Parter
in G(ey).

We can observe that if one edge on T is removed, the other two edges on I' cannot be 2-Parter edges
in G(ey).

Wilog, we suppose that ej is a cut edge in G(e;;, ex) by Lemma 19. To reach a contradiction, we suppose
that e; and ey, are 2-Parter for A in G(e;). Then j is a downer neighbor at k in G(e;) by Theorem 5 since ey is 2-
Parter in G(e;). Then, k is downer for A in G(ej, ex). We note that j is a downer neighbor at k also in
G(eyj, ex). Then ey has to be a 2-downer edge by Theorem 4, and it is a cut edge in G(ey, ex). So it is a
contradiction to Lemma 20, because a cut edge cannot be a 2-downer edge. Therefore, e; and ej cannot be
2-Parter in G(e;), then they are Parter edges for A in G(ey). O

We investigate the change in multiplicity of an identified eigenvalue A, when all edges on a cut
primitive 2-downer edge triangle are removed.

Theorem 23. Let G be a graph, A € S(G), and A € o(A) withmy(A) > 2. LetT be a cut primitive 2-downer edge
triangle in G for A relative to A. Let G be a subgraph of G obtained by removing all edges onT from G and A a
corresponding matrix. Then

miA) = my(A) - 2,

and the statuses of three vertices on T are neutral in G for A relative to A.

Proof. Let the vertices of I be i, j, and k. SinceT is a cut 2-downer edge triangle, we may suppose that wlog
ej is a cut edge after removing e; and ey by Lemma 19.
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From Lemma 22, when the edge e; is removed from G, e and ey, are Parter edges for A, theni and j are
Parter by (1) and k is neutral in G(e;) since ey is a Parter edge with vertices (P, N) in G(ey). Then if e is
removed from G(ej), k is downer by (1), then we next show that j becomes downer in G(ej;, ej). When ey, is
removed from G, ¢; and ey, are Parter by Lemma 22, and j is neutral because when an edge is a Parter edge, if
one vertex is Parter, then the other vertex has to be neutral. So, my(,,j(A) = ma(A) - 2. On the other hand,
MaGes.)A) = Macey,e5,j)(A) = Ma(A) = 2. Since My(e;,e)(A) = ma(A) - 1, j has to be downer in G(e, ).

Since the statuses of j and k are downer for A in G(ej, ei), and ey is a cut edge in G(ey, ej), then e has
to be a downer edge by Lemma 21. We conclude

mA(A) = mA(ei,-,eik,ejk)(A) = mA(A) - 2.

We note that ey, is a downer edge with (D, D) in G(ey;, ex), and i is neutral in G(ej;, e for A. If the edge e
is removed from G(ey;, i), then the statuses of j and k change to neutral.

Next, we observe i is still neutral in G(ej, e, ex). When i is removed from G(ey, ex), k and j are
downer by Lemma 10 and ey is a cut edge, so ey is downer in G(ey;, e, i) = G(i). Then mA(eij,eik,i,eik)(A) =
MaG,e0(A) = Ma(A) — 2. Since ey was downer in G(ejj, €i), Macey, ey, e50(A) = Ma(A) — 2.

Therefore, i is also neutral in G(ej, e, ). O

Next, we investigate the change in the multiplicity of an identified eigenvalue A when all vertices on a
cut 2-downer edge triangle are removed.

Theorem 24. Let G be a graph, A € S(G), and A € a(A) with my(A) > 2. Let T be a cut 2-downer edge triangle
in G for A relative to A. Let G be a subgraph of G obtained by removing all vertices on T from G and A a
corresponding matrix. Then

miA) = ma(A) - 2.

Proof. Wlog, we may suppose that ej is a cut edge in G(ej;, €;) by Lemma 19. Then we note that ey is also a
cut edge in G(i). Since j and k are downer in G(i) and ey is a cut edge in G(i), ej is a downer edge in G(i).

If ey is removed from G(i), then my( ¢,)(A) = ma(A) - 2. Then k and j is neutral in G(i, ej), and k and j
belong to different components. So, mA(i,eik,,-,k)(A) = My@,j o) = ma(A) - 2. O

We note that in Theorem 24, the cut 2-downer edge triangle does not have to be primitive in G.

4 Example
Example 1. We give an example to sketch Theorems 11 and 13.
Let
[1 11100000 0]
1110100000
1110010000
1001110000
4-|0101111000

0011110000
0000101100
0000O0O0T1211
0000000121
O 0OO0OO0O0O0T1 1 2]

whose graph G is as follows.
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A has an eigenvalue A = 1 with multiplicity 3. The triangle I' whose vertices are 1, 2, 3 is a 2-downer edge
triangle for A = 1. When one edge e;; on I is removed from G, the status of edges and vertices on G’ are
shown in the following figure. The statuses of edges and vertices are indicated in small letters and capital
letters, respectively.

Example 2. We can find a simple example to sketch Theorems 23 and 24. Let

111100
111010
A-|1 11001
100100[
010010
001001

whose graph G is as follows.

1+45
2
triangle for A. When edges ey, e,3, and e;3 are removed from G, let

A has an eigenvalue A = with multiplicity 2. The center triangle is a cut primitive 2-downer edge
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100100
010010

i-l0o01001]
100100
010010
001001

1+.5
2
If vertices 1, 2, and 3 are removed from G, isolated vertices 4, 5, and 6 do not have A as an eigenvalue.
So, the multiplicity of A decreases by 2.

A does not have A = as an eigenvalue of 4. So, the multiplicity of A decreases by 2in 4.
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