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Abstract: Edges in the graph associated with a square matrix over a field may be classified as to how their
removal affects the multiplicity of an identified eigenvalue. There are five possibilities: 2+ (2-Parter); 1+

(Parter); no change (neutral); 1− (downer); and 2− (2-downer). Especially, it is known that 2-downer edges
for an eigenvalue comprise cycles in the graph. We investigate the effect for the statuses of other edges or
vertices by removing a 2-downer edge. Then, we investigate the change in the multiplicity of an eigenvalue
by removing a cut 2-downer edge triangle.
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1 Introduction

Throughout,G denotes a simple, undirected graph on n vertices, and we denote by G( )� the set of all n-by-n
real symmetric matrices, G( )� the set of all n-by-n Hermitian matrices, the graph whose off-diagonal
entries has an edge i j,{ } iff a a 0ij ji ≠ for A aij[ ]= ; no restriction is placed on the diagonal entries, other
than that they be real. For a given matrix A, we denote the multiplicity of an eigenvalue λ of A by m λA( ).

When a graph G is a treeT , there are many papers relating the structure ofT to the multiplicities of the
eigenvalues of the matrices in T( )� .

In this article, we consider a general simple graph G. There are papers that relate the structure of G to
the multiplicities of the eigenvalues of the matrices in G( )� , [1,2,4,6,8–12, etc.]. When a vertex v is removed
from G, the remaining graph is denoted by G v( ), and we denote by A v( ) the n 1( )− -by- n 1( )− principal
submatrix of A G( )∈ � , resulting from deletion of the row and column corresponding to v. When an edge eij

is removed from G, we denote the remaining graph by G eij( ); then A e G eij ij( ) ( ( ))∈ � denotes the matrix
obtained from A by changing the entries corresponding to eij to zero. Further, when a vertex v and an edge
eij are removed from G, we denote the remaining graph by G v e, ij( ) and the corresponding submatrix by
A v e, ij( ). For an identified A G( )∈ � , we often speak interchangeably about the graph and the matrix, and
we identify vertices in a graph with indices of a matrix, for convenience.

From the interlacing inequalities for a symmetric matrix, the multiplicity of an eigenvalue may change
by at most 1, when a particular vertex is deleted. A vertex v of a graphG is called Parter (respectively neutral,
downer) in G for an eigenvalue λ of A G( )∈ � , if

m λ m λ m λ m λ1 resp. , 1 .A u A A A( ) ( ) ( ( ) ( ) )( ) = + −
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We call these the status (or classifications) of the vertex v for the eigenvalue λ relative to A. We denote
Parter, neutral, and downer by P, N , and D, respectively.

The change in the multiplicity of an eigenvalue when an edge is removed was investigated in [3].

Lemma 1. [3] Let G be a graph, and A G( )∈ � . For an edge eij in G, and λ σ A( )∈ ,

m λ m m λ2 2.A A e λ Aij( ) ( )( )( )− ≤ ≤ +

We can define the status of an edge. An edge eij is called 2-Parter (resp. Parter, neutral, downer, 2-
downer) for λ relative to A, if for A G( )∈ � and A e G eij ij( ) ( ( ))∈ � ,

m λ m λ 2 resp. 1, 0, 1, 2 .A e Aij ( ) ( ) ( )( ) − = − −

If the status of a vertex or an edge is neutral, Parter, or 2-Parter, then the status of it is called at least
neutral.

The classification number of a vertex or an edge is described in [6]. Given A G( )∈ � , and λ σ A( )∈ , the
classification number of a vertex is defined in a natural numerical way, Parter is 1, neutral 0, and downer 1− .
In particular, we may numerically classify a vertex i in A relative to the identified eigenvalue λ, S iA( ), as
follows:

S i m λ m λ .A A i A( ) ( ) ( )( )= −

An edge’s classification number is defined as 2, 1, 0, 1− , and 2− , depending on whether the edge is 2-Parter,
Parter, neutral, downer, or 2-downer, respectively. We may numerically classify an edge eij, S eA ij( ), as
follows:

S e m λ m λ .A ij A e Aij( ) ( ) ( )( )= −

There is a relationship between the classification number of an edge and the classification number of the
incident vertices,

S e S i S i S j S j .A ij A A e A A eij ij( ) ( ) ( ) ( ) ( )( ) ( )= − = − (1)

If vertex j is a neighbor of vertex i in G and j is a downer vertex for λ in A i( ), then we call j a downer
neighbor of i for A G( )∈ � and λ [5].

Definition 2. LetG be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ If there is a cycle Γ inG whose edges
on Γ are all 2-downer edges for λ relative to A, then we call Γ a 2-downer edge cycle for λ relative to A.

As a simple example of a 2-downer edge cycle, there is a cycle Cn with n vertices whose eigenvalues are

j j n2 cos 1, ,π
n

2
( )= … , and every edge of Cn can be a 2-downer edge of a certain double eigenvalue.

Definition 3. Let G be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ If Γ is a 2-downer edge cycle for λ
relative to A and it is not connected to other 2-downer edge cycles with 2-downer edges for λ, then we call Γ
a primitive 2-downer edge cycle for λ relative to A.

As an example of a primitive 2-downer edge cycle, we refer to Example 1 in Section 4, in which the
triangle 1, 2, 3, and the triangle 8, 9, 10 are primitive 2-downer edge cycles for the eigenvalue 1.

We note that if Γ is a primitive 2-downer edge cycle for λ, it is separated from other 2-downer edge
cycles, then edges incident to vertices on Γ that are not on Γ are edges other than 2-downer edges.

We are interested in a 2-downer edge cycle in this article, and in Section 2, we investigate the effect of
removing a 2-downer edge from the cycle, the change of the statuses of other edges or vertices. Then we
investigate the change in the multiplicity of an eigenvalue by removing a cut 2-downer edge triangle in
Section 3.
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2 Removing a 2-downer edge from a cycle

In this article, we are particular about in a 2-downer edge cycle and focus on the effect of removing a 2-
downer edge in a cycle or a 2-downer edge triangle. In [11], the possible classification for an edge eij for λ
relative to A G( )∈ � is given as in Table 1, when the classifications of adjacent vertices i and j are known.
Here, we refer to the two theorems we require later.

Theorem 4. [11, Theorem 6] Let G be a connected graph, A G( )∈ � , and λ σ A( )∈ with m λ 2A( ) ≥ . An edge eij
is 2-downer for λ inG if and only if the status of i is downer for λ inG, and j is a downer neighbor of i in G. Here,
i and j are interchangeable.

Theorem 5. [11, Theorem 7] Let G be a graph, A G( )∈ � , and λ σ A( )∈ . If an edge eij is 2-Parter for λ inG, then
each of i and j are Parter for λ in G, and each is a downer neighbor for the other in G.

We need a necessary and sufficient condition for a Parter vertex.
If a graph is a tree T , a Parter vertex v for λ relative to A T( )∈ � is characterized by the existence of a

downer branch at v [5]. However, when G is a general graph, a necessary and sufficient condition for a
vertex to be a Parter vertex is given in [12]. We give the proof of it to be self-contained here.

Theorem 6. [12, Theorem 3] A vertex i is Parter for λ in G relative to A G( )∈ � if and only if there is a downer
neighbor j at i and the edge eij is at least neutral for λ in A (i.e., m λ m λA e Aij ( ) ( )( ) ≥ ).

Proof. Wlog, we may assume that the index of i is 1, λ 0= and that A has the following form:

A α
B
x

x
,

T
⎡
⎣

⎤
⎦

= (2)

in which the x is a nonzero column vector, α is a scalar, and the B is a square matrix.
If the index 1 is Parter for λ in A, there has to be at least one downer neighbor j adjacent to 1 in B.

Because if there is no downer neighbor adjacent to 1 in B, then all adjacent vertices to 1 are neutral or Parter
for λ in B. Then, every column (resp. row) relative to the adjacent vertex in B is not a linear combination of
the remaining columns (resp. rows). Let BRS( ) (resp. BCS( )) denote the row space (resp. column space)of B.
Then, e BRSk

T ( )∈ , (resp. e BCSk ( )∈ ), in which ek is a normal unit vector and k corresponds to some indices

to which index 1 is adjacent in B. Since xT is a linear combination of some e sk
T (k 1≥ ), Bx RST ( )∈ , a

contradiction because the index 1 is Parter in A. Furthermore, e j1 cannot be a downer or a 2-downer
edge in A, since 1 is Parter. Therefore, e j1 is at least neutral for λ in A.

Next, we give a proof for sufficiency. Suppose that there is a downer neighbor j of 1 in B and e j1 is at least
neutral.

To reach a contradiction, suppose that the index 1 is not Parter for λ in A satisfying the aforementioned
conditions. If the index 1 is neutral for λ in A, then Bx RST ( )∈ . When e j1 is removed from G,

Table 1: Possible classification for edges in ( )� G

i j Possible classifications for edge eij

P P 2-Parter or neutral
P N Parter or neutral
P D Neutral
N N Parter or neutral
N D Downer
D D 2-downer, downer, or neutral

P: Parter vertex, N: neutral vertex, D: downer vertex.

A 2-downer edge or a cut 2-downer edge triangle for an eigenvalue  3



a e Bx RST
j j

T
1 ( )− ∉ , since e BRSj

T ( )∉ , because j is a downer neighbor of 1 in B. Then index 1 becomes Parter

in A e j1( ) and S e S S1 1 1A j A A e1 j1( ) ( ) ( )( )= − = − . This means the edge e j1 is a downer edge in A, a contradiction to
the assumption.

Next, if index 1 is downer for λ in A satisfying the aforementioned conditions, then Bx RST ( )∈ . When e j1

is removed fromG, a e Bx RST
j j

T
1 ( )− ∉ , since e BRSj

T ( )∉ because j is a downer neighbor at 1 in B. Then index

1 becomes Parter in A e j1( ). Therefore, S e S S1 1 2A j A A e1 j1( ) ( ) ( )( )= − = − , which means the edge e j1 is a 2-downer
edge in A, a contradiction to the assumption.

Thus, when the conditions are satisfied, index 1 must be Parter in A. □

In [12], it was observed that if there is a 2-downer edge in a graphG for λ relative to A G( )∈ � , then there
is a 2-downer edge cycle for λ in the graph. To be self-contained in this article, we give the proof here.

Theorem 7. [12] Suppose G is a graph, A G( )∈ � and λ σ A( )∈ withm λ 2A( ) ≥ . Then each 2-downer edge for λ
is contained in a 2-downer edge cycle of G or it is on a path connecting 2-downer edge cycles.

Proof. Let eij be a 2-downer edge for λ in A G( )∈ � . Then, i and j are downer for λ in A and downer
neighbors for each other. When the edge eij is removed fromG, the status of i changes to Parter . Then, there
has to be a downer neighbor k distinct from j in A eij( ) by Theorem 6. Then, we note that k is also a downer
neighbor of i in A, and i is originally downer in A. Thus, eik is a 2-downer edge in A by Theorem 4.

From a similar argument, there must be another 2-downer edge incident to eij at j. Thus, 2-downer edges
are connected sequentially and compose a cycle in G in the end. □

2.1 Change in status by removing a 2-downer edge

First, we see that when a vertex on a 2-downer edge cycle Γ is removed, other 2-downer edges on Γ in G are
not 2-downer in the remaining graph G v( ).

Lemma 8. LetG be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2A( ) ≥ . Let Γ be a primitive 2-downer edge cycle
in G for λ relative to A. If a vertex v on Γ is removed from G, then the rest of the edges on Γ in G v( ) are not 2-
downer for λ relative to A v( ).

Proof. If there is a 2-downer edge on vΓ( ) inG v( ), then there must be a 2-downer cycle inG v( ). Then there is
a 2-downer edge eik in which i is on vΓ( ) and k is outside vΓ( ).

Since eik is 2-downer in G v( ), i is downer in G v( ) and k is downer in G v i,( ) by Theorem 4. Then,

m λ m λ 3.A v i k A, , ( ) ( )( ) = − (3)

However, k is not downer inG i( ) from the assumption that Γ is a primitive 2-downer edge cycle inG and k is
not on Γ. Then k is neutral or Parter inG i( ). Thus, m λ m λ 3A i k v A, , ( ) ( )( ) > − has to hold. That is a contradiction
to (3). Therefore, the rest of the edges on Γ in G v( ) are not 2-downer edges in G v( ). □

Let Γ be a primitive 2-downer edge cycle for λ in a general simple graph G, and Γ′ be a subgraph of Γ
obtained by removing an edge eij on Γ. Then let G G eij( )′ = .

Lemma 9. Let G be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ Let Γ be a primitive 2-downer edge cycle
inG for λ relative to A. If a 2-downer edge eij on Γ is removed from G, then the statuses of vertices and edges on

Γ′ are at least neutral in G′ for λ relative to A eij( ).
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Proof. Let v be a vertex on Γ, then v is downer for λ. If v is removed from G, all the edges on Γ′ are not 2-
downer for λ by Lemma 8. Then

m λ m λ 3.A v e A, ij ( ) ( )( ) ≠ −

Since m λ m λ 2A e Aij ( ) ( )( ) = − , v cannot be downer in A eij( ). Then the status of vertices on Γ′ is at least neutral
in G′.

If an edge on Γ′ is downer or 2-downer for λ, the status of incident vertices has to be N D,( ) or D D,( ) (cf.
Table 1). From the preceding argument, the statuses of vertices on Γ′ are not downer. Therefore, the edges
on Γ′ are at least neutral for λ in G′. □

It is known that when a neutral vertex is removed from G, a downer vertex in G stays in the remaining
graph, and vice versa [4].

Lemma 10. [4] Let A be an n-by-n Hermitian matrix. If i is neutral, then j i≠ is downer for A if and only if j is
downer for A i( ).

Theorem 11. Let G be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ Let Γ be a primitive 2-downer edge
cycle in G for λ relative to A, and Γ′ be a subgraph of Γ obtained by removing an edge eij on Γ. The statuses of
all edges in G′ incident to the vertices on Γ′ are at least neutral for λ relative to A eij( ).

Proof. From Lemma 9, the edges on Γ′ are at least neutral for λ. We examine the status of an edge outside Γ′

that is incident to a vertex on Γ′.
We know that the statuses of vertices on Γ′ are Parter or neutral from Lemma 9. If a vertex on Γ′ is Parter,

it is obvious that edges incident to it are at least neutral from Table 1. Therefore, we suppose that there is a
neutral vertex k on Γ′ that is not i or j because i and j are Parter in G eij( ) by (1).

j

ik

l

To attain a contradiction, we suppose that there is a downer edge incident to k inG eij( ). Let the edge be
ekl. Then the status of l has to be downer in G eij( ) (cf. Table 1). Then

m λ m λ 3,A e k l A, ,ij ( ) ( )( ) = − (4)

because a downer vertex is still downer after removing a neutral vertex by Lemma 10.
On the other hand, k is downer in G since k is on Γ, and the status of l is not downer in G k( ) since Γ is

primitive. So l is Parter or neutral for λ in G k( ). If l is Parter in G k( ), m λ m λ 3A k l e A, , ij ( ) ( )( ) > − , then (4) does
not hold. Thus, in the case for (4) to hold, l must be neutral inG k( ) and eij has to be 2-downer inG k l,( ), then
we note that

m λ m λ 3A k l i j A, , , ( ) ( )( ) = − (5)

holds by Theorem 4.
Next, we focus on the status of the vertex i in G k( ).

A 2-downer edge or a cut 2-downer edge triangle for an eigenvalue  5



If i is Parter in G k( ), m λ m λA k i A, ( ) ( )( ) = , then m λ m λ 3A k i j l A, , , ( ) ( )( ) > − , so i has to be neutral or downer in
G k( ) for (5) to hold. We note that l is neutral in G k( ) from the prior argument. If i is neutral in G k( ), then in
G k i,( ), l is neutral or Parter, because l cannot be downer in G k i,( ) from Lemma 10. Then we have
m λ m λ 3.A k i l j A, , , ( ) ( )( ) > − So (5) does not hold. Therefore, for (5) to hold, i has to be downer in G k( ). By
Lemma 8, eij is not a 2-downer edge inG k( ), so j is not downer inG k i,( ), then j is neutral or Parter inG k i,( ).

If j is neutral in G k i,( ), then l can be Parter or neutral in G k i j, ,( ), because l cannot be downer from
Lemma 10. Then m λ m λ 3A k i j l A, , , ( ) ( )( ) ≠ − .

If j is Parter in G k i,( ), then m λ m λ 1A k i j A, , ( ) ( )( ) = − , so m λ m λ 3A k i j l A, , , ( ) ( )( ) ≠ − . Therefore, (5) cannot
hold. It is a contradiction.

So, we have a conclusion that ekl cannot be a downer edge in G eij( ). □

If edges inG′ are incident to the removed 2-downer edge inG, we can see their statuses more accurately.

Corollary 12. Let G be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ Let Γ be a primitive 2-downer edge
cycle in G for λ relative to A and Γ′ be a subgraph of Γ obtained by removing an edge eij on Γ. The edge incident
to i or j on Γ′ is Parter or 2-Parter, and other edges incident to i or j are neutral in G′ for λ relative to A eij( ).

Proof. The status of i and j is Parter in G eij( ) by (1). Let k and m be vertices on Γ′ adjacent to i and j,
respectively. We refer to the following figure.

j

i

k

m

l

If eik is neutral in G eij( ), then i is Parter in G e e,ij ik( ) by (1). However, since Γ is primitive, there is no
downer neighbor at i inG e e,ij ik( ). So i cannot be Parter inG e e,ij ik( ) by Theorem 6. It is a contradiction. So, eik

is Parter or 2-Parter for λ in G eij( ). By a similar argument, ejm is Parter or 2-Parter for λ in G eij( ).

Let eil be an edge incident to i that is not on Γ′. Then l is not downer neighbor at i in G eij( ), since Γ is
primitive. So eil cannot be a 2-Parter edge from Theorem 5. Next, we show that eil cannot be a Parter edge for
λ inG eij( ). If eil is a Parter edge with P N,( ) inG eij( ), i is neutral and l is downer inG e e,ij il( ). Further, when i is
removed from G e e,ij il( ), l is downer in G e e i, ,ij il( ) by Lemma 10. It means that l is a downer neighbor at i in
G eij( ), a contradiction. So, eil cannot be a Parter edge in G eij( ). Then eil is neutral by Theorem 11. □

Next, we investigate the status of vertices adjacent to Γ′.

Theorem 13. Let G be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ Let Γ be a primitive 2-downer edge
cycle for λ relative to A, and Γ′ be a graph obtained by removing an edge eij on Γ. The statuses of all vertices
adjacent to Γ′ in G′ are at least neutral for λ relative to A eij( ). Furthermore, the edges between the vertices

adjacent to Γ′ are also at least neutral for λ relative to A eij( ).

Proof. From Lemma 9, vertices on Γ′ are at least neutral inG′. Let k be a vertex on Γ′ and l be a vertex that is
not on Γ′ and adjacent to k.
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j

ik

l
m

r

To reach a contradiction, if we suppose that l is downer in G′ for λ, then m λ m λ 3A e l A,ij ( ) ( )( ) = − . Then,

m λ m λ 3A l e A, ij ( ) ( )( ) = − , so l has to be downer for λ in G and eij be 2-downer in G l( ).

We note that k is not downer in G l( ), because l is not downer in G k( ). Since k is not downer in G l( ), Γ is
not a 2-downer edge cycle in G l( ).

If eij is a 2-downer edge for λ in G l( ), then there is a 2-downer edge emr in which the vertex m (possibly i
or j) is on Γ and the vertex r is adjacent to m that is not on Γ. Then we have m λ m λ 3A l m r A, , ( ) ( )( ) = − since l is
downer in G and emr is 2-downer in G l( ) from the assumption. Then m λ m λ 2A m r A, ( ) ( )( ) = − must hold to be
m λ m λ 3A l m r A, , ( ) ( )( ) = − , then r is a downer neighbor at m inG. But r cannot be a downer neighbor at m inG,
since Γ is primitive. It is a contradiction, so eij is not a 2-downer edge in G l( ). Therefore, l is not downer in
G eij( ), then l is at least neutral in G eij( ).

When the vertices adjacent to Γ′ are at least neutral in G′, the edges between them are at least neutral
from Table 1. So, the edge elr in the figure is also at least neutral in G′. □

2.2 The same status by removing an edge

Next, we observed that when an edge of a certain status for λ relative to A is removed from G, there are
edges or vertices whose statuses stay same in the resulting graph.

Theorem 14. Let G be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ Let eij be a 2-downer edge for λ
relative to A. Let G͠ be a graph obtained by removing the edge eij from G. The statuses of neutral or Parter

vertices in G for λ relative to A stay in G͠ for λ relative to A eij( ).

Proof. Since eij is a 2-downer edge in G, i and j are downer for λ in G, and m λ m λ 2A i j A, ( ) ( )( ) = − . Let k be a
Parter (resp. neutral) vertex in G. We note that k is Parter (resp. neutral) in A i j,( ), because Parter (resp.
neutral) vertices stay after removing a downer vertex. Then,

m λ m λ m λ1, resp. 2 .A i j k A A, , ( ) ( ) ( ( ) )( ) = − − (6)

On the other hand, i is downer for λ in A k( ), because downer vertices stay after removing a Parter (resp.
neutral) vertex (cf. Table 1 [8]). Then j has to be downer in A k i,( ) for (6) to hold. Thus, j is a downer
neighbor at i in A k( ). Then eij is a 2-downer edge in A k( ). Therefore, 2-downer edges stay after removing a
Parter (resp. neutral) vertex from G.

Through converse consideration, a Parter (resp. neutral) vertex stays after removing a 2-downer edge
from G, because the change in multiplicity is consistent after removing a 2-downer edge first and a Parter
(resp. neutral) vertex. □

A 2-downer edge or a cut 2-downer edge triangle for an eigenvalue  7



In Theorem 14, it was observed that the status of a Parter (resp. neutral) vertex does not change after
removing a 2-downer edge for λ from G.

Furthermore, we noticed that there is another case in which the status of the vertex does not change
after removing an identified status of edge.

Theorem 15. LetG be a graph, A G( )∈ � , and λ σ A .( )∈ If a 2-Parter edge or a Parter edge for λ relative to A is
removed from G, then the statuses of downer vertices for λ in G stay in the resulting graph for λ relative to the
corresponding matrix.

Proof. Let eij be a 2-Parter edge inG. Let k be a downer vertex inG. If we assume that the status of k changes
to neutral or Parter after removing eij from G, then

m λ m λ 2.A e k A,ij ( ) ( )( ) ≥ + (7)

However, since k is downer for λ in G, m λ m λ 1A k A( ) ( )( ) = − . Then, m λ m λ 1.A k e A, ij ( ) ( )( ) ≤ + That is a contra-
diction to (7). Therefore, k stays downer in G eij( ).

Next, let eij be a Parter edge inG and k be a downer vertex inG. A pair of statuses of i and j can be P N,( )

or N N,( ) from Table 1.
If we suppose the status of k changes to Parter in G eij( ), then

m λ m λ 2.A e k A,ij ( ) ( )( ) = + (8)

However, since k is downer for λ in G, m λ m λ 1A k A( ) ( )( ) = − . Then, m λ m λ 1.A k e A, ij ( ) ( )( ) ≤ + That is a contra-
diction to (8). So, k cannot be Parter for λ in G eij( ).

Next, we suppose that k changes to neutral inG eij( ). Wlog, let j be neutral for λ inG since i or j is neutral
when eij is a Parter edge. In G eij( ), j is downer by (1), then

m λ m λ ,A e j k A, ,ij ( ) ( )( ) = (9)

because the status of k stays neutral in G e j,ij( ), it can be said by using Lemma 10. However, we note that

m λ m λ m λ 1,A e j k A j k A, , ,ij ( ) ( ) ( )( ) ( )= = − (10)

because k is downer and j is neutral in G, and k stays downer in G j( ). This is a contradiction to (9). So, k
cannot become neutral in G eij( ). Therefore, k stays downer in G eij( ). □

If we conversely see Theorem 15, then we have the next result. The change in the multiplicity of an
eigenvalue is independent of the order of removing a vertex and an edge.

Corollary 16. Let G be a graph, A G( )∈ � , and λ σ A .( )∈ If a downer vertex for λ relative to A is removed from
G, then 2-Parter edges or Parter edges for λ in G stay in the resulting graph for λ relative to the corresponding
matrix.

Next, we observe that when a 2-downer edge is removed from G, some edges do not change in their
statuses.

Theorem 17. Let G be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ Let eij be a 2-downer edge in G for λ
relative to A. Let G͠ be a graph obtained by removing the edge eij from G. The statuses of 2-Parter edges or

Parter edges in G for λ relative to A stay in G͠ for λ relative to A eij( ).

Proof. Let ekl be a 2-Parter edge in G. Then the statuses of k and l are Parter. When a 2-downer edge eij is

removed fromG, the status of a Parter vertex stays in G͠ by Theorem 14. So, ekl is 2-Parter or neutral inG eij( ) from
Table 1. However, we show that ekl cannot be neutral in G eij( ). If we suppose that ekl is neutral in G eij( ), then
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m λ m λ 2.A e e A,ij kl ( ) ( )( ) = − (11)
However, since ekl is 2-Parter for λ,

m λ m λ .A e e A,kl ij ( ) ( )( ) ≥ (12)
considering Lemma 1. So, (11) is contradictory to (12). Therefore, ekl is a 2-Parter edge for λ in G eij( ).

Next, we consider Parter edges in G. Let ekl be a Parter edge for λ in G. There are two types of Parter
edges with P N,( ) and N N,( ) as a pair of the statuses of the adjacent vertices from Table 1. When the 2-
downer edge eij is removed from G, Parter vertices and neutral vertices in G stay in G eij( ) by Theorem 14. So
the status of ekl is a Parter edge or a neutral edge inG eij( ) with P N,( ) or N N,( ) by Table 1. However, we show
that it cannot be a neutral edge in G eij( ).

If we suppose that ekl is neutral in G eij( ), then

m λ m λ 2.A e e A,ij kl ( ) ( )( ) = − (13)
But, since ekl is a Parter edge in G,

m λ m λ 1,A e e A,kl ij ( ) ( )( ) ≥ − (14)
then (13) is contradictory to (14). Therefore, ekl is a Parter edge in G eij( ). □

Considering Theorem 17 conversely, when a 2-Parter edge or a Parter edge is removed fromG, 2-downer
edges stay in the resulting graph. Thus, we have the next result.

Corollary 18. Let G be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ If a 2-Parter edge or a Parter edge for
λ relative to A is removed from G, original 2-downer edge cycles for λ in G stay in the resulting graph for λ
relative to the corresponding matrix.

3 Removing a cut 2-downer edge triangle

Next, we focus on a 2-downer edge cycle with three vertices, called a 2-downer edge triangle here. When
three edges on a triangle are removed from G, if the number of components ofG increases, then we call it a
cut triangle in G. Now, we give a simple observation for a cut triangle that is used later.

Lemma 19. Let Γ be a cut triangle in G, then there is an edge on Γ,which is a cut edge after removing the rest of
the edges on Γ from G.

Proof. Let the vertices of Γ be i, j, and k. Wlog, we supposeG is a connected graph. LetG G eij( )′ = , thenG′ is
connected. We refer to the following figure as a part ofG that includes Γ. If eik is not a cut edge inG′, then ejk

is a cut edge in G e e,ij ik( ) since Γ is a cut triangle.

i

jk

If eik is a cut edge inG′, then ekj is an edge that is included in one component ofG e e,ij ik( ). Then we note
that eik is also a cut edge in G e e,ij jk( ). □

When a cut edge in G is removed, the change in multiplicity of an identified eigenvalue is observed in
[7, Lemma 19].

A 2-downer edge or a cut 2-downer edge triangle for an eigenvalue  9



Lemma 20. [7, Lemma 19] Let G be a graph and A G( )∈ � . If eij is a cut-edge in G and λ σ A( )∈ , then

m λ m λ m λ1 2.A A e Aij( ) ( ) ( )( )− ≤ ≤ +

This lemma indicates that if there is a cut edge in G, it cannot be a 2-downer edge for an eigenvalue
of A G( )∈ � .

The condition for a cut edge to be a downer edge is shown in [7, Theorem 20].

Lemma 21. [7, Theorem 20] Let G be a graph, A G( )∈ � , and λ σ A( )∈ . A cut-edge eij in G is downer for λ
relative to A if and only if the statuses of i and j in G are D D,( ) for λ relative to A.

Lemma 22. Let G be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ Let Γ be a cut primitive 2-downer edge
triangle in G for λ relative to A. If one edge on Γ is removed from G, then the rest of the edges on Γ are Parter
edges in the remaining graph for λ relative to the corresponding matrix.

Proof. Let the vertices of Γ be i, j, and k . From Corollary 12, if an edge eij is removed, the rest of the edges eik
and ejk are Parter or 2-Parter.

We note that i and j are Parter vertices inG eij( ). If eik is a Parter edge, then k has to be neutral for λ, and
if eik is 2-Parter, then k has to be Parter for λ (cf. Table 1). Thus, the statuses of two edges eik and ejk have to
be the same when eij is removed. We note that if eik and ejk are Parter in G eij( ), then eij and ejk are Parter
in G eik( ).

We can observe that if one edge on Γ is removed, the other two edges on Γ cannot be 2-Parter edges
in G eij( ).

Wlog, we suppose that ejk is a cut edge in G e e,ij ik( ) by Lemma 19. To reach a contradiction, we suppose
that eik and ejk are 2-Parter for λ inG eij( ). Then j is a downer neighbor at k inG eij( ) by Theorem 5 since ejk is 2-
Parter in G eij( ). Then, k is downer for λ in G e e,ij ik( ). We note that j is a downer neighbor at k also in
G e e,ij ik( ). Then ejk has to be a 2-downer edge by Theorem 4, and it is a cut edge in G e e,ij ik( ). So it is a
contradiction to Lemma 20, because a cut edge cannot be a 2-downer edge. Therefore, eik and ejk cannot be
2-Parter in G eij( ), then they are Parter edges for λ in G eij( ). □

We investigate the change in multiplicity of an identified eigenvalue λ, when all edges on a cut
primitive 2-downer edge triangle are removed.

Theorem 23. LetG be a graph, A G( )∈ � , and λ σ A( )∈ withm λ 2.A( ) ≥ Let Γ be a cut primitive 2-downer edge
triangle in G for λ relative to A. Let G͠ be a subgraph of G obtained by removing all edges on Γ from G and A͠ a
corresponding matrix. Then

m λ m λ 2,A A˜( ) ( )= −

and the statuses of three vertices on Γ are neutral in G͠ for λ relative to A͠ .

Proof. Let the vertices of Γ be i, j, and k. Since Γ is a cut 2-downer edge triangle, we may suppose that wlog
ejk is a cut edge after removing eij and eik by Lemma 19.

i

jk
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From Lemma 22, when the edge eij is removed from G, eik and ejk are Parter edges for λ, then i and j are
Parter by (1) and k is neutral in G eij( ) since eik is a Parter edge with vertices P N,( ) in G eij( ). Then if eik is
removed from G eij( ), k is downer by (1), then we next show that j becomes downer in G e e,ij ik( ). When eik is
removed fromG, eij and ejk are Parter by Lemma 22, and j is neutral because when an edge is a Parter edge, if
one vertex is Parter, then the other vertex has to be neutral. So, m λ m λ 2A e j A,ik ( ) ( )( ) = − . On the other hand,
m λ m λ m λ 2A e j A e e j A, , ,ik ij ik( ) ( ) ( )( ) ( )= = − . Since m λ m λ 1A e e A,ij ik ( ) ( )( ) = − , j has to be downer in G e e,ij ik( ).

Since the statuses of j and k are downer for λ inG e e,ij ik( ), and ejk is a cut edge in G e e,ij ik( ), then ekj has
to be a downer edge by Lemma 21. We conclude

m λ m λ m λ 2.A A e e e A˜ , ,ij ik jk( ) ( ) ( )( )= = −

We note that ejk is a downer edge with D D,( ) inG e e,ij ik( ), and i is neutral inG e e,ij ik( ) for λ. If the edge ejk

is removed from G e e,ij ik( ), then the statuses of j and k change to neutral.
Next, we observe i is still neutral in G e e e, ,ij ik jk( ). When i is removed from G e e,ij ik( ), k and j are

downer by Lemma 10 and ejk is a cut edge, so ejk is downer in G e e i G i, ,ij ik( ) ( )= . Then m λA e e i e, , ,ij ik jk ( )( ) =

m λ m λ 2A i e A, jk ( ) ( )( ) = − . Since ejk was downer in G e e,ij ik( ), m λ m λ 2A e e e A, ,ij ik jk ( ) ( )( ) = − .

Therefore, i is also neutral in G e e e, ,ij ik jk( ). □

Next, we investigate the change in the multiplicity of an identified eigenvalue λ when all vertices on a
cut 2-downer edge triangle are removed.

Theorem 24. Let G be a graph, A G( )∈ � , and λ σ A( )∈ with m λ 2.A( ) ≥ Let Γ be a cut 2-downer edge triangle
in G for λ relative to A. Let G͠ be a subgraph of G obtained by removing all vertices on Γ from G and A͠ a
corresponding matrix. Then

m λ m λ 2.A A˜( ) ( )= −

Proof.Wlog, we may suppose that ejk is a cut edge in G e e,ij ik( ) by Lemma 19. Then we note that ejk is also a
cut edge in G i( ). Since j and k are downer in G i( ) and ejk is a cut edge in G i( ), ejk is a downer edge in G i( ).

If ejk is removed from G i( ), then m λ m λ 2A i e A, jk ( ) ( )( ) = − . Then k and j is neutral in G i e, jk( ), and k and j
belong to different components. So, m λ m λ m λ 2A i e j k A i j k A, , , , ,jk ( ) ( ) ( )( ) ( )= = − . □

We note that in Theorem 24, the cut 2-downer edge triangle does not have to be primitive in G.

4 Example

Example 1. We give an example to sketch Theorems 11 and 13.
Let

A

1 1 1 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 0 0
0 1 0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 1 2 1 1
0 0 0 0 0 0 0 1 2 1
0 0 0 0 0 0 0 1 1 2

,

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

whose graph G is as follows.
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1

2

3

4

5

6

7 8

9

10

A has an eigenvalue λ 1= with multiplicity 3. The triangle Γ whose vertices are 1, 2, 3 is a 2-downer edge
triangle for λ 1= . When one edge e12 on Γ is removed from G, the status of edges and vertices on G′ are
shown in the following figure. The statuses of edges and vertices are indicated in small letters and capital
letters, respectively.

Example 2. We can find a simple example to sketch Theorems 23 and 24. Let

A

1 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

,

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

whose graph G is as follows.

1

2

3

4

5

6

7 8

9

10
2p

2

2p

n

n

n

n

p

np 2p

n

n
d

P

P

P P P

P

N

P

D

D

1

2 3

4

5 6

A has an eigenvalue λ 1 5
2=

+ with multiplicity 2. The center triangle is a cut primitive 2-downer edge
triangle for λ. When edges e e,12 23, and e13 are removed from G, let
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A

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

͠ =

A͠ does not have λ 1 5
2=

+ as an eigenvalue of A͠ . So, the multiplicity of λ decreases by 2 in A͠ .

If vertices 1, 2, and 3 are removed from G, isolated vertices 4, 5, and 6 do not have λ as an eigenvalue.
So, the multiplicity of λ decreases by 2.
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