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Abstract: We define a special class of finite-dimensional matrices for which the diagonal majorizes the
spectrum. This is the first class of matrices known to have this property, although the reverse majorization
(i.e., the spectrum majorizing the diagonal) was previously known to hold for unitarily diagonalizable (i.e.,
normal) matrices. Currently, these are the only known matrix classes that structurally provide a majoriza-
tion relationship between their spectrum and diagonal.
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1 Introduction

Majorization provides a preorder relational operator for comparing the relative disorder (entropy) of the
distribution of elements of two vectors. Specifically, given two vectors �∈x y, n, whose respective elements
sum to unity¹, then y is said to majorize x, notated as ≺x y, if and only if there exists a set of permutation
matrices Pj and probabilities pj, such that

∑=x p Py.
j

j j (1)

This expression of x as a probabilistic sum of permutations of y can be interpreted as indicating that the
distribution of elements of x is more disordered than that of y. An alternative definition is that ≺x y if and
only if

=x Sy, (2)

where S is a doubly stochastic matrix, i.e., nonnegative with every row and column sum equal to unity. This
definition makes the probabilistic interpretation even more explicit in the form →Sy x, where x is seen to
be a conservative stochastic evolutionary state of y. This can be made rigorous by the following known
result:

( ) ( )≺ ⇒ ≥x y H x H y , (3)

where ( )⋅H is the Shannon entropy, ( ) ≐ − ∑
=

H z z zlogi
n

i i1 , where z zlogi i is taken as 0 for =z 0i .


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The Schur-Horn theorem [2,8] says that every Hermitian matrix has the property that its spectrum
(vector of eigenvalues) majorizes its diagonal, and the same can be inferred more generally from equation
(2) for all normal, i.e., unitarily diagonalizable, matrices. This structural property immediately provides an
additional means for analyzing, modeling, and controlling systems involving such matrices. A prominent
example from physics is the density matrix describing the quantum state of a system, which is Hermitian
(more specifically, positive semidefinite) and therefore normal.

In the case of a normal matrix, the majorization property implies that its diagonal provides an entropic
upper bound on the distribution of its eigenvalues. Having such a link between the diagonal and spectrum
of a given matrix offers a variety of potential theoretical and practical benefits, but heretofore there has
been no other matrix class for which such a majorization property has been proven to hold.

In Section 2, we identify a new finite-dimensional matrix class for which an alternative diagonal/
spectrum majorization relationship can be proven to exist.

2 Special PD-diagonalizable matrices

We begin by stating a previously studied [13] conjecture/result:
PD-IRGA conjecture: Given any real ×n n symmetric positive-definite (PD) matrix P, then for ≤n 6:

( )= ∘ ∈
− −S P P nonsingular nonnegative PD doubly stochastic ,1 1 (4)

where “ ∘ ” is the Schur-Hadamard elementwise matrix product.
Such a result would be remarkable because it implies that important properties exist for low-dimen-

sional PD matrices that do not hold generally. Specifically, it can be shown by counterexample that non-
negativity does not generally hold for >n 6, and it has been proven for all ≤n 4 (see ref. [13] for details).

Finite-dimensional properties of this kind are of particular interest when analyzing systems that are
intrinsically low dimensional due to constraints imposed by physical theory, e.g., the three spatial dimen-
sions of the physical world. Here, however, we focus on the appearance of the doubly stochastic matrix S
and observe that it can permit us to define a special finite-dimensional matrix class for which the diagonal
majorizes the spectrum. Specifically, letting k be the largest integer for which the PD-IRGA conjecture
holds, we define the following matrix form:

Definition. (Special PD diagonalizable) A given ×n n matrix =
−M PEP 1, ≤n k, is defined to be special PD

diagonalizable if matrix E is diagonal and P is symmetric (real) PD.

The motivation for this definition is the following:

Theorem 1. The spectrum of a special PD diagonalizable matrix is majorized by its diagonal.

The proof relies on the known result [9] that for a diagonalizable matrix =
−B AEA 1:

( ) ( ) ( )∘ ⋅ =
−A A E Bdiag diag ,T (5)

where −A T is the transposed² inverse of A. In other words, the matrix ∘
−A A T – which may be singular even if

A is not –maps the spectrum of B to the diagonal of B. If A is real symmetric PD, then ∘
−A A 1 is nonsingular,

so multiplying both sides by its inverse ( )= ∘
− −S A A 1 1 gives

( ) ( )= ⋅E S Bdiag diag , (6)



2 Note that the transpose operator (not the complex conjugate) applies even in the case of complex A.
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where S is doubly stochastic. Thus, by the majorization criterion of equation (2), it can be inferred that the
diagonal of a special PD-diagonalizable matrix B majorizes its spectrum:

( ) ( )≺E Bdiag diag , (7)

and, therefore, its entropy gives a lower bound on that of its spectrum, i.e.,

( ( )) ( ( ))≥H E H Bdiag diag . (8)

3 Potential applications

General PD-similarity transformations appear in a variety of theoretical and practical applications. These
include Gaussian orthogonal ensembles from random matrix theory [10] and their applications to pseudo/
quasi-Hermitian operators in physics [5,12], e.g., Su-Schrieffer-Heeger models with real eigenvalues, for

which a non-Hermitian Hamiltonian H is mapped to a Hermitian Hamiltonian Ĥ by a PD similarity trans-
formation [3,4,11]. It can be observed that for real³ H and Ĥ , a real orthogonal transformation of the system

that diagonalizes Ĥ will transform H to PD-diagonalizable form. This can be shown by expressing the

normal matrix Ĥ as follows:

=H UEUˆ T (9)

and its PD-similar companion H as follows:

=
−H PHPˆ ,1 (10)

( ) ( )=
−VDV H VDVˆ .T T 1 (11)

Applying the diagonalizing similarity transformation U to H gives

( ) ( )=
−U HU U VDV H VDV Uˆ ,T T T T 1 (12)

( )( )( )=
−U VDV UEU VDV U, ,T T T T 1 (13)

( ) ( )=
−U VDV U E U VDV U ,T T T T 1 (14)

(( ) ( ) ) (( ) ( ) )=
−U V D U V E U V D U V ,T T T T T T 1 (15)

=
−PEP ,1 (16)

where ( ) ( )=P U V D U VT T T . If ≤n k, then U HUT is special PD diagonalizable and, therefore, its diagonal
majorizes its spectrum. In other words, under these conditions, the matrix H can be orthogonally trans-
formed so that its diagonal majorizes the spectrum of the potentially unknown Hamiltonian Ĥ . Alternatively,
the process can be viewed from an optimization perspective as a problem of identifying an orthogonal-
similarity transformation W such that the Shannon entropy of diag( )WHWT is optimized via majorization
to provide a best-possible provable bound on the entropy of its spectrum.

The PD-IRGA conjecture originated in the area of control theory [13], and special PD-diagonalizable
matrices can be examined in this context with the spectrum representing the state of a system. It should be
noted that the intrinsic representable dimensionality of this state is not necessarily limited to ≤k 6 when
eigenvalues provide additional degrees of freedom. Specifically, while the doubly stochastic mapping from
spectrum to diagonal in equation (6) requires the diagonalizing matrix to be real PD, that condition is not
required for the spectrum if majorization is generalized (see ref. [2], p. 110) from vectors over �n to �n, and
more generally to their normed division-algebra extensions over�n and �n. Thus, if the spectrum is defined



3 Subsequent discussion of generalizations of majorization to complex vectors (and other cases) can be implicitly applied to
partially relax the restriction to reals in this example. Further generalizations are discussed in the Appendix.
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over the latter, i.e., octonions, then the maximum representable dimensionality is ⋅ k8 , which gives 48
degrees of freedom for the conjectured value of =k 6.

Generalizations of majorization to state vectors over hypercomplex spaces (or other algebras, e.g.,
∗-algebras) have important implications for practical applications when computation of the spectrum is
prohibitively expensive. For example, consider a measurement process that is designed to obtain a special
PD-diagonalizable matrix X and normal matrix Y , both having the same spectrum, i.e., the state distribu-
tion of interest. If it is not practical to compute the spectrum explicitly, then Theorem 1 implies that lower
and upper entropic bounds on the measured state can be obtained from the diagonals of X and Y , respec-
tively. These bounds may be sufficient for the needs of the application or, if not, may provide a means for
guiding a search of the space toward the case in which the measurement matrices become equal, i.e.,
diagonal and give the exact spectrum of the target state.

4 Discussion

The principal contribution of this article is the definition of a new class of finite-dimensional matrices,
special PD-diagonalizable, for which there exists a majorization relationship between the diagonal and the
spectrum. The definition of this class exploits the proven cases of the PD-IRGA conjecture, which presently
is restricted to a subset of ×n n matrices with ≤n 4, but is conjectured to hold for ≤n 6.

Future work will examine applications of these results to tracking and control problems in which
measurements of an evolving state are transformed by PD similarity with respect to the covariant derivative
along a Riemannian manifold [6,7], which may also be applicable to models arising in both theoretical and
applied physics. Of particular focus for the latter will be potential applications to robust quantum circuits
[14]. From a theoretical physics perspective, understanding the structural constraints imposed by dimen-
sionality ≤d 4 or ≤d 6 that guarantee the properties of special PD-diagonalizable matrices may reveal
deeper insights relating to quantum field theories that are strictly constrained to dimensions =d 4 or =d 6.
(e.g., conformal field theory [15] and loop quantum gravity [1]).

Conflict of interest: The author reports no conflicting interests or funding.
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analysed during the current study.
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Appendix

The PD-IRGA conjecture/theorem actually applies more generally to real PDmatrices P that are transformed
on the left and right by arbitrary permutations and/or nonsingular diagonal matrices. In other words, the
structure of the PD matrix P can be generalized to the form:

=X D Q PQ D ,L L R R

whereQL andQR are permutation matrices, P is real PD, and DL and DR are nonsingular diagonal. The proof
follows directly by verifying that ∘

−A A T from equation (5) (the transpose was unnecessary in the original
PD-IRGA expression because P was symmetric) is invariant with respect to nonsingular diagonal transfor-
mations of the argument A and equivariant with respect to permutations of A.

Thus, the properties defining a special PD-diagonalizable matrix =
−M PEP 1 apply also to =

−M XEX 1.
Thus, Theorem 1 generalizes to guarantee that the diagonal of a matrix M of the form

( ) ( )=
−M D Q PQ D E D Q P Q DL L R R L L R R

1

majorizes its spectrum, i.e., diag(E). There are a multitude of obvious generalizations of the example of
equations (9)–(16), but at present, there are no obvious applications for which such generality is likely to be
exploited.
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