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Abstract: Let Mn be the set of all n n× real matrices. A nonsingular matrix A Mn∈ is called a G-matrix if
there exist nonsingular diagonal matrices D1 and D2 such that A D ADT

1 2=
− . For fixed nonsingular diagonal

matrices D1 and D2, let D D A A D ADM, : ,n
T

1 2 1 2�( ) { }= ∈ =
− which is called a G-class. The purpose of this

short article is to answer the following open question in the affirmative: do there exist two n n× G-classes
having finite intersection when n 3≥ ?
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1 Introduction

All matrices in this note have real number entries. Let Mn be the set of all n n× real matrices. A nonsingular
matrix A Mn∈ is called a G-matrix if there exist nonsingular diagonal matrices D1 and D2 such that
A D ADT

1 2=
− , where A T− denotes the transpose of the inverse of A. These matrices form a rich class and

were originally studied in [1] by Fiedler and Hall; they include the orthogonal and J-orthogonal matrices.
For a survey of the basic properties of G-matrices and connections to other classes of matrices, the reader
can refer to [1] and [2] and references therein. Here, we just mention two other connections.

Cauchy matrices have the form C cij[ ]= , where cij x y
1

i j
=

+

for some numbers xi and yj. We shall restrict

to square, say n n× , Cauchy matrices – such matrices are defined only if x y 0i j+ ≠ for all pairs of indices i
and j, and it is well known thatC is nonsingular if and only if all the numbers xi are mutually distinct and all
the numbers yj are mutually distinct. It turns out that by observation of Fiedler [3], every nonsingular
Cauchy matrix is a G-matrix. So, in particular, G-matrices arise naturally as very well-defined structured
nonsingular Cauchy matrices. Furthermore, G-matrices arise also in the context of “combined matrices”
C A A A T( ) = ∘

− , where ∘ denotes the Hadamard product, see [3]. For example, if A is a G-matrix, then
C A A D AD D A A D1 2 1 2( ) ( ) ( )= ∘ = ∘ ; so if say D1 and D2 are nonnegative, then C A( ) is nonnegative. The
combined matrices appear in the chemical literature where they represent the relative gain array [4].

For fixed nonsingular diagonal matrices D1 and D2, let the class of n n× G-matrices be

D D A A D ADM, : .n
T

1 2 1 2�( ) { }= ∈ =
−

We call such a class of matrices a G-class of matrices.
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In this note, it is shown that for every n, there exist two n n× G-classes having finite, nonempty
intersection. This answers an open question in [2] in the affirmative.

We note that the nonsingular diagonal matrices D1 and D2 satisfying A D ADT
1 2=

− are, in general, not
uniquely determined as we can multiply one of them by a nonzero real number and divide the other by the
same number. On the other hand, for nonsingular n n× diagonal matrices D1 and D2, the following known
result from [1] shows that if A D ADT

1 2=
− , then D1 and D2 have the same inertia matrix. For the definitions

of the inertia and the corresponding inertia matrix of a general Hermitian matrix, the reader can refer to
[5, pp. 281–282]. Simply put, the inertia matrix of a Hermitian matrix A is the diagonal matrix

diag 1, ,1, 1, , 1, 0, ,0 ,( )… − … − …

where the number of s1′ , s1− ′ , and s0′ is the number of positive, negative, and zero eigenvalues, respec-
tively, of A.

Proposition 1.1. Suppose A is a G-matrix and A D ADT
1 2=

− , where D1 and D2 are nonsingular diagonal
matrices. Then, the inertia of D1 is equal to the inertia of D2.

2 Solution of the open question

By a signature matrix, we mean a diagonal matrix where each diagonal entry is 1± . Let D be a nonsingular
diagonal matrix with the inertia matrix J (a signature matrix having all its positive entries in the upper left
corner). Then, there exists a permutation matrix P such that D D P JPT∣ ∣= , where D∣ ∣ is obtained by taking the
absolute value on entries of D.

For a fixed signature matrix J , J A A JA JMΓ :n n( ) { }= ∈ =
⊤ . In fact,

J J JΓ , .n �( ) ( )=

We mention that the matrices in JΓn( ) are precisely the J-orthogonal matrices discussed in [6–9]. Also, note
that when J is I or I− , JΓn n( ) = � , the set of all n n× orthogonal matrices.

In [2], the authors proved the following theorem (Theorem 2.2 of [2]).

Theorem 2.1. Let D1 and D2 be nonsingular diagonal matrices with the same inertia matrix J. Then, there exist
permutation matrices P and Q such that

D D D P AQ D A J, : Γ .T
n1 2 1

1 2
2

1 2�( ) {∣ ∣ ∣ ∣ ( )}= ∈
− ∕ − ∕

This characterization shows that D D,1 2�( ) is in fact nonempty.

Finally, we mention one other preliminary result.

Theorem 2.2. [2, Theorem 3.1] Let D1, D2, D3, and D4 be nonsingular diagonal matrices, all of which have the
same inertia matrix I or I− . Then,

D D D D, ,1 2 3 4� �( ) ( )=

if and only if there exists a positive number d such that D dD3 1= and D Dd4
1

2= .

With that background, we can now answer the open question. We remark that an example is already
given in [2] in the case when n 2= . However, from that example, no inductive procedure is apparent. But
now we are able to give patterns in D D D, ,1 2 3, and D4 that are amenable to induction.

Theorem 2.3. There exist two n n× G-classes having finite, nonempty intersection when n 3≥ .
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Proof. Let

D
n

D n

D
n

D n

diag 1, 1
2

, 1
3

, , 1 , diag 1, 2, 3, , ,

diag 1
3

, 1
4

, , 1
2

, diag 3, 4, , 2 .

1 2

3 4

⎛
⎝

⎞
⎠

( )

⎛
⎝

⎞
⎠

( )

= … = …

= …

+

= … +

The inertia matrix of each of D D D, ,1 2 3, and D4 is I . By using Theorem 2.2,

D D D D, , .1 2 3 4� �( ) ( )≠

Let A D D D D, ,1 2 3 4� �( ) ( )∈ ∩ . Since here the inertia matrix of each Di is J I= , J OΓn n( ) = , and the
permutation matrices P and Q are not needed; therefore, by using Theorem 2.1, there are V W, n∈ �

such that

A D VD D WD ,1

1
2

2

1
2

3

1
2

4

1
2

= =

− − − −

which implies that

W D D VD D3

1
2

1

1
2

2

1
2

4

1
2

=

− −

(Since W n∈ � , this means that also D D VD D n3
1 2

1
1 2

2
1 2

4
1 2

∈
∕ − ∕ − ∕ ∕

� .).

From W D D VD D3

1
2

1

1
2

2

1
2

4

1
2

=

− −

, with W wij[ ]= and V vij[ ]= , it follows that

w i
i

j
j

v
2

2
.i j i j=

+

+

For all i j< , we have 0 1i
i

j
j2

2
< <

+

+

, and consequently, when v 0ij = , w 0ij = , and v 0ij ≠ , w vij ij
2 2

< .

From the diagonal entries of WW IT
= , we obtain for i n1 ≤ ≤ ,

WW w i j
i j

v1 2
2

.T
ii

j

n

ij
j

n

ij i
1

2

1

2( )
( )

( )
( )∑ ∑= = =

+

+

∗

= =

From the entries of VV IT
= , we obtain for i n1 ≤ ≤ ,

VV v1 ,T
ii

j

n

ij i
1

2( ) ( )∑= = ∗∗

=

and for each i and t with i t n1 ≤ ≠ ≤ ,

VV v v0 . .T
i t

j

n

ij tj i t,
1

,( ) ( )∑= = ∗ ∗ ∗

=

Now, we show that the off-diagonal entries of row 1 and column 1 of V are zero. In 1( )∗ , if at least
one of v j n0 2, ,j1 ( )≠ = … , then the right-hand sides of 1( )∗ and 1( )∗∗ are not equal, which is a
contradiction. Therefore, v 0j1 = , j n2, ,( )= … and v 1.11 = ± Now, relations t1,( )∗ ∗ ∗ ( t n1 < ≤ ) imply
v v v 0n21 31 1= = ⋯= = .

So far, we have:

V

1 0 0
0

0
.

⎛

⎝

⎜

⎜
⎜

⎞

⎠

⎟

⎟
⎟

=

± …

⋮ ⋆

The case where i 2= uses the above structure ofV and proceeds similar to the case where i 1= . We arrive at

Two n × n G-classes of matrices having finite intersection  3



V

1 0 0 0
0 1 0 0
0 0

0 0

.

⎛

⎝

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟
⎟

=

± …

± …

⋮ ⋮ ⋆

The induction hypothesis is that all the off-diagonal entries in V in the first k 1− rows and columns are
zero, and each diagonal entry is 1± . Since v v v, , ,k k k k1 2 1,… − are zero, in k( )∗ , if at least one of
v j k n0, 1, ,k j ( )≠ = + … , then the right-hand sides of k( )∗ and k( )∗∗ are not equal, which is a contra-
diction. Therefore, v v v 0k k k k kn, 1 , 2= = …= =+ + , and so v 1.kk = ± Now, relations k t,( )∗ ∗ ∗ (k t n< ≤ ) imply
v v v, , 0.k k k k nk1 2= = ⋯= =+ + So, the off-diagonal entries of row k and column k of V are zero. Thus, by
induction, V diag 1 ,( )= ± and hence

A D VD diag 1 .1

1
2

2

1
2 ( )= = ±

− −

So A can only be of the form diag 1( )± . Therefore, the intersection of D D,1 2�( ) and D D,3 4�( ) is finite, and it
has 2n matrices. □
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