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Abstract: In the theory of line graphs of undirected graphs, there exists an important theorem linking the
incidence matrix of the root graph to the adjacency matrix of its line graph. For directed or mixed graphs,
however, there exists no analogous result. The goal of this article is to present aligned definitions of the
adjacency matrix, the incidence matrix, and line graph of a mixed graph such that the mentioned theorem
is valid for mixed graphs.
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1 Introduction

Line graphs have been an invaluable concept in graph theory for a long time. The line graph L(G) of an
undirected graph G = (V, E) has vertex set E. Two vertices e; and e, of L(G) are adjacent if and only if the
edges e; and e, are adjacent in G. Hemminger and Beineke once called this “probably the most interesting
of all graph transformations” [1]. As a direct consequence of the line graph definition, we have (compared
with Lemma 3.6 in [2])

B*B = A(L(G)) + 2I, 1)

where B denotes the incidence matrix of G, B* denotes its conjugated transpose, A(L(G)) denotes the
adjacency matrix of L(G), and I is the identity matrix. Recall that the adjacency matrix of an undirected
(resp., directed) graph on n vertices is the 0-1-matrix such that the entry at position (i, j) is 1 if there is an
edge between vertex no. i and vertex no. j (resp. from vertex no. i to vertex no. j), and 0 otherwise. The
incidence matrix B of an undirected graph on n vertices is the 0-1-matrix such that the entry at position (i, j)
is 1 if vertex no. i and edge no. j are incident, and O otherwise. Thus, there is a natural algebraic link
between the matrix B that captures the incidence relation of G and the matrix A(L(G)) that captures the
adjacency relation of L(G).

For directed graphs, the situation appears less satisfying. The line graph L(D) of a directed digraph
D = (V, E) (also called the line digraph L(9)) has vertex set E. There is an arc from vertex e; to e, in L(D) if
and only if the head vertex (i.e., terminal vertex) of the arc e, is the same as the tail vertex (i.e., initial vertex)
of the arc e; in D. This definition has the peculiar property that it “ignores adjacencies of arcs at source and
sinks” [1]. Clearly, the matrix A(L(D)) is in general not symmetric. Hence, regardless of how we define the
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incidence matrix of D, the left-hand side of (1) is a symmetric matrix, whereas the right-hand side is not. To
make things worse, when defining incidence matrices of directed graphs, one traditionally only refers to
oriented graphs, i.e., double arcs between vertices are forbidden (compared with [2-4]). Moreover, for
mixed graphs, no meaningful definition seems to exist at all. A mixed graph is a graph that has been
derived from an undirected graph by orienting some of its edges into arcs, while the unmodified edges
remain as digons.

In this article, we will focus on mixed graphs instead of directed graphs since we want the number of
edges to remain the same whenever we transition to the underlying undirected simple graph. Our goal is to
develop consistently aligned definitions of the adjacency matrix, the incidence matrix, and the line graph of
a mixed graph such that equation (1) holds; moreover, the well-known equation (compared with [4])

BB* = A(G) + D 2

that links the incidence matrix of a graph to its adjacency matrix. Here, D denotes the diagonal matrix with
the respective degrees of all vertices of G. It will turn out that, once suitable definitions of adjacency and
incidence matrix have been chosen, a matching notion of line graph arises in a perfectly natural way.

Our starting point is a very general concept of adjacency matrix called the a-Hermitian adjacency
matrix (compared with Definition 1 in Section 2) with a complex number a as parameter. Each value of a
defines its own kind of adjacency matrix. There exists an ongoing discussion between researchers whether
some choices of a may be more favorable than others (compared with Section 2 for more details). To have
certain basic results valid for undirected graphs carry over to mixed graphs such that a line graph definition
for mixed graphs can be obtained in a natural way, we shall propose to pair the a-Hermitian adjacency
matrix with what we call the -incidence matrix (compared with Definition 2). A remarkable result of the
present article is that, essentially, there exists only one meaningful way of choosing @ and f (in the form of
two analogous cases), thus contributing to the mentioned discussion by endorsing a particular choice of a.
In view of this discussion, the presentation of this article will especially point out how each new require-
ment towards a useful line graph definition for mixed graphs will narrow down possible choices of a and S.
Moreover, for the sake of easy accessibility, we strive to make the content of this article as self-contained as
possible.

The rest of the article is organized as follows. In Section 2, the desired notion of line graph will be
developed. Section 3 will be devoted to answering the question how many mixed orientations of a graph
may result in the same mixed line graph. Section 4 will investigate under which conditions an arbitrary
mixed orientation of some (undirected) line graph is actually the mixed line graph of some mixed orienta-
tion of the root of the undirected line graph. Finally, Section 5 will wrap up the topic and point out
connections to the research topic of gain graphs.

2 Incidence matrix vs line graph

In this section, we shall resolve the shortcomings mentioned in Section 1. In the following, whenever we
consider adjacency or incidence matrices of some graph, we tacitly refer to a fixed (but otherwise arbitrary)
vertex (resp. edge) order. The same reference order is also assumed when constructing derived objects (e.g.,
other matrices) by iterating over the vertex (resp., edge) set. For the sake of convenience, we may index the
entries of vertex order-dependent matrices by the vertices themselves, not by column/row numbers. For
example, given a matrix M and two vertices x and y such that x is indexed as ith vertex and y is indexed as
jth vertex, we use M, , to refer to the cell at position (i, j). Even shorter, M, refers to a diagonal entry. In the
same spirit, we use mixed vertex/edge indexing for incidence matrices.

Returning to equation (1), we see that for a complex matrix B, the left-hand side of the equation is
Hermitian. Thus, it is natural to use a type of adjacency matrix of mixed graphs that is Hermitian. Several
authors have observed that there exists a natural generalization of adjacency matrices as follows (compared
with [5,6]):
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Definition 1. Given a mixed graph © and a number a € C\R with |a] = 1, we define the a-Hermitian
adjacency matrix H*(D) of D by

1 if there is a digon between u and v,
a if there is an arc from u to v,
(Ha(D))u,v =3 _ . . (3)
a if there is an arc from v to u,
0 otherwise.

When there is no ambiguity regarding the reference graph D we might just write H® instead of H*(D).
The a-Hermitian adjacency matrix will be one cornerstone of what follows.

There has been intensive research on the a-Hermitian adjacency matrix in general. For example, there
is a series of interrelated articles [7-9] proving upper and lower bounds for the difference between the rank
of the Hermitian adjacency matrix of a given mixed graph and the rank (resp. twice the matching number,
twice the independence number) of the underlying undirected graph. The authors characterize all mixed
graphs attaining these bounds, so the bounds are sharp. Other notable recent results include [10], where
conditions are stated for strictly decreasing the Hermitian spectral radius of a given mixed graph by removing
vertices/edges, and [11], where the Hermitian eigenvalues of certain Cayley digraphs are considered.

Some authors have only considered special values of a in their research. For instance, in [5], the value
a = i is used. Further, in [12], the value a = e5' is endorsed and called the “most natural choice,” whereas
[13] presents arguments in favor of a = e3i,

Inspired by the structure of the a-Hermitian adjacency matrix, we define an incidence matrix as follows:

Definition 2. Given a mixed graph » and a number 8 € C\R with |S| = 1, we define the §-incidence matrix
BE(D) of D by

if e isadigonand u isincident with it,

if e isanarcand u isits head vertex,
(Bﬁ(D))u,e = (4)

if e isanarcand u is its tail vertex,

o™ ™ -

otherwise.

Note that, for both H* and B#, the restriction @, 8 ¢ R is important to faithfully encode the adjacency
and incidence relations of mixed graphs.

Up to this point, the choices of @ and  can be made independently. However, requiring equation (2) to
be valid restricts our choices drastically.

Theorem 3. Let D be a mixed graph, B = BX(D), A = HY(D), and D = diag((deg(v))yecv(p)) the degree
diagonal matrix of D. Then:

(i) BB* can be derived from A + D by replacing each entry a (resp., @) with Ez (resp., B?), and vice versa.
(if) Assuming D contains at least one arc, BB* = A + D ifand only ifa = B 2,

Proof. This is a direct consequence of Definition 2. To determine (BB*),,,,, one computes the inner product of
row u and the conjugate of row v of B. Foru = v, since 8 = 1, we obtain the degree of u. Foru # v, (BB*),, # 0
if and only if u and v are adjacent in D. In case of a digon uv, we have (BB*),,, = (A + D),,, = 1. In case
of an arc from u to v (resp., v to u), we have (BB*),,, = a and (4 + D),,, = [?2 (resp., (BB*),,, = & and
(A + D),,, = 8?). Thus, BB* and A + D have identical diagonals and the same zero—nonzero pattern. Assuming
D contains at least one arc, the two matrices are identical if and only if a = ﬁ 2, O

In the traditional setting for undirected graphs, the adjacency and incidence matrix share the same set
of possible values for their entries. Hence, it is a natural requirement to have identical parameters a = f3 for
both the adjacency and the incidence matrix (note that a = 8 has analogous consequences). That require-
ment leaves us with just two possible actual choices for a:
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Corollary 4. Let D be a mixed graph containing at least one arc, B = BE(D), A = H*(D), and D the degree
diagonal matrix of D. Then BB* = A + D if and only ifa = B* € {y, y?}, withy = e%'.

Given any mixed graph D, let I'(D) denote its underlying undirected graph, (i.e., derived by turning of
arcs of D into digons). Note that, conversely, we shall call any mixed graph O with X = I'(D) a mixed
orientation of the undirected graph X. Finally, by A(G), we denote the traditional adjacency matrix of an
undirected graph G. We now consider the goal equation (1).

Theorem 5. Let D be a mixed graph and B = Bf¥(D). Then:

(i) B*B has the same zero-nonzero pattern and main diagonal as the matrix A(L(T(D))) + 2I.

(i) Assuming D contains at least one vertex with both an incoming and an outgoing arc, there exists a mixed
orientation Y of L(T(D)) such that B*B = Hy(Y) + 21 if and only if either B = @, B> = a or B = a, B> = @.

Proof. Again check the consequences of Definition 2. To determine (B*B),,.,, One computes the inner
product of the conjugated column e; and the column e, of B. For e; = e,, one obtains either a term 1 + 1
or a& + &a; thus, (B*B)e,e, = 2. For e; # e;, we have (B*B)g,., # O if and only e; and e, are incident
in D. Moreover, the value of (B*B),, ., arises from a single nonzero term. This matches the situation
arising in equation (1) for the undirected graph I'(D). Thus, B*B, A(L(T'(D))), and H,(Y) have the same
zero-nonzero pattern, for every mixed orientation Y of L(I'(D)). It follows from Definition 2 that
(B*B)e,e, € {B, B, 1=PBB = BB, B% B’} = S. The terms B? and B° arise whenever, at the common vertex
of e; and e,, edge e; an outgoing arc and e, is an incoming arc — or vice versa. B*B — 2 is an a-Hermitian
adjacency matrix if and only if S ¢ {1, @, &}. Since we require a, f ¢ R, there exist only two viable
mappings, namely, B =&, 2 =aand B =a, B> =a. O

Again, if we require identical parameters a = 8 for both the adjacency and the incidence matrix, then
this leaves us with just two choices:

Corollary 6. Let D be a mixed graph containing at least one vertex with both an incoming and an outgoing
arc, B = BY(D)and A = HY(D). Then B*B = H,(Y) + 2I for some mixed orientation Y of L(I'(D)) if and only if
a=pB%cly, y3, withy = e,

As we can see from Corollaries 4 and 6, there exist only two natural parameter choices to make
equations (1) and (2) work if use the matrices from Definitions 1 and 2. Thus, the following line graph
construction results as a natural consequence:

| in D | in L,(D) |
O-0-@
O—~@
O-0®

@

GO0
OaCn
OmOn®

Figure 1: Construction of the y-line graph L, (D).
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Definition 7. Given a mixed graph D, the y-line graph L,(D) is defined as the mixed orientation of L(I'(D))
arising according to Figure 1.

Figure 2 contains an example illustrating Definition 7. As an alternative to Definition 7, one can define
the y2-line graph of a mixed graph by reversing all arcs in the right column of Figure 1. In the following, we
shall only be concerned with y-line graphs, but results for y?-line graphs can be obtained in a similar
manner.

In view of Definition 7, and Corollaries 4 and 6, the following result is now evident:

Theorem 8. Let D be a mixed graph, B = BY(D), D = diag((deg(v)),cv(p)). Then,
(i) BB =H,(L,(D)) + 2,
(if) BB* = H,(D) + D.

The following Theorems 9 and 10 act as converses to Theorem 8.

Theorem 9. Let X be a mixed orientation of some graph G . Let R be a matrix with nonzero entries from the set
{1, v, ¥} having the same zero-nonzero pattern as the incidence matrix of G. If

RR* = H/(X) + diag((deg(v))vev(r), ®)

then R = BY(X), i.e., it is the y-incidence matrix of X.

Proof. Let entry (i, j) of H,(X) be y. Consider inner product of row i of R and column j of R*. Since R is a
y-incidence matrix, the inner product contains exactly one non-zero term, of the form1-1,y -y, ory?- y2.
Only in the latter case, equation (5) is true; hence, entry (i, ij) of R must be y?, so the edge ij of G is oriented
in X just as claimed. The remaining cases follow in the same straightforward manner. O

Theorem 10. Let Y be a mixed orientation of the mixed line graph L,(G) of some graph G. If R is the
y-incidence matrix of some mixed orientation X of G such that

R'R=H/(Y) + 2, (6)

then Y = L,(X), i.e., X is a root of Y.

Proof. Consider entry (i, j) of H,(Y) and assume it equals y. It must match the inner product of row i of R*
and column j of R. By the structure of R, a only nonzero term in this product can only arise if edge i is
adjacent to edge j. The only possible outcomes are y2-y?, y -1, and 1 - y. They correspond to the cases

X5 y EA Z, X - y iz, and x - y L z, respectively. Hence, the edge ij was locally created by a y-line graph
operation. The remaining cases follow in the same straightforward manner. O

Although providing Theorem 8 has been the initial goal for the development of y-line graphs, the
notion of y-line graphs occurs to be a natural choice to the degree that other well-known results from

Figure 2: y-line graph example.
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the domain of undirected line graphs carry over easily. The following Theorem 11 on characteristic poly-
nomials yx is but one such result:

Theorem 11. Let X be a mixed graph. If L,(X) is k-regular with n vertices and m edges, then
XH(Ly(X)), A) = A + 2" (H,(X), A + 2 = k). @

Proof. Similar to the proof of Theorem 3.8 in [2]. O

3 Root orientations

Given a line graph H, an (undirected) graph G satisfying L(G) = H is called a root of H. Likewise, given a
y-line graph Y, a mixed graph X satisfying L,(X) = Y is called a root of V. According to Whitney’s
isomorphism theorem (compared with [14]), any (undirected) line graph usually has exactly one root.
The only exception is G, which has two roots, namely, itself and the star K; 5. Therefore, given a y-line
graph Y, we immediately know all graphs G such that L(G) = I'(¥), i.e., the underlying graphs of all roots
of Y. What remains to be decided is which mixed orientations X of such an undirected root G actually
satisfy L(X) = V.

In view of Theorem 10, equation B*B = H,(Y) + 2I can be used to derive necessary conditions on the
sought mixed orientation X, in the sense that the initial choice of orienting any edge of G — by way of
propagating the conditions along a walk — necessarily determines all other mixed edge orientations. To this
end, we present the following construction:

Construction 12. Let V be a y-line graph and let G be a root of ['(¥/). Further, let W be a walk in G, specified
by the edges e;, ..., e;, such that W contains every pair of adjacent edges of G as subsequent edges e; and
ej,1 (for some 1 <j < k). Construct a matrix B as follows:
(1) Initialize B = 0.
(2) Let uv = e, arbitrarily initialize B, ,, € {y, y?, 1} and set B, ,, = By -
(3) Seti:=1.
(4) Whilei < k:
(a) Let wiu, = ¢; and let wous = e;, 1.
(b) Set Buz,u2u3 = Buz,uﬂlz(Hy(y))uz,Ll}'
(c) Set Buy s = Buy -
(d) Seti=1i+1.

The core of Construction 12 is step 4(b). Considering the current sub-walk with vertices u;, w,, and us,
the only way to make equation B*B = H,(Y) + 2I work at the entry (B*B),, ., is to choose the value of By, ,,u,
in the proposed way, based on the already computed value B, ., and the expected result (H/(¥))u,,u;-
Altogether, Construction 12 completely determines a candidate y-incidence matrix B. Note that any later on
encountered sub-walk with the same respective vertices u, and u; may actually overwrite By, ,,,,, # O with a
different necessary value. Whenever this happens, it is immediately clear that B cannot be the y-incidence
matrix of a valid mixed root orientation, due to a contradiction of necessary conditions.

The following theorem deals with the question how many valid mixed root orientations may actually
exist:

Theorem 13. Any y-line graph Y has at most three mixed root orientations X such that L,(X) = Y.

Proof. We continue our analysis of Construction 12. Assume that step 4b does not alter existing nonzero
values for By, ,,u;, and By, i, along the way. Otherwise B cannot yield a valid mixed root orientation. Next
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consider two matrices B and B’ generated for different walks W and W', respectively. Without loss, we may
assume that W and W' are closed walks (otherwise extend them such that no necessary conditions are
violated). Note that, under the two assumptions mentioned, we may freely rotate or reverse the order of
traversal of W and W’ without changing the resulting matrices B and B'. Assume we have B, ,, = B, ,, # 0
for at least one cell (u, uv). Without loss, we may assume that uv is the first edge in both walks. Assume
further that By ,, # B)'(,Xy for at least one cell (x, xy). Concatenating W and W' into a single walk W”, using

Construction 12 with W” will result in alteration of existing nonzero values; hence, neither B nor B’ can be
the y-incidence matrix of a valid mixed root orientation. As a result, whenever two candidate matrices B
and B’ have the same nonzero value in the same cell, they must be overall identical. Hence, at most three
different candidate matrices can be obtained (by varying the orientation of the starting edge uv). O

Theorem 14. Let Y be ay-line graph and let G be a root of T'(M). If G is bipartite, then there exist exactly three
mixed root orientations X such that L,(X) = Y, otherwise there exists exactly one such orientation.

Proof. Let X such that L,(X) = Y, with associated y-incidence matrix B. Clearly, X and B can obtained
using any mixed walk W as required for Construction 12. Choosing a different value B, ,, in step 2 of
Construction 12 means orienting the initial edge uv of X in a different way. This leads to a domino effect
in step 4, resulting in a different mixed orientation X' and matrix B'. To start with, we have

Bl = YBuw (1esp., y?). 8)

The case in round brackets is analogous, and hence, we focus on the primary case. Consequently,
B)w = Bluw = YBuw = VBuuw- 9)
Let w be the next vertex along W. Then
By = By H (o = ¥°Bu,uw(Hy(N))ww = ¥ By (10)

and
Blf\/,VW = B;,vw = ysz,vw = wa,vw- (11)
The process continues in this way, alternatingly multiplying by y and y2. Clearly, any odd cycle contained in
W will cause an alteration of some existing nonzero value in B, hence violate necessary conditions. Assume
that the graph G is not bipartite. Then it contains an odd cycle, and W can be chosen to contain an odd
cycle, too. Since the starting edge uv is arbitrary, we see that no changes to X are possible without violating
necessary conditions. Hence, X is the only mixed orientation of G such that L,(X) = Y.
Now assume that G is bipartite. Consider equations (9) and (11). As W contains every pair of adjacent edges of
G as subsequent edges e; and e}, it follows that these equations will equally treat all neighbors v of u and in turn all
neighbors of w of v. Thus, comparing the matrix B to B, the entire row v of B gets multiplied by the factor y? and
row w of B by the factor y. In general, it follows that all rows corresponding of vertices having odd distance from u
in G need to be multiplied by y, whereas all rows corresponding to even distance vertices need to be multi-
plied by y2. All such row multiplications can be collected in a diagonal matrix 9, with diagonal entries y, y?
only, so that DB = B'. Thus, (B')*B’' = (DB)*(DB) = B*D*DB. Hence, if B satisfies equation (1), then B’ does as
well, effectively giving us another two valid mixed root orientations (one for each starting factor in (8)). O

Corollary 15. Let Y be a y-line graph, let G be a root of I'(Y), and assume that G is bipartite. Given two
distinct mixed orientations X and X' of G such that L,(X) = L(X') = Y, there exists a diagonal matrix D with
diagonal entries y and y? only such that DB = B’ (where B and B' are the y-incidence matrices of X and X',
respectively).

Proof. This follows from the proof of Theorem 14. Since X # X’ there exist exactly three different mixed root
orientations. These can necessarily be transformed into one another by way of the mentioned process. [
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4 Line graph orientations

Next, we shall shift our perspective a little. Given an arbitrary mixed orientation Y of some line graph
H = L(G), we will now investigate under which conditions we can guarantee that there exists a mixed
orientation X of G such that L(X) = V. First let us recall the following definition:

Definition 16. (compared with [15]) Given an undirected graph G, a system Qy, ..., Qx of cliques of G is
called a complete system of cliques (or Krausz partition) if the following conditions are satisfied:
(i) Fori#j, wehave|Qin Q] <1.
(ii) Every vertex of G is contained in exactly two of the cliques.
(iii) If|Q; N Q| = 1, then |Qi| + |Qj| = deg(w) + 2, where {u} = Q; N Q;.

Note that Definition 16 permits trivial cliques, i.e., some cliques may be isomorphic to K;. Next we state a
classic characterization of line graphs:

Theorem 17. (compared with [15]) An undirected graph is a line graph if and only if it admits a complete
system of cliques.

We remark that, in view of the line graph operation, any clique Q; mentioned that Definition 16 either
arises locally from a maximal star subgraph contained in the root or from a triangle subgraph.

Definition 18. Let D be a mixed graph and H = H*(D). With respect to D and H, the value b, (W) of a mixed
walk W with vertices vy, v, ..., V¢ is defined as follows:

ha(W) = (HV1V2HV2V3HV3V4 Hvk,lvk) € {ar}rez- (12)

Theorem 19. Let X be a mixed graph and Y = L,(X). Further, let Qy, ..., Qx be a complete system of cliques of
I'(Y) and let C be a cycle in some nontrivial Q;, where Q; arises from a star subgraph in the root I'(X) of T'(Y).

Then the mixed cycle ? in Y that corresponds to C has weight ha(E)) =1inYy.

Proof. Under the assumptions of the theorem, the clique Q; of I'() corresponds to the star subgraph
induced by the edges incident some vertex r in I'(X). Suppose that C is traversed by rsy, rs,,..., ISy, 'Sy

(where sy,..., Sm € V(X)). Let E) be the mixed cycle in Y that corresponds to C. By using any traversal

direction, we compute the weight of ? as follows:

N
hy( C ) = Hy(«y)rsl,rszHy(y)rsz,r53 o Hy(«y)rsm,rsl
= ([BLy5,[Bls, ) (1B, [Bls, ) ([B;s,,[Blss, ) (13)
= Br,rslBr,rsz Br,rszBr,r53 Br,rsmBr,r51 =1,

where [B]. denotes the column of the incidence matrix B of X that corresponds to the edge e. O

Example 20. When checking whether some mixed orientations of a given line graph L(G) is actually the
mixed line graph of some mixed orientation of the root G, the necessary condition stated in Theorem 19 can
be used as a first check. For example, consider the mixed graph shown in Figure 3(b). In its undirected
counterpart L(G), the triangle with vertices 0-1, 0-2, and 0-4 has arisen from the star around the vertex 0
when applying the line graph operation to the root shown in Figure 3(a). Hence, traversing that triangle as a

mixed cycle ? of the considered mixed orientation should yield by(?) =1, by Theorem 19. One readily
verifies that this is not the case, and hence, this mixed graph cannot be a mixed line graph of any mixed
orientation of the given root.
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As can be seen from Theorem 19, the existence of feasible root orientations can be linked to the
algebraic properties of the cycles in the candidate y-line graph. The goal of the remainder of this section
is to prove that, for a line graph L(7) of a tree 77, it suffices to have a mixed y-monograph orientation VY in
order to guarantee the existence of a mixed root orientation X of 7~ such that L,(X) = Y. This will be shown
in Theorem 31. In preparation of this theorem, we first require some auxiliary results on monographs.

Definition 21. (Compared with [13]) Let D be a mixed graph.

(i) D is called an a-monograph if ba(?) =1 for all its cycles C, where ? denotes an arbitrary closed
traversal walk on C.
(ii) The a-store S*(u) of u € V(D) is defined as follows:

S%u) = {h(W) : W isaclosedwalkin D from u to u}. (14)

Monographs capture the idea of transporting values along the edges of a mixed graph. One starts by
assigning a seed value to some initial vertex. Spreading along a forward arc, the value at its terminal vertex
will be a times the value at its initial vertex. For a backward arc, the factor is a. For a digon, the factor is 1.
The required factors are easily looked up in the a-Hermitian adjacency matrix. Trivially, trees are
a-monographs.

Clearly, 1 € S%(u) so that |S*(u)| > 1. It is not hard to see that the store content is independent of the
reference vertex u, i.e., S*(u) = S%v) for any u, v € V(9), as long as D is connected. Thus, a-monographs
can be characterized as follows:

Theorem 22. (Compared with [13]) Let D be a connected mixed graph. Then the following statements are
equivalent:
(i) D is an a-monograph.
(il) ba(W') = bo(W") for every pair W', W" of mixed walks sharing the same start and end vertices.
(iii) |S*(u)| = 1 for every u € V(D).

In view of Theorem 22, we may define a store function S® : V — {&/ : j ¢ Z} that assigns to each vertex u
of D the unique element in S*(u). This function is unique up to a normative factor aX.

Theorem 23. Let X be an a-monograph and u € V(X). Given a store function S*, define the matrix
A = diag((S*(V))vev(x)). Then

AH (XN = AT(X)). (15)

Proof. Since A is an invertible diagonal matrix, AH,(X)A* and H,(X) have the same zero-nonzero pattern.
Therefore, it suffices to prove that AH,(X)A* is a 0-1-matrix. Let xy be any edge of X. Since X is an

(@

Figure 3: Mixed orientation of a line graph that is not a mixed line graph. (a) Root graph G and (b) mixed orientation of L(G).
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a-monograph, we have A/A, = (Hy(X))),x = (Ho(X))x,y by the definition of the store. So we obtain
(AHa(X)A*)x,y = Ax(Ha(X))x,yEy =1L O

Remark 24. Application of Theorem 23 to y-monographs (analogously, to y>-monographs) yields an edge
switching procedure that will turn any mixed graph X into its unoriented counterpart. Recall that y? = y.
Performing the multiplication AH,(X)A", for every vertex x, we effectively multiply its associated row in H,(X)
by S%(x) and its associated column by S%(x). Thus, edges adjacent to x are subjected to the switching pattern
depicted in Figure 4. Subsequently applying this pattern to all vertices of X (in any order) yields I'(X).

Theorem 25. Let G be a graph. Further, let a € C\R with |a| = 1. Given any matrix A = diag((Ay)vev(x)) such
that A, = akA, for some k € {-1, 0, 1} is satisfied for all uv € E(G), we have:
(i) NA(G)A is the a-adjacency matrix of a mixed graph X,
(i) I'(X) = G, and
(iii) X is an a-monograph.

Proof. Clearly, H := AA(G)A is a Hermitian matrix with the same zero-nonzero-pattern as A(G). By the
condition imposed on A, it follows that all nonzero entries in H must be from the set {1, a, &}. Hence, (i) and
(ii) have been proven. With respect to (iii), let C = vj»ov3 ... vv; be any cycle in G. Then, the weight of C is
given as follows:

ba(c) = Hvl,vszz,V3 Hvk,vl = (EAVZ) (EAW)"'(MW =1 O (16)
Corollary 26. Every graph has a nontrivial mixed orientation that yields an a-monograph.

In the case of y-monographs, the matrices A encountered in Theorems 23 and 25 play an important role
in describing the relation between a mixed root graph G and its mixed line graph L,(G).

Definition 27. Let X be a y-monograph. Any diagonal matrix A with entries from the set {1, y, y?} satisfying
AH, (X)X = A(T'(X)) shall be called an orientation matrix of X.

Theorem 28. Let X be a y-monograph and B its y-incidence matrix. Further, let A be an orientation matrix of
X. Define the matrix § = diag((8u)uweerx))) bY 6wy = AuByuy. Then,

(i) ABG6* is the incidence matrix of T(X).

(if) 6 is an orientation matrix of L,(X).

Proof. Since A and 6 are invertible diagonal matrices, B’ := AB6* and B have the same zero-nonzero pattern.
Therefore, regarding claim (i), it suffices to prove that B’ is a 0-1-matrix. Since for any uv € E(X) we have

(AB(S*)u,uv = AuBu,uv(‘s*)uv = AuBu,uvAu Bu,uv =1, (17)

it follows that this is indeed the case.

y? Y
-y 2
Iy — x]1
—
1 2 0%
1 y?

Figure 4: Pattern for switching an a-monograph into its undirected counterpart.
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To prove that § is an orientation matrix of L,(X), we need to assert that 6H,(L,(X))6* = A(T(L,(X))). To
this end, we verify

A(T(Ly(X))) = ALT(X))) = (AB6*)*(AB6*) — 2 = B*NABS* — 2I = §(B*B — 21)6* = 6H,(L,(X))8". 18)
O

Theorem 29. Let X be a mixed graph and Y = L,(X). Further, let C be a mixed cycle in X and 57 its

corresponding cycle in Y. Then by(?, X) = hy(?, Y), i.e., the weight ofE) in X and the weight ofa iny
are equal (using analogous traversal direction).

R
Proof. Assume that C is traversed as uy, u,..., Uy, U (with u; € V(X)). Let [B],, denote the row of the
incidence matrix B of X that corresponds to the vertex u;. Then,

by (Cs X) = Hy (X)) (O B (X
= ([Bl ([Bl,)* ) ([Blu([Bl,)*) -+ ([Blu ([Bl, )*) (19)
= (Bt Bty ) (Bt is Busy i)+ (B s By ) -
Let [B*],,; denote the row of the matrix B* that corresponds to the edge u;u;. Observe that
[B* Ly ([BTuas )* = BB = Hy(Ly (X)) (20)

for u; # u; # ux. Moving the first term in the final product of (19) to the back and making use of (20), we
obtain

hy(E)’ X) = ((B)uz,lquz(B)uz,uzu;) ((B)ug,,uzu;(B)u;,u;ul,) c ((B)ul,ukul(B)ul,uluz)

= ( [B*]uluz ([B*]uzug )ik ) ( [B*]uzu3 ([B*]uguz, )ik ) T ( [B*]ukul ( [B*]uluz )* )
= (Hy(Ly(X)))uluz,uzug(Hy(Ly(X)))uzug,uwz, o '(Hy(Ly(X)))ukul,uluz

= b,(C, V). O

Corollary 30. A mixed graph X is an a-monograph if and only if L,(X) is an a-monograph.

21)

Proof. Every cycle in X has a corresponding cycle in L,(X); hence, if L,(X) is an a-monograph, then the
same is also true for X, by Theorem 29. Conversely, let X be an a-monograph and consider a mixed cycle ?

in L,(X). If ? lies in a single clique Q; of the Krausz partition of I'(L,(X)), then either it arises from a star in
the root graph I'(X) (so that Theorem 19 can be applied) or it arises from a triangle (so that Theorem 29 can

— —
be applied). In any case, one obtains h,(C ) = 1. Now assume that C spans more than one clique of the Krausz
partition. Note that, in view of Theorem 19, within any single clique Q; arising from a star subgraph, the values

N
b, of any two mixed walks with the same start and endpoint are identical. Hence, we may alter C into a cycle
=

C' of the same value such that it does not contain more than two vertices from the same clique in a row. As a

consequence, 8 corresponds to a cycle in the graph X, hence the result follows by Theorem 29. O

Given some mixed orientation Y of the line graph of a tree, a necessary condition for the existence of a
mixed root is that all cycles in Y/ must satisfy the condition stated in Theorem 19. It turns out that this
condition is actually sufficient:

Theorem 31. Let Y be a mixed y-monograph such thatT(Y) = L(T) for some tree T . Then Y = L,(X) for some
mixed graph X withT(X) = 7.

Proof. Our goal is to construct a mixed orientation X of 7~ such that ¥ = L,(X). By Theorem 23, since ¥ isa
y-monograph, it has an orientation matrix 8, i.e.,
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A(T'(Y)) = 6H,(Y)6". (22)

Below we outline a recursive procedure that defines a diagonal matrix A and the y-incidence matrix R of
amixed orientation of 7~ satisfying the claim of the theorem. To this end, let B be the incidence matrix of 7.
Fix some vertex u € V(7) and a seed value A, € {1, y, y*}. Now, consider any path P in 7~ with vertices
U="Vy,Vy..., Vg =V fromu tov e V(7) and use the defining equation:

5ViVi+l = AViRVi,ViVi+1 (23)
to determine Ry, ,,,:
6
RV1,V1V2 = AVl‘:Z . (24)

Requiring R to be a y-incidence matrix, we set R, v, = Ry,,vy,- BY using equation (23) once again, we deduce
6v1vz = 6vzv1 = szsz,vlvy (25)
and therefore, we can compute A,, from previously known values as follows:

B, = (i) By (26)

Continuing along the vertices of P, we can repeatedly apply the same pattern of computations as in
equations (24)—(26) to obtain a recursive formula:

AVi = (SV,‘Vi,l)zms (27)
and finally,

- A if i isodd
By = (B ) ( 6)2{T Lo (28)
Vi

if i iseven.

Since every vertex v of 7~ can be reached by a unique path P from u to v in 7, the matrix A is thus
complete and well-defined. Minding the seed value, it is clear from (28) that A, € {1, y, y?}. Hence, by virtue
of Theorem 25, we have

NA(TA = H(X) (29)

for some mixed orientation X of 7.
With respect to the partially defined matrix R, note that for every edge vyv, of 7, we have defined two
entries Ry, vy, = Ry,vy, € 11,7, y?} in the column indexed by viv,. Augment Ry,xy = 0 for all entries of R not

defined so far. Then, by construction, R = A'Bé is the incidence matrix of some mixed orientation of 7.
Keeping in mind equation (29), we compute

RR* = KBS6'B'A = NA(T) + diag((deg(V)),eve)A = H,(X) + diag((deg(M))evin), (30)

and thus R is actually the y-incidence matrix of X, as per Theorem 9. Moreover, by using (22), we conclude
from

R'R = (6*B*A)(A'BS) = 6*(B*B)6 = 8*A(T(Y))6 + 2I = 6'6H,(Y)6°6 + 21 = H(Y) + 21 (31)

that indeed Y = L,(X), as per Theorem 10. (|

Corollary 32. Let Y be a mixed graph such that I'(Y) = L(T) for some tree 7. Then T has exactly three
different mixed orientations X such that Y = L,(X).

It is possible to generalize Theorem 31 as follows:
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Corollary 33. Given any y-monograph Y' such that T'(Y") = L(G) for some undirected root graph G, consider a
spanning tree 7 of G and construct the matrices A, 6, and R as outlined in the proof of Theorem 31. However,
instead of augmenting R with zeroes, redefine it as R := N'B'S8, where B' is the incidence matrix of G (not 7). If
for every edge xy € E(G)\E(T) we have A, = (6xy)?, then the mixed graph Y' with H,(Y') = N'A(G)A is a root
of V'.

Proof. First one needs to verify that R is a proper y-incidence matrix. As R has the same zero-nonzero
pattern as B, it suffices to check that R, ,, = R, ,, holds for each of the extra edges xy € E(G)\E(7). Note that
the redefinition of R merely augments any entries not yet specified. It follows from A, = (6,,)? that
Rexy = AByyby = (658, )8y, = b6yA, =R, . We see that equations (27) and (28) are now satisfied for
arbitrary paths in G. Consequently, the remainder of the proof of Theorem 31 can now be lifted to the entire
graph G. O

Note that, whenever the conditions stated in Theorem 33 are met, it permits the construction of three
valid mixed roots, and hence, Theorem 14 applies.

5 Conclusion and outlook

Returning to the aforementioned discussion whether some choices of a for the a-Hermitian adjacency
matrix may prove better than others, it has turned out that the combination of y-Hermitian adjacency
matrix and y-incidence matrix (resp., y?) gives rise to a natural notion of line graphs of mixed graphs.
The theory that follows from studying the properties of mixed line graphs shows both interesting parallels
to — and digressions from - the theory of undirected line graphs. Most notably, if ¥ = L,(X) for mixed
graphs X and Y, then I'(¥) = L(G) (with G = I'(X)), but besides X, there may be further mixed orientations
X' of G with the property that ¥ = L,(X’). Keeping in mind a broad audience that might be interested in
using a-Hermitian adjacency matrices in connection with mixed line graphs, the results in this article have
been purposely presented in a way to make the article self-contained. However, for the sake of deriving
further, and even deeper results on mixed line graphs one can turn to the theory of gain graphs. These
graphs constitute a generalization of mixed graphs, along with a generalization of the a-Hermitian adja-
cency matrix (compared with [16]). A T,-gain graph can be defined as follows. Let T,, denote the multi-
plicative group of all nth roots of unity. Then, a T,-gain graph is a triple @ = (T, T,, ¢) consisting of an
underlying graph, I’ = (V, E), the group T, and the gain function ¢ : E — T, such that for every uv € E,
¢uv) = ¢p(vu)'. The ¢p-Hermitian adjacency matrix of @ is defined by Hg = [hy,] € C™™", where

(32

W ¢(uv) if u isadjacentto v,
v 0 otherwise.

Obviously, the ¢-Hermitian adjacency matrix of a mixed graph is a generalization of the a-Hermitian
adjacency matrix (compared with [17] and [18] for recent results). Furthermore, the y-Hermitian adjacency
matrix is exactly the ¢-Hermitian adjacency matrix of T3-gain graph. Like in this article, the authors of
[19-21] introduced different matrices (called incidence T,-phase) that can serve as incidence matrices to
T,-gain graphs (see also [5]). This paved the way to define the gain line graph, gain Laplacian, and gain signless
Laplacian adjacency matrix of T,-gain graphs. In fact, different T,,-phases can produce the same gain line graph.
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