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Abstract: For a simple graph with vertex set v v v, , , n1 2{ }… and degree sequence d i n1, 2, ,vi = … , the inverse

sum indeg matrix (ISI matrix) A G aijISI( ) ( )= of G is a square matrix of order n, where a ,ij
d d

d d
vi vj

vi vj
=

+

if vi is

adjacent to vj and 0, otherwise. The multiset of eigenvalues τ τ τn1 2≥ ≥⋯≥ of A GISI( ) is known as the ISI

spectrum ofG. The ISI energy ofG is the sum τi
n

i1∣ ∣∑

=

of the absolute ISI eigenvalues ofG. In this article, we give
some properties of the ISI eigenvalues of graphs. Also, we obtain the bounds of the ISI eigenvalues and
characterize the extremal graphs. Furthermore, we construct pairs of ISI equienergetic graphs for each n 9≥ .
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1 Introduction

A graph G G V E,( )= consists of a vertex set V G v v v, , , n1 2( ) { }= … and an edge set E G( ). We consider only
simple and undirected graphs, unless otherwise stated. The number of elements inV G( ) is the order n, and
the number of elements in E G( ) is the size m ofG. By u v~ , we mean vertex u is adjacent to vertex v, we also
denote an edge by e. The neighbourhood N v( ) of v V G( )∈ is the set of vertices adjacent to v. The degree dvi

(or simply di) of a vertex vi is the number of elements in the set N vi( ). A graph G is called r-regular if the
degree of every vertex is r. For two distinct vertices u and v in a connected graph G, the distance d u v,( )

between them is the length of a shortest path connecting them. The largest distance between any two
vertices in a connected graph is called the diameter ofG. We denote the complete graph by Kn, the complete
bipartite graph by Ka b, , and the star by K n1, 1−

. We follow the standard graph theory notation, and more
graph theoretic notations can be found in [1].

The adjacency matrix A G( ) of G is a square matrix of order n n× , with i j,( )th entry equals 1, if vi and vj

are adjacent and 0 otherwise. Clearly, A G( ) is a real symmetric matrix, and its multiset of eigenvalues is
known as the spectrum ofG. Let λ λ λn1 2≥ ≥⋯≥ be the eigenvalue of A G( ), where the eigenvalue λ1 is called
the spectral radius of G. More about the adjacency matrix A G( ) can be seen in [1–3].

The energy [4] of G is defined as follows:

G λ .
i

n

i
1

( ) ∣ ∣
∑

=

=

�

The energy is intensively studied in both mathematics and theoretical chemistry since it is the trace norm of
real symmetric matrices in linear algebra and the total π-electron energy of a molecule, see [5,6]. For more
about the energy of G, including the recent development, see [7–9].
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The inverse sum indeg index (ISI index) [10] is a topological index defined as follows:

G
d d

d d
ISI .

v v E G

v v

v vi j

i j

i j

( )
( )

∑
=

+

∈

The ISI index is a well-studied topological index and has many applications in quantitative structure-
activity or structure-property relationships (QSAR/QSPR) [11–13].

The inverse sum indeg matrix (ISI matrix) of a graph G, introduced by Zangi et al. [14], is a square
matrix of order n defined as follows:

A G a
d d

d d
v vif is adjacent to

0 otherwise .
ij n n

v v

v v
i j

ISI

i j

i j( ) ( )
⎧

⎨

⎩

= =
+

×

The ISI matrix is a real symmetric, and its eigenvalues are also real. We order its eigenvalues from largest to
smallest by

τ τ τ .n1 2≥ ≥⋯≥

The multiset of all eigenvalues of the ISI matrix of G is known as the ISI spectrum of G, and the largest
eigenvalue τ1 is called the ISI- spectral radius of G. If an eigenvalue, say τ, of the ISI matrix occurs with
algebraic multiplicity k 2≥ , then we denote it by τ k[ ]. The ISI energy of G is defined as follows:

G τ .
i

n

iISI
1

( ) ∣ ∣
∑

=

=

�

Zangi et al. [14] gave the basics properties of the ISI matrix including the bounds for the ISI energy of
graphs. Hafeez and Farooq [15] obtained ISI spectrum and ISI energy from special graphs. They also gave
some bounds on the ISI energy of graphs. Bharali et al. [16] gave some bounds on ISI energy and introduced
ISI Estrada index of G. Havare [17] obtained the ISI index and ISI energy of the molecular graphs of
Hyaluronic Acid-Paclitaxel conjugates. For some other types of energies and indices, see [18–26].

In Section 2, we characterize graphs with two distinct ISI eigenvalues and three distinct ISI eigenvalues
among bipartite graphs and give some sharp bounds on the ISI spectral radius and the ISI energy of graphs,
which are better than already known results. In Section 3, we give the ISI spectrum of the join of two graphs,
and as a consequence, we construct ISI equienergetic graphs for every integer n 9.≥ We end up article with
a conclusion for future work.

2 Inverse sum indeg energy of graphs

It is trivial that nK1 is the only graph with exactly one ISI eigenvalue and its ISI spectrum is 0 n{ }[ ] . Next, we
have result about graphs whose all ISI eigenvalues are equal in absolute value.

Proposition 2.1. Let G be a graph of order n. Then, τ τ τn1 2∣ ∣ ∣ ∣ ∣ ∣= = ⋯= if and only if G nK1≅ or G K .n
2 2≅

Proof. If G is either nK1 or Kn
2 2, then the ISI spectrum of nK1 is 0 n{ }[ ] and ISI spectrum of Kn

2 2 is

,1
2

1
2

n n
2 2⎧

⎨
⎩

⎫

⎬
⎭

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
( ) ( )

− . Now, it is clear that τ τ τn1 2∣ ∣ ∣ ∣ ∣ ∣= = ⋯= .

Conversely, assume that τ τ τn1 2∣ ∣ ∣ ∣ ∣ ∣= = ⋯ = and let k be the number of isolated vertices in G. If k 1,≥

then τ τ τ 0n1 2= = ⋯= = and G nK1≅ . The other possibility is that k 0,= and if maximum degree is 1, then
d 1,i = for i n1, 2, , .= … Thus,G must be K .n

2 2 Now, if maximum degree is greater than or equal to two, thenG
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contains a connected component G′ with order at least 3. By Perron-Frobenius theorem, τ G τ G1 2( ) ( )>
′ ,

which is not possible. Thus, G K .n
2 2≅ □

The following well-known result provides a relationship between the number of distinct eigenvalues in
a graph and its diameter. It can be found in [2].

Theorem 2.2. [2] Let G be a connected graph with diameter D. Then, G has at least D 1+ distinct adjacency
eigenvalues.

From the proof of Theorem 2.2 (Proposition 1.3.3, [2]), it follows that Theorem 2.2 is true for any non-
negative symmetric matrix M mij n n( )=

×

indexed by the order of a graphG, in whichm 0ij > if and only if vi is
adjacent to vj. The following result is the consequence of Theorem 2.2.

Corollary 2.3. If G is a graph of diameter D and has t distinct ISI eigenvalues, then D t 1≤ − .

Another immediate important consequence is given as follows.

Corollary 2.4. Let G be a connected graph of order n 2≥ . Then, G has exactly two distinct ISI eigenvalues if
and only if G is the complete graph.

Proof. Let G Kn≅ , then the ISI spectrum of G is ,n n n1
2

1
2

12( ) ( ) [ ]

{ }
( )

−

− −

−

, and G has two distinct ISI
eigenvalues.

Conversely, ifG has exactly two distinct eigenvalues, from Corollary 2.3, its diameter is 1. Therefore,G is
necessarily Kn. □

The following observation states thatG has a symmetric ISI spectrum towards the origin ifG is bipartite.

Remark 2.5. Clearly, the ISI matrix of the bipartite graph G can be written as follows:

G B
B
0

0
ISI .T( ) ⎛

⎝
⎞
⎠

=

If τ is an eigenvalue of GISI( ) with an associated eigenvector X x x, T
1 2( )= , then it is clear that G X τXISI( ) = .

Also, it is easy to see that G X τXISI ,( ) ′
= −

′ where X x x, .T
1 2( )′

= − This implies that the ISI eigenvalues of a
bipartite graph are symmetric about the origin.

Proposition 2.6. Let G be a bipartite graph. Then, G has three distinct ISI eigenvalues if and only if G is the
complete bipartite graph.

Proof. Let G Ka b,≅ be the complete bipartite graph with partite cardinality a and b a b n, ( )+ = . Then, the
ISI spectrum (see [15]) of G is

ab
n

ab
n

, 0 , ,n 2
3
2

3
2⎧

⎨
⎩

( ) ( ) ⎫

⎬
⎭

[ ]
−

−

and clearly G has three distinct ISI eigenvalues. Conversely, if we assume that G has three distinct ISI
eigenvalues, then by Corollary 2.3, the diameter of G is at most two. Also, by Corollary 2.4, diameter of G
cannot be one as in this case G cannot have three distinct ISI eigenvalues. So, diameter of G is exactly two.
As G is a bipartite graph of diameter two, so any two non-adjacent vertices of G must have the same
neighbour; otherwise, if a vertex u has neighbour w not adjacent to v, then w along with uv-path induces
the path P4 subgraph, which cannot happen as the diameter ofG is two. Thus, any two non-adjacent vertices
in G share the common neighbour, and it follows that G is the complete bipartite graph. □
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The sum of the squares of the eigenvalues (Frobenius norm of real symmetric matrix) of the ISI matrix
(Theorem 5, [14]) is

τ ττ
d d

d d
B2 2 2 ,

i

n

i
i j n

i j
i j n

i j

i j1

2

1 1

2

⎜ ⎟
⎛

⎝

⎞

⎠
∑ ∑ ∑

= − =

+

=

= ≤ < ≤ ≤ < ≤

(1)

where B .i j n
d d

d d1

2
i j

i j( )

= ∑

≤ < ≤

+

The following result gives the bounds for the ISI spectral radius of graphs in terms of the Frobenius
norm and ISI index.

Lemma 2.7. Let G be a graph of order n. Then the following holds

(i) τ ,B
n

n B
n

2
1

2 1( )
≤ ≤

− with equality on left if and only if G nK1≅ or G K .n
2 2≅ While for connected graph,

right equality holds if and only if G K .n≅

(ii) τ G
n1

2ISI( )
≥ with equality holding if and only if G is a connected regular graph.

Proof. As τ τ τ B2 ,n1
2

2
2 2

+ + ⋯+ = so B nτ2 1
2

≤ , with equality if and only if τ τ τ .n1 2∣ ∣ ∣ ∣ ∣ ∣= = ⋯= By Proposition
2.1, G nK1≅ or G K .n

2 2≅

Also, by the Cauchy-Schwartz inequality, we have

τ B τ B
n

τ B τ
n

2 2 1
1

2
1

.
i

n

i
i

n

i1
2

2

2

2

2
1
2

⎜ ⎟
⎛

⎝

⎞

⎠

∑ ∑
= − ≤ −

−

= −

−

= =

Therefore, τ n B
n1

2 1( )
≤

− . If equality holds, then all above inequalities are equalities, that is τ τ τn2 3= = ⋯= .

It follows that G has two distinct ISI eigenvalues. By Corollary 2.4, G is the complete graph.
(ii) Let X x x x, , , n

T
1 2( )= … be an arbitrary vector of n� and let J denote the vector with all entries equal

to 1, that is J 1, 1, ,1( )= … . Furthermore, we note that A GISI( ) is non-negative and an irreducible matrix.
Thus, by Perron-Frobenius theorem, τ τi1 ∣ ∣≥ for all i and τ 0.1 > Therefore, by Rayleigh quotient for
Hermitian matrices [27], we have

τ X A G X
X X

J A G J
X X

G
n

max 2ISI .
X

T

T

T

T1
0

ISI ISI( ) ( ) ( )
= ≥ =

≠

IfG is an r-regular graph, then A G A Gr
ISI 2( ) ( )= . Also, it is well known that the largest eigenvalue λ1 of A G( )

is bounded above by the maximum degree Δ with equality if and only ifG is regular. So, for regular graphs,
we have τ r

1 2

2
= and τG

n
rm
n

r2ISI 2
2 2 1

2( )
= = = , since m nr

2= . □

Next, we have the analogue of the McClelland bound for the ISI energy of a graph. The upper bound of
(i) part of Theorem 2.8 is given in [15], but extremal graphs were not characterized.

Theorem 2.8. Let G be a graph of order n. Then,

B G nB2 2 ,ISI( )≤ ≤�

with equality holding on right if and only if G nK1≅ or G Kn
2 2≅ and equality holding on left if and only

if G K a b n, .a b,≅ + =

Proof. By applying the Cauchy-Schwarz inequality to vector τ τ τ, , , ,n1 2(∣ ∣ ∣ ∣ ∣ ∣)… we have

G τ n τ nB2 ,
i

n

i
i

n

iISI
1 1

2( ) ∣ ∣
∑ ∑

= ≤ =

= =

� (2)

with equality holding if and only if τ τ τ .n1 2∣ ∣ ∣ ∣ ∣ ∣= = ⋯= By Proposition 2.1, G is either nK1 or K .n
2 2

Also, by equation (1), we have
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G τ τ τ τ ττ τ B2 2 2 4 ,
i

n

i
i j n

i j
i

n

i
i j n

i j
i

n

iISI
2

1

2

1 1

2

1 1

2( ( )) ∣ ∣∣ ∣
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= + ≥ + = =

= ≤ < ≤ = ≤ < ≤ =

�

with equality holding if and only if τ τn1 = − and τ τ 0.n2 1= ⋯= =

−

By Proposition 2.6,G must be the complete
bipartite graph, since ISI spectrum is symmetric towards origin and 0 is the ISI eigenvalue of G with

multiplicity n 2− . Conversely, for G Ka b,≅ , B ab
n

3
2( )

= , and K B2 2a b
ab

nISI ,

3
2

( )
( )

= =� . □

The second part of the next result is the analogue of Koolen-Moulton bound for the ISI energy of graphs.

Theorem 2.9. Let G be a graph of order n. Then, the following hold.
(i) If G is connected, then

G τ G
n

2 4ISI ,ISI 1( )
( )

≥ ≥�

with equality if and only if G is regular and has only one positive ISI eigenvalue, like the complete regular
multipartite graphs, the Peterson graph and its complement.

(ii)

G G
n

n B G
n

2ISI 1 2 2ISI .ISI

2
⎜ ⎟( )

( )
( )⎛

⎝

⎛
⎝

( ) ⎞
⎠

⎞

⎠

≤ + − −�

The bound is achieved if G is either nK K K, ,n
n1 2 2 or a non-complete connected graph with three distinct ISI

eigenvalues τ G
n1

2ISI( )
= and the other two distinct eigenvalues with absolute value .

B

n

2

1

G
n

2ISI 2

( )

( )
( )

−

−

Proof. Let p 1≥ be the number of positive ISI eigenvalues. Then,

G τ τ τ2 2 ,
i

n

i
i

p

iISI
1 1

1( ) ∣ ∣ ∣ ∣
∑ ∑

= = ≥

= =

�

with equality holding if and only if G has only two non-zero ISI eigenvalues (one positive and one negative
as τ 0i

n
i1∑ =

=

). By Lemma 2.7, we obtain

G G
n

4ISI ,ISI( )
( )

≥�

with equality holding if and only if G is a regular connected graph with only one positive ISI eigenvalue.
(ii) By the Cauchy-Schwartz inequality, we have

G τ τ τ n B τ1 2 ,
i

n

iISI 1
2

1 1
2( ) ∣ ∣ ( )( )

∑
= + ≤ + − −

=

� (3)

with equality if and only if τ τ τn2 3∣ ∣ ∣ ∣ ∣ ∣= = ⋯= . We can easily verify that F x x n B x1 2 2( ) ( )( )= + − − is

decreasing in the interval B, 2B
n

2
( )

. Thus, inequality (3) remains valid if on the right side of F x( ), the

variable is replaced with any lower bound of τ1. So from Lemma 2.7. we have

G G
n

n B G
n

2ISI 1 2 2ISI .ISI

2
⎜ ⎟( )

( )
( )⎛

⎝

⎛
⎝

( ) ⎞
⎠

⎞

⎠

≤ + − −�

The equality occurs if and only if all inequalities are equalities. By Lemma 2.7, G is a regular graph and by

equality in the Cauchy-Schwartz inequality if τ τ τn
B

n2 3
2

1

G
n

2ISI 2

∣ ∣ ∣ ∣ ∣ ∣
( )

( )
( )

= = ⋯= =

−

−

. Thus, we have two cases:

first possibility is G has two distinct ISI eigenvalues and by Corollary 2.4, G Kn≅ . The second possibility is

that G has three distinct ISI eigenvalues, τ G
n1

2ISI( )
= and the other two distinct eigenvalues with absolute

value .
B

n

2

1

G
n

2ISI 2

( )

( )
( )

−

−

□
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Next, lemma is an application of interlacing theorem, it relates the independence number (the cardin-
ality of a largest pairwise non-adjacent vertex set) to the number of positive and non-positive ISI eigen-
values of G.

Lemma 2.10. Let G be a graph with n vertices, and let p and q be the number of ISI eigenvalues that are greater
than and less than equal to 0, respectively. Then,

μ n p n qmin , ,{ }≤ − −

where μ is the independence number of G.

Proof. As G has independence number μ, so the ISI matrix of G has the principal submatrix M 0μ μ′
=

×

. By
interlacing theorem [27], we obtain τ A G τ M 0μ μISI( ( )) ( )≥

′
= and τ A G τ M 0n μ 1 ISI 1( ( )) ( )≥

′
=

− +

. This completes
the proof. □

Theorem 2.11. Let G be a connected graph with independence number μ, p, and q number of ISI eigenvalues
which are greater than and less than equal to 0, respectively. Then

G n μ B2 ,ISI( ) ( )≤ −� (4)

with equality holding if and only if G is the star graph K n1, 1−

.

Proof. Let τ τ τp1 2≥ ≥⋯≥ and τ τ τq1 2′
≥

′
≥⋯≥

′ be the positive and non-positive ISI eigenvalues ofG, respec-
tively. Since τ 0i

n
i1∑ =

=

, so τ τi
p

i i
q

i1 1∣ ∣∑ = ∑
′

= =

and by the definition of ISI energy, we have

G τ τ2 2 .
i

p

i
i

q

iISI
1 1

( ) ∣ ∣
∑ ∑

= =
′

= =

�

Now, by using the Cauchy-Schwartz inequality, we have

G τ p τ2 2 ,
i

p

i i
p

iISI
1

1
2( )

∑ ∑
= ≤

=

=

�

with equality holding if and only if τ τ τ .p1 2= = ⋯=

Similarly,

G τ q τ2 2 ,
i

q

i i
q

iISI
1

1
2( ) ∣ ∣ ( )

∑ ∑
=

′
≤

′

=

=

�

with equality holding if and only if τ τ τ .q1 2∣ ∣ ∣ ∣ ∣ ∣′
=

′
= ⋯=

′ Now, by Lemma 2.10, we have

G p τ q τ n μ τ n μ τ n μ τ n μ B
2

2 ,
i

p

i
i

q

i
i

p

i
i

q

i
i

n

i
ISI

2

1

2

1

2

1

2

1

2

1

2( ( ))
( ) ( ) ( ) ( ) ( ) ( )

∑ ∑ ∑ ∑ ∑
≤ +

′
≤ − + −

′
= − = −

= = = = =

�

and the required inequality (4) follows.
If equality holds in (4), then from above, we have τ τ τp1 2= = ⋯= , τ τ τq1 2∣ ∣ ∣ ∣ ∣ ∣′

=
′

= ⋯=
′ , and p q n μ.= = −

But by the Perron-Frobenious theorem, τ1 is a simple eigenvalue of G, so p 1= , and it implies that
q μ n1, 1= = − , and the ISI eigenvalue 0 has multiplicity n 2.− By Lemma 2.6, G is the complete bipartite
graph, thereby it follows that G K ,n1, 1≅

−

since its independence number is n 1.−

Also, the ISI spectrum ([15], Theorem 8) of K n1, 1−

is

n
n

0 ,
1

,n 2
3

⎧

⎨
⎩

( ) ⎫

⎬
⎭

[ ]
±

−

−

the independence number is α n 1,= − and
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B
n

n
n

n
n

n
2

1 1
2 1 .

3 2 3 2
3

2
⎛

⎝
⎜

( ) ⎞

⎠
⎟

⎛

⎝
⎜

( ) ⎞

⎠
⎟

( )
=

−

+ −

−

=

−

Therefore, we have

n μ B n n n
n

n
n

K2 2 1 1 2
1

.n
3

2

3

ISI 1, 1( ) ( )
( ) ( )

( )− = − +

−

=

−

=

−

�

This proves the equality case. □

3 ISI equienergetic graphs

Two graphs of the same order are said to be equienergetic (or adjacency equienergetic) if they have the same
energy but have a different adjacency spectrum. Likewise, two graphs of order n are said to be ISI equi-
energetic if they have the same ISI energy but distinct ISI spectrum.

LetG1 andG2 be the connected graphs of order n1 and n2, respectively. The join ofG1 andG2, denoted by
G G1 2+ , is the graph obtained by joining each vertex of G1 to every vertex of G2. If both G1 and G2 are
complete graphs, then G G1 2+ is the complete graph, otherwise its diameter is 2.

Suppose we have a matrix M partitioned in some block form, and we form a newmatrixQ whose entries
are the average row sums of the blocks of the partitioned matrix, then such a matrix is known as the
quotient matrix. If the average row sums of blocks are some constant, not necessarily same for all blocks,
and this happens for every block we say that the quotient matrix is equitable. In general, the eigenvalues of
Q matrix interlace those of M . While for equitable quotient matrix, each of the eigenvalues of Q is the
eigenvalue of M [1,2].

The following theorem gives the ISI spectrum of the join of two regular non-complete graphs.

Theorem 3.1. Let G1 and G2 be r1-regular and r2-regular graphs of order n1 and n2, respectively. Let
λ r λ λ, , , n1 1 2 1= … , and λ r λ λ, , , n1 2 2 2

′
=

′
…

′ be the adjacency eigenvalues of G1 and G2, respectively. Then, the

ISI spectrum ofG G1 2+ consists of the eigenvalues λr n
i2

1 2+ and λr n
j2

2 1
′

+ , where i n2, 3, , 1= … and j n2, 3, , 2= … ,

and the other two eigenvalues are

r n r r n r D1
2

1
2

,1
2

2 1 2
2

1 2⎛
⎝

( ) ⎞
⎠

+ + + ±

where D n n4r n r r n r r r r n r n r n r n
r r n2

2

4 1 2
2 2

1
2

2 1 2
2

1 2 1 2 1 2 2 1 1 2 2 1

1 2
⎛
⎝

⎞
⎠

( )( ) ( )( )

( ) ( )

= − −

+ + + + + + +

+ +

.

Proof. Let G G G1 2= + be the join of r1-regular graph G1 and r2-regular graph G2. Clearly, G is of order
n n n1 2= + . We first index the vertices of G1 and then the vertices G2. With this indexing, the ISI matrix is

M

r n A G r n r n
r r n

J

r n r n
r r n

J r n A G

2

2

,
n n

n n

1 2
1

1 2 2 1

1 2

1 2 2 1

1 2

2 1
2

1 2

2 1

⎛

⎝

⎜

⎜
⎜

( )
( )( )

( )( )
( )

⎞

⎠

⎟

⎟
⎟

=

+ + +

+ +

+ +

+ +

+

×

×

(5)

where Jn n1 2×

and Jn n2 1×

are the matrices whose each entry equals 1, and A Gi( ) is the adjacency matrix ofGi, for
i 1, 2.= SinceG1 is r1 regular, it follows that r1 is an eigenvalue of A G1( ) with the corresponding eigenvector J
(whose all entries are equal to 1), and J is orthogonal to all other eigenvectors of G1. Let x be a non-zero
column vector satisfying A G x λ xi1( ) = and J x 0.T

= Noting that J x 0n n1 2 =

×

and taking X x
0( )

= , we obtain

MX r n λ X
2

.i
1 2

=

+

This implies that if λi is the eigenvalue of A G1( ), λ r1≠ , then λr n
i2

1 2+ is the eigenvalue of the ISI matrix of

G G1 2+ . In this way, we obtain n 11 − eigenvalues λr n
i2

1 2+ , i n2, 3, ,= … of matrix (5).
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Similarly as above, we can verify that λr n
i2

2 1
′

+ , i n2, 3, , 2= … , are n 12 − eigenvalues of the ISI matrix ofG.

The other two ISI eigenvalues of G G1 2+ are those of the quotient matrix

r r n n r n r n
r r n

n r n r n
r r n

r r n
2

2

.
1

1 2
2

1 2 2 1

1 2

1
1 2 2 1

1 2
2

2 1

⎛

⎝

⎜

⎜
⎜

( )( )

( )( )

⎞

⎠

⎟

⎟
⎟

+ + +

+ +

+ +

+ +

+

(6)

Clearly, the characteristic polynomial of (6) is

λ λ r r n r r n r r r n r n n n r n r n
r r n2 4

2
1 1 2 2 2 1

1 2 1 2 2 1
1 2

1 2 2 1

1 2

2
⎜ ⎟( ( ) ( ))

( )( ) ⎛

⎝

( )( ) ⎞

⎠
− + + + +

+ +

−

+ +

+ +

and its zeros are

r n r r n r D1
2

1
2

,1
2

2 1 2
2

1 2⎛
⎝

( ) ⎞
⎠

+ + + ±

where D n n4r n r r n r r r r n r n r n r n
r r n2

2

4 1 2
2 2

1
2

2 1 2
2

1 2 1 2 1 2 2 1 1 2 2 1

1 2
⎛
⎝

⎞
⎠

( )( ) ( )( )

( ) ( )

= − −

+ + + + + + +

+ +

. This completes the proof. □

The following result gives the ISI energy ofG G1 2+ in terms of the adjacency energy ofG1 and G2, when
both G1 and G2 are regular.

Theorem 3.2. Let G1 and G2 be r1 and r2 regular graphs of orders n1 and n2, respectively. The ISI energy of
G G1 2+ is

r n G r n G r r n r r n D
2 2 2 2

,1 2
1

2 1
2 1

1 2
2

2 1
( ) ( ) ⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

+

+

+

−

+

−

+

+� �

where D n n4r n r r n r r r r n r n r n r n
r r n2

2

4 1 2
2 2

1
2

2 1 2
2

1 2 1 2 1 2 2 1 1 2 2 1

1 2
⎛
⎝

⎞
⎠

( )( ) ( )( )

( ) ( )

= − −

+ + + + + + +

+ +

.

Proof. By Theorem 3.1, the ISI spectrum of G G1 2+ consists of r n
2

1 2+ times the adjacency eigenvalues of G1

except r1,
r n

2
2 1+ times the adjacency eigenvalues ofG2, except that r2 and the eigenvalues of Matrix (6). By the

definition of ISI energy, we have

G G r n λ G r n λ G D

r n λ G r r r n λ G r r D

r n G r n G r r n r r n D

2 2

2 2

2 2 2 2
. □

i

n

i
i

n

i

i

n

i
i

n

i

ISI 1 2
1 2

2
1

2 1

2
2

1 2

2
1 1 1

2 1

2
1 2 2

1 2
1

2 1
2 1

1 2
2

2 1

1 2

1 1

⎜ ⎟ ⎜ ⎟

( ) ∣ ( )∣ ∣ ( )∣

⎛

⎝

∣ ( )∣
⎞

⎠

⎛

⎝

∣ ( )∣
⎞

⎠

( ) ( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∑ ∑

∑ ∑

+ =

+

+

+

+

=

+

+ − +

+

+ − +

=

+

+

+

−

+

−

+

+

= =

= =

�

� �

Figure 1: Two equienergetic graphs on none vertices.
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Theorem 3.3. For every n 8> , there exists a pair of ISI equienergetic graphs of order n.

Proof. Consider two 4-regular equienergetic graphs (Example 4.1, [28]) as in Figure 1. Also, G G 161 2( ) ( )= =� �

and G G 32ISI 1 ISI 1( ) ( )= =� � . Let H G Kω1 1= + and H G Kω2 2= + be two new graphs. Then, by applying
Theorem 3.2, we have

H H t D
w

24 1
2 4 2 7

,ISI 1 ISI 2
2

( ) ( )
( )

( )
= = +

−

+

′

+

� �

where D ω ω ω ω ω ω4 196 3,517 28,578 106,953 156,528 28,2246 5 4 3 2
′

= + + + + + + . Therefore, H1 and H2 are
the ISI equienergetic graphs. □

4 Conclusion

The extremal energy (ISI energy) problem is long standing, and it is very non-trivial to explicitly charac-
terize the graphs with maximum and minimum energy (ISI energy) among general graphs. The problem of
maximal (minimal) ISI energy of arbitrary graphs remains open. Besides, new concepts like the Estrada
index, sum of k largest ISI eigenvalues (Ky Fan k-norm), Laplacian ISI matrices, distribution of ISI eigen-
values, spectral radius, and application of ISI spectra in chemical theory are yet to be introduced/inves-
tigated (like in [5,26,25]). The more important is relating the spectral parameters of the ISI matrix to the
underlying graph structure and the relation of the ISI matrix to the adjacency matrix for irregular graphs
remains challenging.
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