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Abstract:Monotone matrices are stochastic matrices that satisfy the monotonicity conditions as introduced
by Daley in 1968. Monotone Markov chains are useful in modeling phenomena in several areas. Most
previous work examines the embedding problem for Markov chains within the entire set of stochastic
transition matrices, and only a few studies focus on the embeddability within a specific subset of stochastic
matrices. This article examines the embedding in a discrete-time monotone Markov chain, i.e., the existence
of monotone matrix roots. Monotone matrix roots of 2 2( )× monotone matrices are investigated in previous
work. For 3 3( )× monotone matrices, this article proves properties that are useful in studying the existence
of monotone roots. Furthermore, we demonstrate that all 3 3( )× monotone matrices with positive eigen-
values have an mth root that satisfies the monotonicity conditions (for all values m m, 2�∈ ≥ ). For
monotone matrices of order n 3> , diverse scenarios regarding the matrix roots are pointed out, and inter-
esting properties are discussed for block diagonal and diagonalizable monotone matrices.
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1 Introduction

The embedding problem as introduced by Elfving in [1] investigates whether or not a discrete-time
Markov chain is embeddable in a continuous-time Markov chain [2,3]. A Markov chain with a transition
matrix P is continuous embeddable in case there exists a Markov generator G such that e PG

= . Besides
continuous embeddability, discrete embeddability is being studied. It regards the problem of whether or
not a discrete-time Markov chain can be embedded in a discrete-time Markov chain [4,5]. Particularly, the
discrete embedding problem involves the question of whether, for a given Markov chain regarding time

unit 1, there exists a compatible Markov chain regarding time unit
m
1 (m m, 2�∈ ≥ ). The transition matrix

of a Markov chain enables us to reformulate this problem: A Markov chain with a transition matrix P is
discrete embeddable in case there exist a stochastic matrix A and a number m m, 2�∈ ≥ satisfying
P Am

= . Such a matrix A is in fact an mth root of P within the set of stochastic matrices and is called a
stochastic mth root of P. Several methods exist for computing matrix roots without focusing on stochastic
roots [6,7]. Stochastic roots of n n( )× transition matrices are examined in some recent work [8,9],
including studies that address in particular n 2= and n 3= [10,11]. In case for a transition matrix P there
exists a stochastic root, we say that the matrix P is discrete embeddable within the set of stochastic
matrices.

In building a Markov model, there are different possible situations in which one has to deal with a lack
of data. One of these situations occurs when data are only available regarding time intervals that are greater
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than the time unit of the Markov model. In such a situation, the stochastic mth roots nevertheless provide

insight into the transition probabilities regarding time intervals with length
m
1 (m m, 2�∈ ≥ ). In this way, a

stochastic mth root enables us to find parameter estimations for a Markov chain in case there is a lack of
appropriate data.

In modeling a specific context, the transition matrix P of the Markov chain satisfies specific conditions.
In examining the embeddability in such a situation, the existence of an arbitrary stochastic root is not
satisfactory since the same specific conditions have to be fulfilled by the stochastic root of P. In this way,
the transition matrix P as well as its matrix roots are both elements of the same specific subset of stochastic
matrices. Recently, several articles have investigated matrix roots and the embedding problem within a
specific subset of stochastic matrices: Matrix roots are examined within the set of symmetric and monomial
matrices [12], within the set of circulant matrices [13], and within the set of state-wise monotone matrices
[14]. The embedding problem for reversible Markov chains is investigated in [15] and for Kimura Markov
matrices in [16].

Monotone Markov chains are introduced by Daley in [17] and further investigated by Keilson and Kester
in [18]. Several authors point out the importance of monotone Markov models in practice for diverse
contexts: for example, monotone Markov models for intergenerational occupational mobility, where the
states are occupational categories that have a natural ranking from worst to best, and the transition
probability pij expresses the probability that a parent in state i will have a child in state j [19]. As well
as monotone Markov models where the states are income classes arranged in an increasing order can be
useful in modeling intergenerational income mobility [20]. Tests for stochastic monotonicity in intergenera-
tional mobility tables are introduced in [21]. Monotone matrices also play an important role in equal-input
modeling [22].

Monotone Markov models are useful in examining the evolution of credit ratings based on a credit
rating transition matrix where the states are the ranked possible credit classes, with the first state being the
highest rating AAA. A credit rating transition matrix should satisfy the monotonicity conditions [23]. The
rating transition matrix is typically estimated for a 1-year period. One of the reasons for this is that
the number of transitions within a shorter period is too small to result in a valid estimation for the transition
probabilities [24]. In [24], the embedding problem in a continuous Markov chain for a credit rating transi-
tion matrix is examined. A square root of a yearly credit rating transition matrix would provide insights
regarding the probability of the transition from rating i to rating j on semi-annual base. This example
illustrates that mth roots of a monotone transition matrix provide useful insights. In case for a monotone
transition matrix P there exists a monotone root, we say that the matrix P is discrete embeddable within the
set of monotone matrices.

In this article, properties of the set of monotone matrices are examined. Furthermore, matrix roots and
the discrete embedding problem are studied within this set. The article is organized as follows: Section 2
recalls some definitions and properties of the set of monotone matrices. In Section 3, matrix roots and the
discrete embedding problem are discussed for n 2= . Section 4 examines the monotonicity conditions for
roots of 3 3( )× monotone matrices. Section 5 discusses generalizations for n 3> . The article concludes with
avenues for future research in Section 6.

2 The set of monotone matrices

A transition matrix of a Markov chain with n states is a stochastic matrix of order n n( )× . Let us introduce
the set n� of stochastic n n( )× matrices:

M m m m i j n1 and 0 , 1, , .n ij
n n

j

n

ij ij
1

�
⎧

⎨
⎩

( ) { }
⎫

⎬
⎭

∑= = ∈ = ≥ ∀ ∈ …
×

=

�
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The concept of monotone matrix is introduced by Daley [17]. A monotone matrix is a stochastic matrix
satisfying the following monotonicity conditions:

m m l k r n, 1, , .
j r

n

lj
j r

n

kj { }∑ ∑≥ ∀ > ∀ ∈ …

= =

(1)

The set of n n( )× monotone matrices can therefore be described as

MC ,n n n� = ∩�

where MC n is the set of n n( )× matrices defined as follows:

M m m m l k r nMC , 1, , .n ij
n n

j r

n

lj
j r

n

kj�
⎧

⎨
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( ) { }
⎫

⎬
⎭

∑ ∑= = ∈ ≥ ∀ > ∀ ∈ …
×

= =

A monotone transition matrix is characterized by the fact that each row l stochastically dominates each
higher row k. Since, for a matrix M with all row sums equal (to 1), r 1= results in redundant conditions, and
because of transitivity, monotonicity for M n∈ � can be expressed by the following n 1 2( )− conditions:

M m m k n r nMC 0 1, , 1 , 2, , .n
j r

n

k j
j r

n

kj1, { } { }∑ ∑∈ ⇔ − ≥ ∀ ∈ … − ∀ ∈ …

=

+

=

(2)

With regard to the eigenvalues of a monotone matrix, there are already some characteristics known: A
monotone matrix is a stochastic matrix and has therefore always 1 as trivial eigenvalue. By introducing for
M n∈ � , the dominance matrix D M( ) as the n n1 1(( ) ( ))− × − matrix with (k l, )th element equal to

m mj
l

kj j
l

k j1 1 1,∑ − ∑
= =

+ , Conlisk defined monotonicity for M n∈ � as follows: M D M 0n� ( )∈ ⇔ ≥ and

concluded that for a monotone matrix M n�∈ , the nontrivial eigenvalue with largest modulus is always
nonnegative [19].

With regard to the trace Mtr( ), one can remark for M n∈ � that M n0 tr( )≤ ≤ . The subset n n� ⊂ � of
monotone matrices is further characterized as follows:

M Mtr 1 .n�( ) ≥ ∀ ∈ (3)

This insight follows from using iteratively the monotonicity conditions (1):

m m m m m m m m m M1 tr .
j

n

j
j

n

j
j

n

j nn
1

1 11
2

2 11 22
3

3 11 22 ( )∑ ∑ ∑= ≤ + ≤ + + ≤…≤ + + …+ =

= = =

It is well known that for M n�∈ , all powers are monotone ([18], Theorem 1.2). In this way, the matrix
power preserves the monotonicity conditions. The aim is now to investigate whether there exist matrix roots
of M n�∈ that still satisfy the monotonicity conditions (1).

A monotone Markov chain with transition matrix P n�∈ is discrete embeddable within the set n� in
case there exists a value m m, 2�∈ ≥ , and a monotone matrix A n�∈ such that P Am

= . The monotone
Markov chain is said to be continuous embeddable within the set n� in case there exists a compatible
continuous monotone Markov chain with generator G such that P eG

= . Such a generator G gij( )= satisfies

g i j0ij ≥ ∀ ≠ and g gii j i ij= −∑
≠

and e t 0tG
n�∈ ∀ ≥ . There is an efficient way to verify the monotonicity

conditions for the continuous Markov chain ([18], Theorem 2.1):

e t g g k n r k0 0 1, , 1 , 1.tG
n

j r

n

k j
j r

n

kj1,� { }∑ ∑∈ ∀ ≥ ⇔ − ≥ ∀ ∈ … − ∀ ≠ +

=

+

=

(4)

A Markov generator satisfying equation (4) is called a monotone generator. In some situations, the problem
of matrix roots of P can be examined via the Markov generator G since eG m∕ is an mth root of P.

Stochastic matrix roots and the general discrete embedding problem that examines the existence ofmth
roots of the transition matrix within the set n� have been studied in previous work. Therefore, this article
focuses on the question of whether for M MCn n n�∈ = ∩� , the monotonicity conditions are still satisfied
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for a matrix root of M . In the following sections, specific properties regarding matrix roots are examined
more in detail for the particular cases of two-state and three-state monotone Markov chains.

3 Roots of ( × )2 2 monotone matrices

A matrix P pij 2�( )= ∈ has eigenvalues 1 and λ 0≥ according to equation (3). The case λ 0= corresponds
to an idempotent matrix P that has itself as mth root. The case λ 0> gives rise to a continuous embeddable

matrix P ([2], Proposition 2) with unique Markov generator G
p p

p p
P

P
log tr 1

tr 2
12 12

21 21
⎛
⎝

⎞
⎠

( ( ) )

( )
=

−

−

−

−

[4]. The corre-

sponding matrix roots P eG mm
=

∕ are monotone since G is a monotone generator (according to equation
(4)) and can be expressed as follows [10,25]:

P
p p

p p λ p p λ
p p λ p p λ

1 .
12 21

21 12 12 12

21 21 12 21

m
m m

m m

⎛

⎝
⎜

⎞

⎠
⎟=

+

+ −

− +

(5)

These insights brings us, in accordance with the result in [22], to the formulation of Theorem 1.

Theorem 1. Each monotone matrix P of order 2 2( )× has Pm (as defined in equation (5)) as monotone mth
root (for all m m, 2�∈ ≥ ). Each monotone Markov chain with two states is discrete embeddable and con-
tinuous embeddable within the set of monotone matrices.

One canverify that themonotonemth root Pm , as introduced in equation (5), equals P T D T 1m m
= × ×

− ,
where D λdiag 1,( )= is the diagonalmatrixwith the eigenvalues 1 and λ as diagonal elements. ThematrixT is
a transformation matrix with columns that are right eigenvectors of P. Hence, P T D T 1

= × ×
− and

D λdiag 1,m m( )= .

The result that P 2
m �∈ , for P 2�∈ , is the motivation to examine properties of the matrix roots

P T D T 1m m
= × ×

− for diagonalizable matrices P of order n 2> to find out whether or not Theorem 1
can be generalized.

4 Roots and embedding conditions for ( × )3 3 monotone matrices

The following theorem provides specific properties of the eigenvalues λ λ λ1, and1 2 3= of a matrix P 3�∈ as
well as necessary embedding conditions.

Theorem 2. For a monotone matrix P of order 3 3( )× holds the following:
The eigenvalues λ1, 2, and λ3 of P are real-valued. If λ λ2 3≥ , then λ 02 ≥ and λ λ3 2≥ − . In case the matrix P is
discrete embeddable within 3� holds λ 02 ≥ and λ λmax , 0.53 2{ }≥ − − . Furthermore, in case P is discrete
embeddable within 3� with an mth root for m 2≥ even number, both λ2 and λ3 are nonnegative.

Proof. Assume λ λ2 3∣ ∣ ∣ ∣≥ . Then, according to [19], λ2 is nonnegative. Consequently, the characteristic
equation of P has λ 11 = and λ2 as real-valued solutions and, therefore, also λ3 �∈ . Furthermore, according
to equation (3) holds that P λ λtr 1 12 3( ) = + + ≥ . Hence, λ 02 ≥ and λ λ3 2≥ − .

In case the monotone matrix P is discrete embeddable within 3� , its eigenvalues are elements of
Θ x y x x y x, 0.5; 1 3 13

2�{( ) ∣ }= ∈ ≥ − − ≤ ≤ − [26] and therefore, additionally, λ 0.53 ≥ − .
In case P is discrete embeddable within 3� , there exists a monotone matrix A 3�∈ such that P Am

= .
Denoting the eigenvalues of A as μ μ1,1 2= and μ3, the eigenvalues of P Am

= are equal to μ1, m
2( ) and μ m

3( ) .
Since μ2 �∈ , and μ3 �∈ , for m even number holds that μ 0m

2( ) ≥ and μ 0m
3( ) ≥ . □
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The eigenvalues λ 11 = and λ λ2 3≥ of the monotone matrix P satisfy λ 02 ≥ . In case λ3 is negative, the
discussion of mth roots is, in accordance to Theorem 2, restricted to m odd. In other words, mth roots are
examined for m λ3�( )∈ :

λ λ
m m λ
\ 0 in case 0

\ 0 odd in case 0.
3 3

3

� �

�

( ) { }

{ { }∣ }

= ≥

= ∈ <

Amatrix P of 3� is a stochastic matrix with real-valued eigenvalues. Roots of 3 3( )× stochastic matrices
with real eigenvalues are studied in detail in [11], and those findings are therefore useful in what follows.
The aim is now to investigate whether there exist matrix roots of P 3�∈ that satisfy the monotonicity
conditions. For M 3∈ � , the conditions in equation (1) can be reformulated as follows:

M m m m m
m m m .ij 3

33 23 13

31 21 11
�( )= ∈ ⇔

≥ ≥

≤ ≤
(6)

For a 3 3( )× monotone matrix, a positive spectrum is a necessary condition for the existence of a
monotone Markov generator. For P 3�∈ with positive eigenvalues and minimal polynomial of degree 2≤ ,
a unique monotone generator G is guaranteed ([22], Prop. 4.3). The matrix P eG

= is then discrete embed-
dable within the set of monotone matrices and Theorem 3 follows.

Theorem 3. Each monotone matrix P of order 3 3( )× with positive eigenvalues and minimal polynomial of

degree 2≤ , has for each m m, 2�∈ ≥ , the mth root P eG mm
=

∕ within the set 3� , where G is the unique
monotone Markov generator of P.

Matrices P 3�∈ with positive eigenvalues and minimal polynomial of degree 2≤ are diagonalizable.
For these, and for all diagonalizable monotone matrix P more in general, the monotonicity properties of
matrix roots are further examined in the following section.

4.1 Diagonalizable monotone matrices of order 3

For a diagonalizable matrix P 3�∈ , there exists a transformation matrix T so that T P T D1
× × =

− with
D λ λdiag 1, ,2 3( )= the diagonal matrix with diagonal elements λ1, 2 and λ3. Let us denote, for all m λ3�( )∈ ,

D λ λdiag 1, ,2 3
m m m( )= and P T D T 1m m

= × ×
− . The matrix Pm is anmth root of P and has all row sums

equal to 1 [11].
Expressing the diagonalizable matrices P and Pm by their projections P P,1 2 and P3 results in the

spectral decompositions:

P P λ P λ P P P λ P λ Pand .1 2 2 3 3 1 2 2 3 3
m m m

= + + = + +

Since both P and its mth root Pm have the same projections, it has some advantages to reformulate the
monotonicity conditions (6) based on the projections as in Lemma 4. The notation δ refers to Kronecker
delta.

Lemma 4. For A aij 3( )= ∈ � with eigenvalues μ μ μ1 1 2 3= ≥ ≥ and A2 the projection corresponding to μ2 holds

a a A A
μ

μ μ
δ δ in case μ μ

a a μ δ δ in case μ μ0 .

il jl il jl jl il

il jl jl il

2 2
3

2 3
2 3

3 2 3

( ) ( ) ( )

( )

≥ ⇔ − ≥

−

− ≠

≥ ⇔ − ≤ =

Proof. Since the projections satisfy A A A I1 2 3 3+ + = , where I δil3 ( )= is the identity matrix of order 3, the
spectral decomposition of A A μ A μ A1 2 2 3 3= + + can be rewritten as A μ A μ μ A μ I1 3 1 2 3 2 3 3( ) ( )= − + − + .
Moreover, the projection A1 has all its rows equal and therefore:

a a μ μ A A μ δ δ .il jl il jl jl il2 3 2 2 3( )[( ) ( ) ] ( )≥ ⇔ − − ≥ − (7)
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That is, in case μ μ2 3> , equivalent with A A δ δil jl
μ

μ μ jl il2 2
3

2 3
( ) ( ) ( )− ≥ −

−

.

In case μ μ2 3= , equation (7) results in: a a μ δ δ 0il jl jl il3( )≥ ⇔ − ≤ . □

In what follows, the monotonicity of the matrix root Pm is examined for alternative possible scenarios
for the eigenvalues λ2 and λ3.

Lemma 5. For a monotone matrix P P λ P λ P1 2 2 3 3= + + with eigenvalues λ λ λ1 1 2 3= ≥ > and m λ3�( )∈ holds

that the mth root P P λ P λ P1 2 2 3 3
m m m

= + + satisfies the monotonicity conditions if and only if

P P P P
λ

λ λ
min , .2 33 2 23 2 11 2 21

3

3 2

m

m m
{( ) ( ) ( ) ( ) }− − ≥

−

Proof. According to Lemma 4, for P P λ P λ P1 2 2 3 3= + + , the monotonicity conditions (6) are equivalent with

P P λ
λ λ

P P

P P λ
λ λ

P P

, 0,

, 0.

2 33 2 23
3

3 2
2 23 2 13

2 11 2 21
3

3 2
2 21 2 31

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

− ≥

−

− ≥

− ≥

−

− ≥

(8)

In a similar way, for P P λ P λ P1 2 2 3 3
m m m

= + + , the monotonicity conditions can be expressed as follows:

P P
λ

λ λ
P P

P P
λ

λ λ
P P

, 0,

, 0.

2 33 2 23
3

3 2
2 23 2 13

2 11 2 21
3

3 2
2 21 2 31

m

m m

m

m m

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

− ≥

−

− ≥

− ≥

−

− ≥

(9)

Since P is a monotone matrix, and therefore equation (8) holds, equation (9) is fulfilled if and only if
P P λ

λ λ2 33 2 23
m

m m
3

3 2
( ) ( )− ≥

−

and P P λ
λ λ2 11 2 21

m

m m
3

3 2
( ) ( )− ≥

−

, which proves the theorem. □

Theorem 6. For a diagonalizable monotone matrix P P λ P λ P1 2 2 3 3= + + with nonnegative eigenvalues

λ λ 02 3≥ ≥ , the monotonicity conditions (6) also hold for the matrix root P P λ P λ P1 2 2 3 3
m m m

= + + , and
this for all m \ 0� { }∈ .

Proof. The configurations λ λ 12 3= = , and λ λ1, 02 3= = , and λ λ 02 3= = correspond to an idempotent
matrix P that has itself as matrix root. The configurations λ λ1 02 3= > > and λ λ1 02 3> = > are already
covered by Theorem 3.

In case λ λ1 02 3> > = , the conditions formulated in Lemma 5 are identical for P and its mth root Pm .

Hence, for a monotone matrix P also the root matrix Pm satisfies the monotonicity conditions (6).
In case λ λ1 02 3> > > , according to Lemma 5, the mth root Pm satisfies the monotonicity conditions if

and only if P P P Pmin , λ
λ λ2 33 2 23 2 11 2 21

m

m m
3

3 2
{( ) ( ) ( ) ( ) }− − ≥

−

. Besides, since P is a monotone matrix, we know

that P P P Pmin , λ
λ λ2 33 2 23 2 11 2 21

3

3 2
{( ) ( ) ( ) ( ) }− − ≥

−

. By rewriting
λ

λ λ
1

1

m

m m λ
λ

m

3

3 2 2
3

=
−

−

and observing that1 λ
λ

λ
λ

m 2

3

2

3
< <

for λ λ 02 3> > holds P P P Pmin , λ
λ λ

λ
λ λ2 33 2 23 2 11 2 21

m

m m
3

3 2

3

3 2
{( ) ( ) ( ) ( ) }− − ≥ >

− −

. Hence, Pm satisfies the monotoni-
city conditions. □

Diagonalizable monotone matrices of order 3 3( )× with positive eigenvalues and degree of the minimal
polynomial maximum equal to 2 are discrete embeddable within 3� (according to Theorem 3). More in
general, Theorem 6 guarantees that a diagonalizable matrix P 3�∈ with nonnegative eigenvalues is dis-
crete embeddable within 3� in case at least one of the roots Pm is a stochastic matrix. This insight results in
the following corollary.

6  Marie-Anne Guerry



Corollary 6.1. Each diagonalizable monotone matrix P of order 3 3( )× with nonnegative eigenvalues and for

which P 3
m

∈ � (for some m m, 2�∈ ≥ ) is discrete embeddable within the set of monotone matrices.

Theorem 7. Let P P λ P λ P1 2 2 3 3= + + be a diagonalizable monotone matrix with eigenvalues λ λ02 3≥ > .

In case for n odd, the matrix root P P λ P λ P1 2 2 3 3
n n n

= + + satisfies the monotonicity conditions (6). Then
all matrix roots P P λ P λ P1 2 2 3 3

m m m
= + + with m n< odd value satisfy the monotonicity conditions (6).

Proof. The eigenvalues of P 3�∈ satisfy λ λ 03 2≥ − ≥ (according to Theorem 2). Hence, for P with

λ λ02 3≥ > is
λ

λ λ
1

1

m

m m λ
λ

m

3

3 2 2
3

=
−

+
−

an increasing function of m, and the proof follows from Lemma 5. □

For a diagonalizable monotone matrix P that has a negative eigenvalue, one can remark that in case the

monotonicity properties (6) hold for the matrix root Pm (with m a particular value in λ3�( )), this is auto-
matically also the case for P3 (as a result of Theorem 7). Therefore, if the third root P3 does not satisfy the

monotonicity conditions, this is necessary and sufficient to conclude that none of the roots Pm (for all
m λ3�( )∈ ) satisfies the monotonicity conditions.

For example, for the monotone matrix P
0.2 0.2 0.6
0.2 0.1 0.7
0.1 0.1 0.8

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= with eigenvalues λ2
1 5

20=
+ and λ3

1 5
20=

− ,

the second projection equals P
0.583 0.360 0.944
0.307 0.190 0.497
0.139 0.086 0.226

2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

… … − …

… … − …

− … − … …

. Hence, P P Pmin ,2 33 2 23 2 11{( ) ( ) ( )− −

P 0.2762 21( ) } ≈ while 0.579λ
λ λ

33

33 23 ≈
−

, and therefore, according to Lemma 5, P3 does not satisfy the mono-

tonicity conditions. Theorem 7 results in the insight that for whatever odd value m 3≥ , Pm is not a
monotone matrix. This example illustrates that there exist monotone matrices for which none of the roots

Pm (where m λ3�( )∈ ) satisfies the monotonicity conditions (6).

4.2 Non-diagonalizable monotone matrices of order 3

For a non-diagonalizable matrix P, there exists a transformation matrixT such that P T J T 1
= × ×

− with the

Jordan matrix J λ
λ

1 0 0
0 1
0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= . Consequently, the matrix P can be expressed as P P λP Nλ λ1= + + with

P TI T P T I I T N TI T, , ,λ λ1 11
1

22 33
1

23
1( )= = + =

− − − (10)

where Iij denotes the 3 3( )× matrix with i j,( )th element equal to 1 and all the other elements equal to 0.
For a monotone matrix P P λP Nλ λ1= + + , the eigenvalue λ is nonnegative (according to equation (3)).

In the case that λ 0= there does not exist a stochastic root of P ([11], Theorem 5). Hence, we know that a
non-diagonalizable matrix P 3�∈ with λ 0= has no monotone matrix root. In the case that λ 0> ,

P P λ P λ Nλ m λ1
1 1m m m

1 1
= + +

− is an mth root with all row sums equal to 1 [11], and this for all m \ 0� { }∈ .

Theorem 9 proves, for a monotone matrix P P λP Nλ λ1= + + with λ 0> , that the monotonicity conditions

are fulfilled for all mth roots Pm . The following lemma provides some required properties beforehand.

Lemma 8. For a non-diagonalizable stochastic matrix P P λP Nλ λ1= + + of order 3 3( )× with λ 0> and mth

root P P λ P λ Nλ m λ1
1 1m m m

1 1
= + +

− holds for all i j l, , 1, 2, 3{ }∈ and for all m \ 0� { }∈ :

P P δ δλ il λ jl il jl( ) ( )− = −

P P N N λ m δ δ .il jl λ il λ jl jl il
m m( ) ( ) ( ) ( ) ( )≥ ⇔ − ≥ ⋅ −
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Proof. By definition of P1 and Pλ it holds that P P Iλ1 3+ = , with I3 the identity matrix of order 3 3( )× .
In addition, the projection P1 has all rows equal, and therefore, P P δ δλ il λ jl il jl( ) ( )− = − for all i j l, , 1, 2, 3{ }∈ .

Furthermore, P Pil jl
m m( ) ( )≥ is equivalent with

P λ P λ N P λ P λ N1 1
m m

il λ il λ il jl λ jl λ jl1
1

1
1m m m m

1 1 1 1
( ) ( ) ( ) ( ) ( ) ( )+ + ≥ + +

− −

and also equivalent with N N λ m δ δ.λ il λ jl jl il( ) ( ) ( )− ≥ − since all elements in a same column of P1 are equal
and P P δ δλ il λ jl il jl( ) ( )− = − . □

Theorem 9. For a non-diagonalizable monotone matrix P P λP Nλ λ1 3�= + + ∈ with λ 0> and P1, Pλ, and Nλ

as in equation (10), the monotonicity conditions (6) also hold for the matrix roots P P λ P λ Nλ m λ1
1 1m m m

1 1
= + +

−

for all m \ 0� { }∈ .

Proof. Since the monotone matrix P satisfies p p33 23≥ , it holds for λ 0> that N N λ λ m.λ λ33 23( ) ( )− ≥ − ≥ −

and therefore, P P33 23
m m( ) ( )≥ . In a similar way: P P11 21

m m( ) ( )≥ .

Furthermore, p p23 13≥ and consequently, N N 0λ λ13 23( ) ( )− ≥ and P P23 13
m m( ) ( )≥ . Similar arguments

result in P P21 31
m m( ) ( )≥ . □

Combining all the properties that are presented in this section leads to the conclusions summarized in

Table 1, for P 3�∈ and Pm defined as

P P λ P λ P P P λ P λ P

P λ P λ N P P λP N

for diagonalizable
1 for non diagonalizable .
m

λ λ λ λ

1 2 2 3 3 1 2 2 3 3

1
1

1

m m m

m m
1 1

= + + = + +

= + + = + + -
−

A monotone matrix is discrete embeddable within 3� if there exists a matrix root that satisfies the
monotonicity conditions and that is simultaneously a stochastic matrix. In this way, the results in [11]
(Table 1), in combination with the results in Table 1 of this article provide full information on stochasticity
as well as monotonicity of matrix roots for P 3�∈ .

4.3 Further remarks and examples

In this section, some further remarks are formulated and examples are presented to highlight possible
scenarios.

Table 1: Properties of Pm for P 3�∈ and all possible configurations for the eigenvalue(s) ≥λ λ2 3

P diagonalizable ≥ ≥λ λ 02 3 P MC 3
m

∈

Theorem 6
≥ >λ λ02 3 m P P: MC MC3 3

m 3
∃ ∈ ⇔ ∈

Theorem 7

> ≥λ λ0 2 3 No such monotone matrix P exists (redundant case)
Equation (3)

P non-diagonalizable >λ 0 P MC 3
m

∈

Theorem 9

=λ 0 No matrix root of P in �3

Theorem 5 in [11]
<λ 0 No such monotone matrix P exists (redundant case)

Equation (3)

8  Marie-Anne Guerry



Theorem 6 guarantees for a diagonalizable matrix P 3�∈ with nonnegative eigenvalues that the mono-

tonicity properties (6) also hold for the mth root Pm . For example, P
0.4 0.3 0.3
0.3 0.3 0.4
0.1 0.1 0.8

⎛

⎝
⎜

⎞

⎠
⎟

= has three distinct

positive eigenvalues and the square root P
0.556 0.288 0.154
0.283 0.448 0.268
0.057 0.062 0.879

⎛

⎝
⎜

⎞

⎠
⎟=

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

satisfies the monotonicity

conditions. Moreover, this root is a stochastic matrix, and therefore, P has a monotone square root and is
discrete embeddable within 3� .

Fact 4.1. Although Pm satisfies the monotonicity conditions for P 3�∈ with positive eigenvalues, Pm is
not necessarily a monotone matrix.

For example, for P
0.8 0.2 0
0.5 0.3 0.2
0.1 0.4 0.5

⎛

⎝
⎜

⎞

⎠
⎟

= , the square root P
0.854 0.167 0.022
0.407 0.391 0.201
0.039 0.391 0.648

⎛

⎝
⎜

⎞

⎠
⎟=

⋯ ⋯ − ⋯

⋯ ⋯ ⋯

− ⋯ ⋯ ⋯

has not

all its elements nonnegative. In fact, the computation of all square roots of P let conclude that none of the
square roots is a stochastic matrix and, therefore, neither a monotone matrix. One can remark that P has
three distinct positive eigenvalues, and Theorem 3 is not applicable. In fact, having all eigenvalues positive
is not a sufficient condition to be discrete embeddable within the set 3� .

Fact 4.2. Theorem 6 proves for a diagonalizable monotone matrix P with nonnegative eigenvalues, the

monotonicity properties (6) for a particular mth root, being P T λ λ Tdiag 1, ,2 3
1m m m( )= × ×

− . It is, in
general, not the case that the monotonicity properties also hold for any other mth root of P 3�∈ .

For example, for the monotone matrix P
0.4 0.3 0.3
0.3 0.3 0.4
0.1 0.1 0.8

⎛

⎝
⎜

⎞

⎠
⎟

= , although P T λ λdiag 1, ,2 3( )= × ×

T 1
3�∈

− , the stochastic square root T λ λ Tdiag 1, ,
0.392 0.497 0.109
0.481 0.194 0.323
0.052 0.068 0.878

2 3
1( )

⎛

⎝
⎜

⎞

⎠
⎟

× − × =

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

− does

not satisfy the monotonicity conditions.

5 Roots of ( × )n n monotone matrices

5.1 Monotonicity conditions in matrix form

For higher order matrices, it has advantages to express the monotonicity conditions (2) more compact in
matrix form. In a similar way, Conlisk defined in [19] necessary and sufficient conditions for a stochastic
matrix to be a monotone matrix based on its dominance matrix.

Let us introduce the n n 1( ( ))× − matrix S+ with on its jth column the first jth elements equal to 0 and
the other elements equal to 1, and the n n1(( ) )− × matrix S− with the elements S ii( )− equal to 1− , the
elements S i i, 1( )−

+ equal to 1, and all other elements equal to 0:

S S

0 0 0
1 0 0
1 1 0

1 1 1

1 1 0 0 0 0 0
0 1 1 0 0 0 0

0 0 0 0 0 1 1

.

⎛

⎝

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
=

⋯

⋯

⋯

⋮

⋯

=

− ⋯

− ⋯

⋮

⋯ −

+ −

Multiplying M n∈ � on the right side with S+ results in the summations that are part of equation (2), which
are then subtracted after multiplying M S×

+ with S− on the left side. Hence, for all k l n, 1, , 1{ }∈ … − holds

S M S m m .kl
j l

n

k j
j l

n

kj
1

1,
1

( ) ∑ ∑× × = −
− +

= +

+

= +

(11)
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Consequently,

M S M SMC 0.n∈ ⇔ × × ≥
− + (12)

One can remark, for M n∈ � , that S M S D M( )× × =
− + , where D M( ) is the dominance matrix with

elements D M m mkl j
l

kj j
l

k j1 1 1,( ( )) = ∑ − ∑
= =

+ as introduced in [19].

5.2 Properties not generalizable from ≤n 3 to >n 3

It is important to be aware that some properties, proven in Sections 3 and 4, no longer hold for n n( )×

monotone matrices with n 3> .
Each 2 2( )× stochastic matrix has all its eigenvalues real-valued. Hence, the same property holds for all

matrices in 2� . Besides, a monotone matrix of order 3 3( )× has all its eigenvalues real-valued according to
Theorem 2. Nevertheless, this property does not hold any longer for higher order monotone matrices:

Fact 5.1. Amonotone matrix of order n n( )× with n 3> , has not necessarily all eigenvalues real-valued.

For example, P
0.2 0 0.8 0
0.2 0 0 0.8
0 0.1 0.1 0.8
0 0 0 1

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
= has 1 and 0.3652 as real eigenvalues and 0.0326 0.2068 i− + and

0.0326 0.2068 i− − as complex eigenvalues.

For each 2 2( )× monotone matrix P, the matrix root Pm is a monotone matrix (according to Theorem 1).
For a monotone matrix P of order 3 3( )× with positive eigenvalues, Theorems 6 and 9 prove that the

monotonicity conditions are fulfilled for the root Pm .

Fact 5.2. The monotonicity properties do not necessarily hold for Pm in case P is a monotone matrix of
order n n( )× with n 3> .

For example, P

0.5 0.2 0.1 0.2
0.2 0.4 0.2 0.2
0.1 0.2 0.4 0.3
0.1 0.2 0.1 0.6

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
= has all eigenvalues real-valued and positive. Nevertheless, the

stochastic square root

P

0.685 0.138 0.055 0.120
0.146 0.585 0.156 0.112
0.053 0.138 0.603 0.205
0.053 0.138 0.055 0.752

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
=

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

does not satisfy the monotonicity conditions.
The discrete embedding problem and investigating monotone matrix roots for general n n( )× mono-

tone matrices with n 3> is not easy. There are some alternative approaches to make progress in studying
monotone matrix roots of n n( )× monotone matrices.

In case a monotone matrix P is continuous embeddable within the set of stochastic matrices and a
generator G does exist that satisfies equation (4), then P eG

= is continuous embeddable within the set of
monotone matrices. Hence, the matrix roots eG m∕ are monotone and P is discrete embeddable within n� . In
applications, the transition matrix of a monotone Markov system under study is often the result of estimated
transition probabilities based on an available dataset. Consequently, there is anyway a discrepancy
between the estimated and the theoretical transition matrix. Therefore, if P is not continuous embeddable,
then it is acceptable to replace P by an arbitrarily close approximation that is continuous embeddable [27]
and that results in approximations for the roots of P, for which the monotonicity conditions can be
examined.

Alternatively, since the set of diagonalizable monotone matrices is dense within n� [28], a monotone
transition matrix that is not diagonalizable can be approximated by an arbitrarily close diagonalizable
matrix of n� . Having insights regarding the properties of the roots of diagonalizable monotone matrices is
then useful and that is where the following section focuses on.

10  Marie-Anne Guerry



5.3 Diagonalizable monotone matrices

In this section, we investigate roots and embedding conditions for diagonalizable monotone matrices of
order n n( )× .

Lemma 10. For a diagonalizable matrix A aij n( )= ∈ � with eigenvalues μ μ μ1 , , , n1 2= … and corresponding
projections A A A, , , n1 2 … holds

A μ S A SMC 0.n
s

s n

s s
2

( )∑∈ ⇔ × × ≥

=

=

− +

Proof. The diagonalizable matrix A can be expressed as A A μ A μ An n1 2 2= + + …+ . Since the projection
A1 has all its rows equal, holdsS A S 01× × =

− + . Hence,S A S 0× × ≥
− + if andonly if μ S A S 0s

s n
s s2 ( )∑ × × ≥

=

= − + ,
which proofs the lemma according to equation (12). □

From the discussion in Section 4, we know that, for a 3 3( )× diagonalizable monotone matrix P with

nonnegative eigenvalues, the roots Pm satisfy the monotonicity conditions. On the other hand, the example
in Fact 5.2 demonstrates that this property does not hold any longer for n 3> . The question, therefore, is
now under what conditions the result can be (partially) generalized to higher-order monotone matrices.
Therefore, we consider a diagonalizable matrix P P λ P λ Pn n n1 2 2 �= + + ⋯+ ∈ , with nonnegative eigenva-
lues λ λ λ1 0n1 2= ≥ ≥⋯≥ ≥ and corresponding projections P P P, , , n1 2 … , and examine the monotonicity
conditions of the mth root

P P λ P λ P .n n1 2 2
m m m

= + + ⋯+

By introducing for k l n, 1, , 1{ }∈ … − the function

f x λ S P S ,kl
s

s n

s
x

s kl
2

( ) ( )∑= × ×

=

=

− + (13)

we have that

f
m

λ S P S S P S P P1
kl

s

s n

s s kl s kl
j l

n

k j
j l

n

kj
2 1

1,
1

m m m m⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )∑ ∑ ∑= × × = × × = −

=

=

− + − +

= +

+

= +

(14)

according to equation (11).
Hence, by using Lemma 10, the monotonicity conditions (2) can be expressed as follows:

P f
m

k l nMC 1 0 , 1, , 1 .n kl
m ⎛

⎝
⎞
⎠

{ }∈ ⇔ ≥ ∀ ∈ … − (15)

Since the matrix P P λ P λ Pn n1 2 2= + + ⋯+ and the identity matrix I P P Pn n1 2= + + ⋯+ are both mono-
tone, holds

f f k l n1 0 and 0 0 , 1, , 1 .kl kl( ) ( ) { }≥ ≥ ∀ ∈ … − (16)

Moreover, the specificity of the identity matrix results in S I S In n 1× × =
− +

− , and therefore,

f δ0 .kl kl( ) = (17)

According to equation (15), in examining the monotonicity conditions, the sign of the function f xkl( ) and,
therefore, its zero points are of importance. Since the function f xkl( ) is a sum of the exponential functions
λs

x, the number of positive solutions of f x 0kl( ) = is at most equal to the number of sign changes in the
sequence of coefficients in descending order of the basis λ λn2 ≥⋯≥ of the exponential functions [29].

Hence, for k l n, 1, , 1{ }∈ … − , the number of sign changes in the sequence

S P S S P S S P S, , ,kl kl n kl2 3( ) ( ) ( )× × × × … × ×
− + − + − + (18)

provides useful information regarding the number of positive zero points of the function f xkl( ).
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Let us introduce the notations

x x f x x x k l nmax 0, 1 0 and max , 1, , 1kl kl kl{ [ ]∣ ( ) } { ∣ { }}= ∈ = = ∈ … −
∗ ∗ ∗ (19)

in order to be able to formulate in Theorem 11 sufficient conditions that guarantee that the matrix root Pm

satisfies the monotonicity conditions.

Theorem 11. In case x 1
2≤

∗ , where x∗ is accordingly equation (19), then for allm m, 2�∈ ≥ with xm
1

≥
∗ holds

that P MC n
m

∈ .

Proof. In case x 1
2≤

∗ , for arbitrary k l n, 1, , 1{ }∈ … − , the continuous function f xkl( ) (as defined in equation
(13)) has no zero points in x , 1] ]∗ and is positive for x 1= (according to equation (16)). Consequently, f xkl( ) is

nonnegative on x , 1[ ]∗ so that , in particular, for allm m, 2�∈ ≥ , with xm
1

≥
∗ holds that f 0kl m

1
( ) ≥ . Hence,

by equation (15), P MC n
m

∈ . □

Theorem 12. In case for the diagonalizable monotone matrix P with projections P P P, , , n2 3 … , there is none or
only one sign change in the sequence

S P S S P S S P S, , ,kl kl n kl2 3( ) ( ) ( )× × × × … × ×
− + − + − +

for k l n, 1, , 1{ }∈ … − , then for all m m, 2�∈ ≥ , the mth root matrix Pm satisfies the k l,( )th monotonicity

condition P P 0j l
n

k j j l
n

kj1 1, 1
m m( ) ( )∑ − ∑ ≥

= +
+

= +
.

Proof. In case there is none or only one sign change in the sequence (18), then the function f xkl( ) has at
most one zero point in 0, 1[ ]. Moreover, f 0kl( ) and f 1kl( ) are both nonnegative according to equation (16).
Consequently, f x 0kl( ) ≥ for all x 0, 1[ ]∈ . In particular, f 0kl m

1
( ) ≥ and the theorem follows from equation

(14). □

The result of Theorem 12 is useful in studying the existence of monotone roots. For example, for

P

0.5 0.2 0.1 0.2
0.2 0.4 0.2 0.2
0.1 0.2 0.4 0.3
0.1 0.2 0.1 0.6

,
⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
=

we have already mentioned in Section 5.2 that P does not satisfy the monotonicity conditions. The
question that can be stated then is whether there exists a value m 2> such that the mth root Pm satisfies
the monotonicity conditions. By computing

S P S

S P S

S P S

0.5 0.5 0.5
0.5 0.5 0.5
0 0 0

0 0 1
0 0 0
0 0 1
0.5 0.5 0.5
0.5 0.5 0.5
0 0 0

,

2

3

4

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

× × =

× × =

−

× × =

−

− −

− +

− +

− +

one can note that the sequence (18) has two sign changes for k 1= and l 3= and zero or one sign change for
all other pairs k l,( ). Hence, according to Theorem 12, for all mth roots Pm , the k l,( )th monotonicity
condition is fulfilled for all k l, 1, 3( ) ( )≠ . On the other hand, f f0 1 01,3 1,3( ) ( )= = and f 01,3

1
2( ) < . Hence,

f x 01,3( ) < for all x 0, 1] [∈ since the function f x1,3( ) has at most two zero-points in 0, 1[ ]. Consequently, one
can conclude that none of the matrix roots Pm satisfies the 1, 3( )th monotonicity condition, and therefore,
none of the roots Pm is a monotone matrix.
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5.4 Block diagonal monotone matrices

In case of a block diagonal Markov model with n states, the transition matrix P B P B Pdiag , , k1( ( ) ( ))= … is of

order n n( )× with blocks B Pi( ) of order n ni i( )× , satisfying n ni
k

i1∑ =
=

, and is of the form:

P B P B P

B P O O
O B P

O
O O B P

diag , , .k

k

1

1

2
( ( ) ( ))

⎛

⎝

⎜

⎜
⎜

( )

( )

( )

⎞

⎠

⎟

⎟
⎟

= … =

…

⋱ ⋮

⋮ ⋱

…

The nature of the monotonicity conditions (1) results for a block diagonal matrix P B P B Pdiag , , k1( ( ) ( ))= …

in:

P B P B P B P i kdiag , , 1, , .k n i n1 i� �( ( ) ( )) ( ) { }= … ∈ ⇔ ∈ ∀ ∈ …

Therefore, for a monotone matrix P B P B Pdiag , , k1( ( ) ( ))= … , equation (3) applies for each block B Pi( ) and,
consequently, P B P B P ktr tr tr k1( ) ( ( )) ( ( ))= + …+ ≥ . This means that the trace of all monotone matrices is at
least equal to 1, and that for those that are block diagonal, the trace is even at least equal to the number of
blocks. The following theorem formulates this characterization of the trace.

Theorem 13. A block diagonal monotone matrix P satisfies P ktr( ) ≥ , where k is the number of blocks.

Furthermore, A B A B Adiag , , k1( ( ) ( ))= … is anmth root matrix of P if and only if for all i k1, ,{ }∈ … holds
that B Ai( ) is an mth root of B Pi( ). Therefore, in case the blocks B Pi( ) are of order 2 2( )× or 3 3( )× , the
specific properties presented in Sections 3 and 4 are helpful in examining matrix roots of the monotone
matrix P B P B Pdiag , , k1( ( ) ( ))= … . In particular, a block diagonal monotone matrix P B P B Pdiag , , k1( ( ) ( ))= …

with n 2i = for all i, has, for all m \ 0� { }∈ , A B P B Pdiag , , k1m m( ( ) ( ) )= … as monotone mth root, where

B P B P, , k1m m( ) ( )… are as described in Theorem 1. In case a block B Pi( ) is of order n 3> , Theorems 11 and 12

are useful in examining the monotonicity properties of B Pim ( ) .

6 Further research questions

Within the set of monotone matrices, the discrete embedding problem is completely clarified for the case of
2 2( )× matrices. Each monotone matrix is embeddable within the set 2� . Moreover, each 2 2( )× monotone
matrix has a monotone mth root, for all m \ 0� { }∈ [22]. Within the set 3� holds, according to Theorems 6
and 9, that each monotone matrix with positive eigenvalues has an mth root that satisfies the monotonicity
conditions. For n 3> , roots within n� are investigated for two important subsets of monotone matrices: for
diagonalizable matrices in Section 5.3 and for block diagonal matrices in Section 5.4. For further research, it
would be interesting to investigate matrix roots within n� for more general n n( )× monotone matrices.
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