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Abstract: When sample survey data with complex design (strati�cation, clustering, unequal selection or in-
clusion probabilities, and weighting) are used for linear models, estimation of model parameters and their
covariance matrices becomes complicated. Standard �tting techniques for sample surveys either model con-
ditional on survey design variables, or use only designweights based on inclusionprobabilities essentially as-
suming zero error covariance between all pairs of population elements. Design properties that link two units
are not used. However, if population error structure is correlated, an unbiased estimate of the linear model
error covariance matrix for the sample is needed for e�cient parameter estimation. By making simultane-
ous use of sampling structure and design-unbiased estimates of the population error covariance matrix, the
paper develops best linear unbiased estimation (BLUE) type extensions to standard design-based and joint
design and model based estimation methods for linear models. The analysis covers both with and without
replacement sample designs. It recognises that estimation for with replacement designs requires generalized
inverses when any unit is selected more than once. This and the use of Hadamard products to link sampling
and population error covariance matrix properties are central topics of the paper. Model-based linear model
parameter estimation is also discussed.

Keywords: Best linear unbiased estimator; best linear unbiased predictor; generalized inverse; Hadamard
product; linear models; positive semide�niteness; sample surveys; survey design; sampling with replace-
ment; sampling without replacement; superpopulation.

1 Introduction
There are two relatively distinct methodologies for analysis of sample survey data collected via a complex
sampling scheme that may include strati�cation, clustering and weighting of responses.

In the 1980s and early 1990s there was considerable academic debate around whether design-based or
model-based methods were better. In time there was a rapprochement. Model-assisted sampling was devel-
oped in Särndal et al. [17] . This had the major bene�t of making explicit the underlying models used by
practitioners to determine inclusion (or selection) and joint inclusion probabilities when determining a good
design-based survey design. The model-assisted analysis of sample surveys had been foreshadowed, for ex-
ample in Cochran [3] and the joint design- and model-based approach was considered in detail in Haslett [8]
and used in Fuller [4].

Design-based methods are based on inclusion probability (the probability each unit is included in the
sample) and joint inclusion probabilities (the set of joint probabilities that two given units are included in the
sample). An alternative for with replacement sampling which is considered in detail in this paper, is based
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on selection probabilities (the probability a unit is selected at each draw). Usually, design-based frameworks
are used to estimate descriptive statistics such as means, totals and their variances. For linear models �tted
to sample survey data, design-based regression parameter estimation allows for strati�cation and clustering
and makes use of inverse inclusion probabilities for individual units as weights, but usually ignores joint
inclusion probabilities for pairs of units. One reason for this simpli�cation is that otherwise, if the error co-
variance in the linear model is not a diagonal matrix and joint inclusion probabilities are incorporated to
improve estimation, there are complications that cannot be resolved using matrix multiplication alone. The
sample-based unbiased estimator of theN×N covariancematrix is then theHadamard product of the elemen-
twise inverse of inclusion probabilities and joint inclusion probabilities, the population covariance matrix,
and an inclusionmatrix for the sample of rank equal to the sample size, n. However, even the n ×n submatrix
of the non-zero rows and columns of this Hadamard product which correspond to the sampled elements is
not always positive de�nite. For linear models that include survey design information, this has important
consequences for best linear unbiased estimation (BLUE) for both with and without replacement sampling.

Conditions under which a change in covariance structure leaves BLUEs unchanged are given in Rao [14].
An extension to best linear unbiased prediction (BLUP), and/or to BLUE is outlined in Haslett & Puntanen [9].
Surprisingly perhaps, the class of “equivalent” matrices for linear models containsmatrices that are symmet-
ric but not positive semide�nite. These results can be used to explore how, while retaining the same BLUEs
and/or BLUPs, covariances estimated from the sample used in design-based estimation might be adjusted to
meet the requirement for positive semide�niteness.

An alternative view on analysis of sample surveys is model-based. An early reference is Royal & Cum-
berland [16]. See also Chambers & Clark [1]. For linear models and complex samples, model-based analysis
usually includes design information via supplementary auxiliary variables, so that inference on the other as-
sociated parameters in the model are conditional on the design. Clustering is accounted for via non-diagonal
covariancematrices between population and sampled units. For example, clustering is often incorporated by
having equal covariances between units in the same cluster, but zero correlation between units in di�erent
clusters. Neither selection nor inclusion and joint inclusion probabilities are generally used, and parameter
estimates via design- and model-based methods are not necessarily equal.

2 Design-based and model-based estimation for linear models
Returning to the design-based framework, suppose for a given population of size N that the populationmean
of the variable

Ȳ = 1
N

N∑
i=1

Yi .

Let χi = 1 if i ∈ swhere s denotes the sample, and χi = 0 if i /∈ s. Then χi = 1 for n of the population units,
and is zero for the remaining N−n unsampled units. In the design-based context, Yi = yi for {i = 1, 2, . . . , N}
and the only random variables are the {χi : i = 1, 2, . . . , N}. The only design-unbiased estimator of themean
is then:

ȳ = 1
N

N∑
i=1

χiyi/πi

with E(χi) = πi for i = 1, 2, . . . , N . Here E is the design expectation and πi is the inclusion probability for the
ith unit. This is called the Horvitz-Thompson estimator (Horvitz & Thompson [10]).

In model-based methods, the population is taken to be a sample from a superpopulation with model-
expectation E and N × N model-covariance matrix V. Each member of {Yi : i = 1, 2, . . . , N} is random with
respect to the superpopulation, and so is Ȳ.When both design andmodel-basedmethods are integrated, then
design-based, model-based, model-assisted estimators, and joint design and model-based estimators, plus
their variances and estimated variances can be derived. Further details can be found in Fuller [4] or Haslett
[8]. This broader framework is important because then time series, as well as linear and generalized linear
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models can be �tted to sample survey data to provide better estimates of the parameters and of their covari-
ance matrices. The standard, design-based way to �t a linear model to survey data is to use inverse inclusion
probabilities as weights within a model-based context. The linear model for the survey data is speci�ed as:

Y = Xβ + e (2.1)

Here Y is an n × 1 vector of responses, X is an n × p matrix of auxiliary variables, β a p × 1 vector of pa-
rameters, and e an n × 1 vector of errors with covariance matrix V(e) = E(ee′) = Ve . Neither X nor Ve need be
of full rank. Generally Ve is unknown and is estimated by V̂e.

For the sample survey data, Y = (y1, y2, . . . , yi , . . . , yn)′ the inclusion probabilities are Π0 = diag(πi)
where i = 1, 2, . . . , n. The notation is also extended to include the N − n non-sampled elements. All N in-
clusion probabilities {πi : i = 1, 2, . . . , N} and N(N + 1)/2 possibly di�erent joint inclusion probabilities
{πij : i = 1, 2, . . . , N; j = 1, 2, . . . , N}where πij = πji and πii = πi by de�nition, are speci�ed at design stage.

The standard design-based least squares solution for full rank X (e.g., Chambers & Skinner [2], Skinner
et al. [18]) is then

β̃ = (X′Π−1
0 X)−1X′Π−1

0 Y (2.2)

with estimated covariance matrix given by

Ṽ(β̃) = {(X′Π−1
0 X)−1X′Π−1

0 }V̂e{Π−1
0 X(X′Π−1

0 X)−1} (2.3)

This design-based solution (2.2) is weighted least squares, using weights equal to the inverse of the inclusion
probabilities for the sampled units. However it also has a connection to ordinary least squares in that the
model covariance Ve is not involved. However there is an adjustment for an estimate of Ve in the estimated
covariancematrix Ṽ(β̃), so that (2.3) is not necessarily equal to the appropriately scaled versionof (X′Π−1

0 X)−1

that is the estimated covariance matrix of β̃ for simple random sampling.

3 Linear models adjusted for inclusion and joint inclusion
probabilities and for covariance structure

A population of size N can be considered as being sampled from a superpopulation, and the linear model
based on that population is

YP = XPβ + eP , (3.1)

with E(eP) = 0, where E denotes superpopulation expectation, and V(eP) = E(ePeP ′) = VeP . is N × N with
(i, j)th element vij. Then the best linear unbiased estimate (BLUE) of the superpopulation parameter β in the
full rank case is

β̂P = (XP ′V−1
ePXP)−1XP ′V−1

eP YP (3.2)

3.1 Design unbiased estimation of the population covariance matrix

Suppose we have a sample s of size n which has been selected from the population P with inclusion proba-
bilities {πi : i = 1, 2, . . . , N} and joint inclusion probabilities {πij : i = 1, 2, . . . , N; j = 1, 2, . . . , N}.

De�ne χP to be the N × N matrix with ijth element χij = 1 if both i ∈ s and j ∈ s and zero otherwise.
χP varies depending on the sample drawn, has n non-zero diagonal elements all equal to one, and n(n − 1)
o�-diagonal elements each equal to one; all other N2 − n2 elements are zero.

Provided the design is noninformative, E(χP) = ΠP where E is expectation with respect to the design,
andΠP has ijth element πij for i = 1, 2, . . . , N; j = 1, 2, . . . , N. The key property of a noninformative sample
design is that selection and joint inclusion probabilities are independent of the errors eP in (3.1). Note that
all elements of ΠP are positive so ΠP is a positive matrix, and since no element of χP is less than zero χP is
a non-negative matrix.
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Denote the Hadamard inverse ofΠP byΠ�−P so thatΠ�−P �ΠP = 11′ where 1 is an N ×1 vector of ones,
i.e., each element of Π�−P equals the inverse of the corresponding element of ΠP. Then from Haslett [7] we
have:

Theorem 3.1. The expected value of the augmented weighted sample superpopulation variance,

VeP ,s = χP � VeP �Π�−P (3.3)

is
E(VeP ,s) = E(χP � VeP �Π�−P ) = VeP (3.4)

where � denotes the Hadamard (or elementwise) product, VeP is positive semide�nite, χP is a non-negative
matrix, andΠ�−P is a positive matrix.

Proof: πij > 0 for all i = 1, 2, . . . , N; j = 1, 2, . . . , N, so that all entries of Π�−P are positive. So we
can de�ne the Hadamard or elementwise inverse of ΠP, namely the N × N matrix Π�−P to have ijth ele-
ment 1/πij. Similarly χP is a non-negative matrix because all its elements are either one or zero. Then for
i = 1, 2, . . . , N; j = 1, 2, . . . , N, we have E(χijvijπ

−1
ij ) = vijπ

−1
ij E(χij) = vijπ

−1
ij πij = vij which in matrix form is

(3.3).

Note that χP � VeP �Π�−P contains only n of N rows and n of N columns that are non-zero, and that
VeP is assumed known. So, after suitable permutation, there is only an n × n submatrix of χP that is non-
zero; χP � VeP �Π�−P has ijth element vij/πij if i ∈ s and j ∈ s and is zero otherwise, with the convention
that the diagonal elements are vii/πi if i ∈ s and zero otherwise, and hence (after the same permutation)
χP � VeP �Π�−P also contains only an n × n submatrix that is non-zero.

Note too that if VeP = σ2
eP I, where σ2

eP is a scale factor, then χP�VeP �Π�−P reduces to a diagonal matrix
with ith diagonal element vii/πi if i ∈ s and 0 if i /∈ s. If all members of {vii : i = 1, 2, . . . , N} are equal, then
χP � VeP �Π�−P = σ2

eP
{

diag(πi)N×N
}−1 which for the sample corresponds to the standard case in (2.2).

3.2 Improved approximation to BLUE for design-based sample survey estimators

Permuting both rows and corresponding columns of χP � VeP �Π�−P so that the sampled elements occur in
the �rst n rows and n columns is straightforward. Denote this re-ordering by VeP ,s and its submatrix made
up of the �rst n rows and n columns by VeP ,s,n. Now under a full rank condition on VeP ,s,n, the N × N matrix
VeP ,s has a generalized inverse (which is also the Moore-Penrose inverse)

V+
eP ,s =

(
V−1
eP ,s,n 0
0 0

)
(3.5)

where VeP ,s,n has ijth element vij/πij. Because 0 < πi ≤ 1 for i = 1, 2, . . . , N, the inverse V−1
eP ,s,n exists for

all possible samples provided VeP is full rank. Note that for simplicity of notation, once sampled there is
an implicit relabelling of the units so that those in the selected sample are relabelled (in the same order) as
i = 1, 2 . . . , n and j = 1, 2, . . . , n. After the rows of XP have also been appropriately permuted to match the
permutation for the rows and columns of V+

eP ,s:

XP
′V+

eP ,sXP =
(

X ′ X∼s
′
)( V−1

eP ,s,n 0
0 0

)(
X
X∼s

)
= X ′V−1

eP ,s,nX (3.6)

and

XP
′V+

eP ,sYP =
(

X ′ X∼s
′
)( V−1

eP ,s,n 0
0 0

)(
Y
Y∼s

)
= X ′V−1

eP ,s,nY (3.7)

where, for the non-sampled elements, Y∼s denotes the y-values and X∼s contains the auxiliary variables.



82 | Stephen Haslett

Thus from (3.6) and (3.7), the approximate BLUE based on the sampled elements is:

β̂ = (X ′V−1
eP ,s,nX)−1X ′V−1

eP ,s,nY (3.8)

with estimated covariance matrix given by

V̂(β̂) = {(X′V−1
eP ,s,nX)−1X′V−1

eP ,s,n}V̂e{V
−1
eP ,s,nX(X′V−1

eP ,s,nX)−1} (3.9)

where, as in Section 2, V(e) = Ve . and e denotes that part of eP that corresponds to the n sampled elements.
When VeP is diagonal, i.e., VeP = σ2

eP I, then VeP ,s,n is also diagonal and (3.8) and (3.9) reduce to (2.2) and (2.3)
respectively.

Onemajor advantage of (3.8) and (3.9) over (2.2) and (2.3) is that they can be applied to estimation of �xed
e�ects in mixed linear models, where incorporation of the random e�ects into VeP means that it is no longer
a diagonal matrix, so that (2.2) and (2.3) cannot be applied.

3.3 Is the augmented weighted sample superpopulation variance positive
semide�nite, and is this necessary for BLUE?

Perhaps surprisingly, following from Haslett & Puntanen [9] and the earlier results in Rao [14], to produce
the correct estimates of β from (3.6), VeP ,s, the (N ×N) augmented weighted sample superpopulation variance
neednot be positive semide�nite, and its n×n submatrix,VeP ,s,n neednot be positive de�nite. See alsoHaslett
[7]. This can be seen for �xed e�ect linear models from an extension to Rao [14]. Given a linear model of the
form (2.1) with error covariance matrix V1, then for any V2 of the form

V2 = λV1 + XKXX
′ + V1X⊥KX⊥

X⊥
′V1 (3.10)

where λ ≠ 0, X⊥ is a matrix orthogonal to X so that (X : X⊥) is full rank, and KX and KX⊥
are arbitrary,

then the BLUE of β is unchanged. Generally to preserve the covariance matrix of β̂, λ = 1. But if, for example,
λ = −1, KX = 0, KX⊥

= 0, and V1 is positive semide�nite (but not the zero matrix), then V2 is not positive
semide�nite.

Both Haslett & Puntanen [9] and Rao [14] are relevant here, because the diagonal elements of the
n × n submatrix VeP ,s,n are vii/πi and its ijth element is vij/πij. Of course, from the population covariance
vij/(viivjj)

0.5 ≤ 1. However, in general 1/πi � 1/πij, because except perhaps for clustered designs, joint in-
clusion probabilities usually have the property that πij ≈ πiπj. So diagonal elements of VeP ,s,n can be much
smaller than its o�-diagonal elements, and consequently VeP ,s,n may have at least some negative eigenval-
ues. The central problem has an analogue in the possibility of negative variance estimates for the Horvitz-
Thompson estimator of a mean or total. The preceding material in this paper, which was also outlined in
Haslett [7], forms the foundation for the following sections.

4 The augmented weighted sample superpopulation variance and
adjustments to make it positive semide�nite

Recall from (3.3) that the augmented weighted sample superpopulation variance VeP ,s is de�ned by VeP ,s =
χP � VeP �Π�−P , where all three component matrices are N × N, VeP is positive semide�nite and known or
estimable at least for the relevant n × n sampled submatrix,ΠP and henceΠ�−P is positive but not necessar-
ily positive semide�nite, and χP is a non-negative matrix which is dependent on the sample s and contains
N2 − n2 zeros plus n2 ones. For χP, n of these ones are on the diagonal (corresponding to the sampled ele-
ments) and all of them can be consolidated into an n × n submatrix after suitable permutation of its rows and
corresponding columns.
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Now any square matrix V is positive semide�nite if and only if for conformable x, x′Vx ≥ 0, for all x. So
after any choice of suitable permutation of the rows and columns of V, and by choosing conformable x0 =
(x1
′, 0, . . . , 0)′, then for the submatrix V11 corresponding to x1, x1

′V11x1 ≥ 0 and so is positive semide�nite.
Nevertheless, VeP ,s not being positive semide�nite is an undesirable property. To avoid such complica-

tions entirely, if the intention is to �t linear models, then the sample should if possible be chosen to meet the
condition that VeP ,s is positive semide�nite, so that, for any sample s, the n×n submatrix VeP ,s,n must also be
positive semide�nite. This is not always possible however, in which case some adjustment may be necessary
at analysis rather than design stage for estimation of linear model parameters. Twomethods are discussed in
Haslett [7] The �rst uses (3.10) and attempts to create a matrix which is positive semide�nite with the prop-
erty that BLUEs are unchanged. The second uses the Cauchy interlace theorem to provide necessary but not
su�cient conditions for checking, and if required reconstructing, a covariance matrix via (3.10) that meets
the necessary conditions. In Huang et al. [11] there is an alternative, �nding the nearest positive semide�-
nite matrix by minimising the (squared) Frobenius norm trace(AA′) where A is the di�erence between the
matrix in question (here VeP ,s,n) and the set of positive semide�nite matrices. In essence the method when
applied here would �nd the eigenvectors and eigenvalues of VeP ,s,n, then retain the eigenvectors but replace
any negative eigenvalues by zero. However the BLUE property would not necessarily be, and in fact is highly
unlikely to be, maintained. For linear models though, it is perhaps not the positive de�niteness of VeP ,s,n that
is as important as the positive semide�niteness of X′V−1

eP ,s,nX since positive semide�niteness of X′V−1
eP ,s,nX

is su�cient to ensure that estimates of the covariance matrix of estimated regression parameters of β will be
non-negative.

The following theorem provides a useful starting point.

Theorem 4.1. Consider full rank but not necessarily positive semide�nite V . Let {λi : i = 1, 2, . . . , n} be the
eigenvalues of V , where {λi : i = 1, 2, . . . , q} are all positive and {λi : i = q + 1, q + 2, . . . , n} are all negative.
Let λ = diag{λi}, and λ+0 and λ−0 be diagonal matrices with non-zero entries of {λi : i = 1, 2, . . . , q} and
{λi : i = q + 1, q + 2, . . . , n} respectively. Let the eigen-decomposition of

V = UλU′ =
(
U+0 U−0

)( λ+0 0
0 λ−0

)(
U′+0
U′−0

)

so that, since no diagonal elements of λ are zero,

V−1 = UλU′ =
(
U+0 U−0

)( λ−1
+0 0
0 λ−1

−0

)(
U′+0
U′−0

)
.

Let C denote column space. Then a su�cient condition for conformable X0, that X
′
0V

−1X0 be positive de�nite,
is that C (X0) ⊆ C (V+0).

Proof. If C (X0) ⊆ C (V+0) then

X′0V
−1X0 = X′0Uλ

−1U′X0

= X′0
(
U+0 U−0

)( λ−1
+0 0
0 λ−1

−0

)(
U′+0
U′−0

)
X0

=
(
X′0U+0 0

)( λ−1
+0 0
0 λ−1

−0

)(
U′+0X0
0′

)
= (U′+0X0)′λ−1

+0(U′+0X0).

which is positive de�nite because all the diagonal elements of λ−1
+0 are positive by construction.

Becausemany surveydesigns are clustered andunitswith clusters are correlatedbutnot otherwise, a very
common structure for VeP ,s, the population error covariance, is block diagonal with blocks of size determined
by the size of each cluster and all of the form σ2{(1 − ρ)I + ρ11′}, where I is the identity matrix, 1 is a vector



84 | Stephen Haslett

of ones; ρ is a positive intra-cluster correlation, and σ2 is a scaling constant, each having the same value
across clusters. Sampling from VeP ,s (N × N) then implies VeP ,s,n (n × n) has a similar structure, but with
reduced size because only some clusters are included in the sample (and, for a two stage cluster sample, only
some units in those sampled clusters are included). Then the eigenvectors of VeP include 1 and vectors of the
form (0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0)′ where the subvector of 1’s corresponds to units from a given cluster.
A similar structure exists in VeP ,s,n with changed dimensions because then the non-zero elements in a re-
dimensioned vector (0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0)′ correspond to units sampled from a given sampled
cluster. So when only the overall sample mean or the sample mean of any subsample consisting of sampled
units in one or more clusters are required, the condition C (X0) ⊆ C (V+0) will be met, and X′VeP ,s,nX where
X = 1 is n × 1 and de�ned in (2.1) will be positive de�nite even if VeP ,s,n is not.

These results a consequence of the following lemma.

Lemma 4.1. V = aI + b11′ and 1 share the eigenvector 1.

Proof. Let V be nc × nc and 1 be nc × 1. Clearly 1 is an eigenvector of itself with eigenvalue 1. Further, 1 is an
eigenvector of V with eigenvalue a + ncb, since (aI + b11′)1 = (a + ncb)1 via 1′1 = nc .

Aggregations of clusters or sampled clusters will give a block diagonal covariance structure correspond-
ing to population or sample submeans, or the population or sample overall mean, respectively, and (via the
result for the clusters) will yield the required positive semide�niteness. In the scalar case this leads to a pos-
itive estimate of variance for both sample submeans and the overall sample mean.

5 Sampling with replacement
One implicit assumption in the preceding material is that the n units sampled from a complex survey design
are all distinct, or if not then when a unit is redrawn it is assumed not to have a correlation of one with any
previous or consequent draw of the same unit. However, much of the previous discussion can be extended to
varying probability sampling with replacement, in which sampling of units may be with unequal probability,
but any sampled unit may be resampled. In this case the number of unique units in the sample nu may be and
often is less than n, the sample size. The di�erence (n−nu) represents the number of units that are replicates.
For sampled unit k, let nk equal the number of times the unit is sampled. Of course, for the unsampled units,
nk = 0. A commonly used sampling scheme that uses varying probability is probability proportional to size
(pps) sampling, where the variable of interest is positively correlated with some measure of unit size known
before data collection. This measure of size is used directly at survey design stage as the basis for setting
the probability that each unit is included in the sample. Sampling without replacement is usually but not
necessarily more e�cient (see Gabler [5] for example). Much depends on the joint inclusion probabilities, as
illustrated inRao [15]. The probability anyunsampledunit is sampled also changeswith eachdraw.Achieving
an overall pps sample without replacement (ppswor) is consequently not as straightforward as sampling pps
with replacement (ppswr). This is the principal reason ppswr is a common sampling scheme, especially in
third world applications. Formulae for estimating a mean, its variance and estimated variance for ppswr are
well known. But when a linear model is �tted to any with replacement sample, the complication is that, for
any sample where one or more units are replicated in the sample, the covariance structure for all n sampled
units is singular.

There are two options. The �rst is based on the unique units sampled only, ignoring any replicates. This
is a prevalence estimator, since no matter how many times it occurs in a particular sample a unit is counted
only once in the estimator. Here the sample size is random so an issue is determining design unbiasedness
taken over all possible samples. The second is an incidence estimator, which incorporates into the estimator
the number of times a unit is sampled in any particular sample. Here the complication is that all occurrences
in the sample of a given unit have a correlation of onewith each other so, for any samplewith replicated units,
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matrix inversion for linear models involves generalized inverses. We now consider each of these situations in
turn.

5.1 The prevalence method

Suppose sampling is varying probability with replacement and that the probability that unit i is selected at
each draw is pi . Then for all i = 1, 2, . . . , N, the inclusion probability is

πi = prob(i ∈ s)
= 1 − prob(i /∈ s)
= 1 − (1 − pi)

n .

The joint inclusion probability for units i and j is

πij = prob(i ∈ s, j ∈ s)

= 1 − prob(i /∈ s) − prob(j /∈ s) + prob(i /∈ s, j /∈ s)
= 1 − (1 − pi)

n − (1 − pj)
n + (1 − pi − pj)

n .

Further,
prob(i ∈ s, r times) = nCrp

r
i (1 − pi)

n−r

where nCr = n!/{r!(n − r)!} is the number of ways of choosing r items from n.

The joint probability that unit i appears exactly r times, and the unit j appears exactly t times is given via
the multinomial expansion,

prob(i ∈ s, r times; j ∈ s, t times) = {n!/(r!t!(n − r − t)!}pri p
t
j (1 − pi − pj)

n−r−t .

The maximum number of times unit i can be selected in a sample of size n is n, and
n∑
r=1

nCrp
r
i (1 − pi)

n−r =
n∑
r=0

nCrp
r
i (1 − pi)

n−r − (1 − pi)
n = 1 − (1 − pi)

n .

Note as an aside, that
n∑
r=1

nCrp
r
i (1 − pi)

n−r = 1 − (1 − pi)
n = 1 −

n∑
r=0

nCr(−pi)
r(1)n−r =

n∑
r=1

nCr(−1)r−1pi
r

provides a connection between a series expansion with entirely positive terms and one with terms of alter-
nating sign.

Lemma 5.1. Godambe [6] The expected number of unique units in a with replacement sample with equal prob-
abilities of selection at each draw for each unit i = 1, 2, . . . , , N but possibly varying probabilities of selection
for di�erent units, is the sum of the inclusion probabilities of all N population units, i.e.,

E(nu) =
N∑
i=1

πi . (5.1)

Proof. If we sum the probability of each unit in the sample appearing 1, 2, . . . , n times to create a sample of
size nu (the number of unique units) from it, this is equivalent to only counting unit i once no matter how
many times more than zero it appears in the sample. Then the probability that unit i appears in the reduced
set of size nu is the sum of the probabilities it appears in the sample {k = 1, 2, . . . , n} times, i.e.,

n∑
r=1

nCrp
r
i (1 − pi)

n−r = 1 − (1 − pi)
n = πi .
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It follows, since probability that unit i appears in the reduced set does not depend on the joint inclusion
probabilities, that even if there were clustering in the sampling scheme, taken over all samples the expected
number of uniqueunits in the sample is the sumof allN inclusionprobabilities, namely {πi : i = 1, 2, . . . , N},

so that E(nu) =
N∑
i=1
πi.

Lemma 5.2. The sum of the inclusion probabilities for all N units for a with replacement sample with equal
probabilities of selectionat eachdraw for eachunit i = 1, 2, . . . , N but possibly varying probabilities of selection

for di�erent units is less than the sample size n , i.e.,
N∑
i=1
πi < n.

Proof: Using the previous transition from a series with all terms positive to one where terms have alternating
signs. We have

N∑
i=1

πi =
N∑
i=1
{1 − (1 − pi)

n}

=
N∑
i=1

n∑
r=1

nCr(−1)r−1pri

=
n∑
r=1

nCr
N∑
i=1

(−1)r−1pri

=
n∑
r=1

nCr(−1)r−1
N∑
i=1

pri

<
n∑
r=1

nCr(−1)r−1since
N∑

i=1
pr

i <
N∑

i=1
pi = 1

=n C0 −
n∑
r=0

nCr(−1)r(1)n−r

= n − (−1 + 1)n

= n.

So
N∑
i=1
πi < n for varying probability sampling with replacement in general and for ppswr in particular. More

intuitively,
N∑
i=1
πi = E(nu) from Lemma 5.1 and sampling is with replacement so that E(nu) < n, and it follows

that
N∑
i=1
πi < n.

The covariance matrix of the unique sample elements from a with replacement sample is N × N with the
same structure as previously namely (3.3), VeP ,s = χP � VeP �Π�−P . Here the diagonal elements of χP indi-
cate those units i in the population P that are selected in the sample at least once, so that χP after appropriate
reordering contains an (nu × nu) submatrix for which all elements are equal to one, with all other elements
zero. Further, as discussed inHaslett [8], the elements inΠ�−P are the elementwise inverses of πi = 1−(1 − pi)

n

on the diagonal, and πij = 1 − (1 − pi)
n − (1 − pj)

n + (1 − pi − pj)
n in the (i, j)th o�-diagonal position, and VeP

is the population covariance matrix structure as before. Thus, from (3.8) and (3.9) with Xnu (nu × p), de�ned
to be that part of X (n × p) that corresponds to the unique sample elements, as is Ynu , the approximate BLUE
based on the sampled elements is:

β̂ = (X′nuV
−1
eP ,s,nuXnu )−1X′nuV

−1
eP ,s,nuYnu (5.2)

with
V̂(β̂) = {(X′nuV

−1
eP ,s,nuXnu )−1X′nuV

−1
eP ,s,nu}V̂e{V

−1
eP ,s,nuXnu (X′nuV

−1
eP ,s,nuXnu )−1} (5.3)
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As in Section 2, V(enu ) = E(enue
′
nu ), with enu now denoting that part of eP that corresponds to the nu

unique sampled elements, and V−1
eP ,s,nu being (nu × nu). The size of the various matrices and vectors varies

from sample to sample with expected number of unique elements E(nu) =
n∑
i=1
πi. As required by (3.4) and

Theorem 3.1, despite this contraction in average dimension,

E(VeP ,s) = E(χP � VeP �Π�−P ) = VeP

E(X′nuV
−1
eP ,s,nuXnu ) = (X′PV

−1
eP XP) (5.4)

E(X′nuV
−1
eP ,s,nuYnu ) = (X′PV

−1
eP YP)

Given XP is �xed under the superpopulation model, i.e., for each i = 1, 2, . . . , N the corresponding row of
XP is �xed, then the three equations in (5.4) also hold for the joint design-superpopulation expectation.

5.2 The incidence method

Suppose again that sampling is varying probability with replacement and that the probability that unit i is
selected at each draw is pi. Inclusion and joint inclusion probabilities, and probability unit i is drawn r times,
and the probability that unit i is drawn r times and unit j is drawn t times have been given in Subsection 5.1.

Also, since prob(i ∈ s, r times)=nCrp
r
i (1 − pi)

n−r, the expected number of times unit i appears in the
sample is

n∑
r=1

rnCrp
r
i (1 − pi)

n−r = npi .

This is so since (a + b)n =
n∑
r=0

nCra
rbn−r, hence the partial derivative is

∂(a + b)n/∂a =
n∑
r=0

rnCra
r−1bn−r .

Thus

a(∂(a + b)n/∂a) = an(a + b)n−1 =
n∑
r=0

rnCra
rbn−r

and the expected number of times unit i appears in the sample is
n∑
r=1

rnCrp
r
i (1 − pi)

n−r = npi{pi + (1 − pi)}
n − {rnCrp

r
i (1 − pi)

n−r}r=0 = npi .

5.2.1 Generalized inverses for with replacement sampling

For de�niteness inwhat follows, de�ne theMoore-Penrose (M-P) inverseA+ of a realmatrixA by the following
four properties:

1. AA+A = A
2. A+AA+ = A+

3. A+A = (A+A)′

4. AA+ = (AA+)′.
Consider a sample of size n sampled with replacement, where only unit j is resampled, so that nu = n−1.

To represent the samplingmechanism, order the nu unique elements �rst, followed by the second occurrence
of unit j.
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Let

T =
(
I ij
i′j i′j ij

)
where

ij = ( 0 0 . . . 0 1 0 . . . 0)′

has one in the jth position with all other elements zero. Let

Σ0 =
(
Σ 0
0′ 0

)

where Σ0 is the covariance structure for the nu unique elements. Then TΣ0T
′ = TΣ0T is the singular covari-

ance structure for all n sampled units.
Note that

i′j ij = 1; ij i
′
j = diag(ij); i

′
j ij i
′
j = i′j; ij i

′
j ij = ij; and I + ij i

′
j = diag(nk)

where nk is the number of occurrences of sampled unit k.
Then

T∗ =
(
I + ij i

′
j −ij

−i′j i′j ij

)
is a (1-) g-inverse of T. Further, assuming Σ is full rank, let

Σ+
0 =

(
Σ−1 0
0′ 0

)

be the M-P inverse of Σ. Then T∗Σ+
0T
∗ is a (1,2-) g-inverse of TΣ0T.

This structure can be extended to include units sampled more than two times. In such cases, the (2,2)
block of T is itself block diagonal with diagonal blocks that are all ones, of size (nk − 1)x(nk − 1). So if nk > 2
for any k = 1, 2, . . . , nu, the (2,2) block of T is not always full rank.

Consequently, the conditions of Puntanen et al. [13, p.294], which provide an explicit Moore-Penrose
inverse for a block matrix where the (1,1) and (2,2) blocks are both invertible, are not met. Further, although
Jerković & Males̆ević [12] provides conditions for various types of g-inverse, which include (1-) and (1,2-) g-
inverses, their results provide equivalent conditions rather than amethod of construction. The question then
is how to �nd suitable g-inverses of T and TΣ0T when there may be replicates (nk > 1) for any number of the
nu sampled units.

Consider

T =
(
I L′

L LL′

)
.

For with replacement sampling, L has a particular structure with all elements zero except that the (nk − 1)
rows for nk > 1 corresponding to replicates (i.e., repetitions) of the kth unique unit have a one in column k.

Theorem 5.1. Let

T =
(
I L′

L LL′

)
and

Σ0 =
(
Σ 0
0′ 0

)
where the blocks of T and Σ0 conform. For simplicity, let Σ be full rank. Let

Σ+
0 =

(
Σ−1 0
0′ 0

)
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be the M-P inverse of Σ0. Then given L′ is a (1,2-) g-inverse of L, a (1-) g-inverse of T is

T∗ =
(
I + L′L −L′

−L LL′

)

and for any L, a (1,2-) g-inverse of TΣ0T is T∗Σ+
0T
∗.

Proof: By expansion.

Note that more general forms of T∗ are possible, and there exists a complete class of such (1-) g-inverses
which have the same structure as in Theorem 5.1, but for which each of the blocks is scaled by a di�erent
matrix. However none of the members of this class satisfy conditions 3- or 4- for M-P inverses.

Corollary 5.1. When Σ0 is the covariance structure for the nu unique elements from a with replacement sample
with varying probabilities, and L has all elements zero except that all (nk − 1) rows for nk > 1 corresponding to
replicates (i.e., repetitions) of the kth unique sampled unit have a one in column k, then Theorem 5.1 provides a
(1-) g-inverse of T and a (1,2-) g-inverse of TΣ0T.

Note that, for with replacement sampling, TΣ0T is the covariance structure for all n sampled elements in-
cluding repetitions, and T∗Σ+

0T
∗ is a (1,2-) g-inverse of TΣ0T.

5.2.2 Linear models using incidence for with replacement sampling

Because T∗Σ+
0T
∗ is a g-inverse of TΣ0T, the possibly singular covariance structure for all n sampled elements

including repetitions, we now have the matrices needed to specify and �t a linear model to sample survey
data from a varying probability with replacement sample using all n sampled units and allowing for the
correlation between any unit that is resampled. Speci�cally from (3.8) and (3.9) for full rank X′V−eP ,s,nX one
parameterisation of the approximate BLUE based on all n sampled elements is:

β̂ = (X ′V−eP ,s,nX)−1X ′V−eP ,s,nY (5.5)

with estimated covariance

V̂(β̂) = {(X′V−eP ,s,nX)−1X′V−eP ,s,n}V̂e{V
−
eP ,s,nX(X′V−eP ,s,nX)−1} (5.6)

where, as in Section 2 and Subsection 3.2, V(e) = Ve . and e denotes that part of eP that corresponds to the n
sampled elements.

Here VeP ,s,n is an n × n submatrix derived from an extended nN × nN form of the augmented weighted
sample superpopulation variance, VeP ,s = χP � VeP �Π�−P This extended form considers separately the
�rst through nth time that each of the N population units may be sampled, and includes both the nu sampled
elements and (N − nu) unsampled elements. Each of the N population units is included n times, even though
only nu distinct elements are sampled in a given sample of size n.

Denoting the Kronecker product of matrices by⊗, the extended nN × nN form of χP � VeP �Π�−P is

{χPNn � (11′ ⊗ VeP )�Π�−PNn}

which being nN × nN allows that each population unit i = 1, 2, . . . , N may occur in a sample k = 1, 2, . . . , n
times. Of course for any given sample s, only an n × n submatrix based on the nu unique sampled elements
contains non-zero rows and columns, because only an n×n submatrix of the nN×nNmatrix χPNn contains non-
zero elements. Π�−PNn is also nN × nN, with elements equal to the inverse of the relevant terms in a binomial
expansion (for diagonal elements) or a multinomial expansion (for o�-diagonal elements). See the initial
equations in Section 5.2.
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Then
VeP ,s = (1n ⊗ IN)′{χPNn � (11′ ⊗ VeP )�Π�−PNn}(1n ⊗ IN) (5.7)

which combines instances of multiple sampling, is a design unbiased estimator of VeP . Of course, for a par-
ticular sample only n × n submatrix is involved, because all other (Nn)2 − n2 = n2(N2 − 1) entries of VeP ,s are
zero.

6 Conclusions
When survey estimation is design based and includes weights, via inclusion (or selection) and joint inclu-
sion (or selection) probabilities, or functions of them (for example, a non-response adjustment), the positive
semide�niteness of estimated covariance structure for the error in a linear model constructed from survey
data cannot be guaranteed, except if all joint inclusion probabilities, or equivalently covariances between
population elements are ignored. For particular types of covariance structure often used in linear models
for survey data however, where the covariance matrix is block diagonal with common correlation and scale
such as often used for cluster sampling and its variants, it is possible to ensure positive de�niteness for the
estimated covariancematrix of parameter estimates. Themethods previously used in Haslett [7] for sampling
without replacement can be extended towith replacement sampling schemes evenwith varying probabilities
for sampling units and clustered sampling. The principal approaches are to consider only the unique units
sampled, or to work with all units sampled and possibly singular covariance structures.

Although Section 5 has focused on prevalence and incidence type estimators for design based and for
joint design and model-based inference given XP, the various generalized inverses developed there are also
applicable to model-based sampling when sampling is with replacement. One simpli�cation then is that the
positive semide�niteness considerations due to selection probabilities that are necessary for joint design and
model approach are not required for model-based inference because the selection mechanism is instead in-
corporated into the auxiliary variables in the model rather than using inclusion or selection probabilities.
The sample covariance for the unique sampled units is consequently positive semide�nite because the is-
sues induced by the matrix of elementwise inclusion and joint inclusion probabilities is not relevant. The
complication that the sample covariance matrices will be positive semide�nite but not positive de�nite will
remain when any unit is sampled more than once, but the generalized inverses in Section 5 can be used to
circumvent this problem and (as for the design based and the joint and design model based framework) can
provide sample based BLUEs.
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