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Abstract: A key limitation of traditional efficiency measurement is the inability of typical functional forms to
capture non-linearities. This study proposes an alternative framework for efficiency analysis by integrating a
Bayesian neural network with a generalized true random-effects Stochastic Frontier Analysis (SFA) model. In
doing so, complex functional forms are better approximated, while both time-varying and time-invariant inef-
ficiencies are considered for. The neural network SFA model is empirically compared with the conventional SFA
model using a Cobb-Douglas specification. The results highlight that the neural network model better captures
underlying non-linearities and provides a more accurate assessment of inefficiency. Bayes factors provide strong
evidence in favor of the neural network model. These initial findings signal the potential of neural networks to
enhance the precision and flexibility of efficiency analysis.
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1 Introduction

Machine learning techniques are essential tools for practitioners analyzing real-world data, particularly for
revealing complex patterns that might otherwise be missed (Hauzenberger et al. 2025). These techniques are
highly relevant across various sectors characterized by complex relationships, including, among others, agricul-
ture, healthcare, manufacturing, and energy. This relevance is especially critical in the context of inefficiency
measurement, as the precision of performance measures that guide firms, policymakers, and other stakeholders
can be compromised by the limitations of conventional modeling approaches (Giannakas et al. 2003). Specif-
ically, when applying the stochastic frontier analysis (SFA) technique introduced by Aigner et al. (1977) and
Meeusen and van den Broeck (1977) to quantify inefficiency, researchers often rely on standard functional forms
(i.e. Cobb-Douglas) to model the relationship between inputs and outputs. While standard functional forms
are widely used for their simplicity and convenience, they may not adequately capture the highly non-linear
relationships between inputs and outputs.

In this study, we examine the consequences of ignoring non-linearities in the production frontier when esti-
mating time-invariant and time-varying inefficiencies. To do so, we (1) specify an SFA model that distinguishes
between time-invariant and time-varying inefficiency components, (2) model the deterministic part of the fron-
tier using a neural network to capture non-linearities in the input—output relationship, and (3) compare the
results with those obtained from a conventional SFA model that assumes a linear Cobb—Douglas functional
form for the deterministic part of the frontier.

*Corresponding author: Ioannis Skevas, Assistant Professor, Department of International & European Studies, University of Macedonia,
156 Egnatia Street, PC 54636, Thessaloniki, Greece, E-mail: gskevas@uom.edu.gr. https://orcid.org/0000-0003-4595-4396

Theologos Dergiades, Assistant Professor, Department of International & European Studies, University of Macedonia, 156 Egnatia Street,
PC 54636, Thessaloniki, Greece, E-mail: dergiades@uom.edu.gr. https://orcid.org/0000-0003-3294-7787

3 Open Access. © 2025 the author(s), published by De Gruyter. (T2 This work is licensed under the Creative Commons Attribution 4.0 International
License.


https://doi.org/10.1515/snde-2025-0091
mailto:gskevas@uom.edu.gr
https://orcid.org/0000-0003-4595-4396
mailto:dergiades@uom.edu.gr
https://orcid.org/0000-0003-3294-7787

2 = 1. Skevas and T. Dergiades: Efficiency and Bayesian Neural Networks DE GRUYTER

Accounting for frontier non-linearities is particularly important in sectors where input—output relation-
ships are complex and influenced by external conditions. In the energy sector, which serves as the empirical
context of this study, the marginal productivity of inputs like labor, capital, and water can vary significantly
depending on weather conditions, resource availability, and the regulatory framework. Such non-linear inter-
actions may lead to sizable deviations from the predictions made by standard functional forms, highlighting the
need for more flexible modeling approaches. Neural networks are powerful machine learning tools that have
proven to be highly effective as function approximators, learning to map inputs to outputs by adjusting the
network’s weights based on the available data (Pendharkar 2023). In particular, the network adjusts its param-
eters, enabling it to “learn” the underlying function that relates inputs to outputs, even when this function is
complex or highly non-linear (Azadeh et al. 2010). This attribute has made neural networks attractive for stud-
ies such as those by Azadeh et al. (2010), Konstantakis et al. (2025), Liao et al. (2007), Pendharkar (2023), Wang
(2003), and Xuan (2018), which have applied them in SFA to approximate the unknown functional form of the
frontier. Additionally, neural networks have been employed to address uncertainty in the relationship between
the inefficiency term and socio-economic characteristics, as highlighted in Tsionas et al. (2023).

To date, most of the studies in the field have not adequately addressed the panel structure of their data,
particularly with regard to differentiating between time-varying and time-invariant inefficiency components,
as suggested by Kumbhakar et al. (2014) and Tsionas and Kumbhakar (2014) in their generalized true random
effects model. Additionally, the potential consequences of neglecting the presence of non-linearities between
inputs and outputs within both time-invariant and time-varying inefficiency scores remain unexplored. In this
study, we address these gaps by integrating a generalized true random effects SFA model with a Bayesian neu-
ral network to simultaneously capture both time-varying and time-invariant inefficiencies while accounting for
potential non-linear relationships. We also estimate inefficiencies using the conventional Cobb-Douglas spec-
ification for the frontier function and compare these estimates with those derived from the proposed neural
network model. To illustrate the empirical implications of our approach, we apply both models to a panel dataset
from the energy sector. By comparing the results of the neural network-based model with those from the conven-
tional Cobb—Douglas specification, we highlight the practical significance of adopting a more flexible functional
form in frontier analysis.

The remainder of the paper is structured as follows. In the next section, we introduce the proposed general-
ized true random effects SFA model along with the specified neural network structure and estimation procedure.
We also present the conventional SFA model based on a Cobb—Douglas functional form and outline the approach
used to compare the two models. This is followed by a description of the dataset used in the analysis. The subse-
quent section presents the results obtained from the proposed neural network-based SFA model and compares
them to those derived from the conventional Cobb—Douglas specification. The final section offers concluding
remarks.

2 Models and Estimation

2.1 Neural Network SFA Model

The generalized true random effects SFA model for firm i at time ¢ is written as:
Vi = Hei T QG+ Uy — 1 — Up @

where y,; is the log-transformed observed output and 4, ; denotes the deterministic part of the production fron-
tier. Regarding the random variables, a; is the firm-specific random effect, capturing unobserved heterogeneity,
and is assumed to follow a Normal distribution, a; ~ A(0, @™). The term v, ; represents the noise component,
accounting for random shocks, and is also assumed to be Normally distributed as v,; ~ N'(0,77?). The ineffi-
ciency components, #; and u, ; represent time-invariant (thereafter persistent) and time-varying (thereafter tran-
sient) inefficiencies, respectively, and are modeled with a Half-Normal distribution, where #; ~ A (0, w~!) and
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Figure 1: Structure of the neural network.

u; ~ N, ¢~1).! The deterministic part H¢; is modeled using a neural network that captures the potentially
complex, non-linear relationship between inputs and output:

H K
/’lt,i = Z WZI . f<2 Wlk,j 'Xt,i,k + b1]> + bZ (2)

j=1 k=1

where X, ; , represents the k-th log-transformed input variable for firm i at time ¢, W1, ; are the weights from the
input layer to the hidden layer of the neural network, W2; are the weights from the hidden layer to the output
layer, b1; and b2 are the biases for the hidden and output layers, respectively, f(-) is the activation function
applied to the weighted sums, and H is the number of hidden neurons.

The structure of a simple neural network designed for a scenario with three input features (X1, X2, and
X3), a single hidden layer containing 2 neurons (H1 and H2), and one output () is illustrated in Figure 1. The
network begins with the 3 inputs, which represent the features of the dataset and serve as the starting point
for neural computation. These inputs are fed into the hidden layer, where each is multiplied by corresponding
weights associated with each connection to the hidden neurons. For each hidden neuron j, the neuron computes
a weighted sum of its inputs plus a bias term, expressed as Zle W1y j - X, i, + b1j, which is then passed through
an activation function f(-) to introduce non-linearity into the model. The outputs from the hidden neurons are
then linearly combined to produce the final output y, using another set of weights W2; and a bias term b2. This
output represents the neural network’s prediction. Bias terms in both the hidden and output layers play a crucial
role in shifting the activation functions, allowing the network to better fit the data by accounting for systematic
deviations.

Regarding the structure of the neural network in this study, the following decisions are made: 1) the hyper-
bolic tangent (tanh) function is chosen as the activation function f(-), due to its ability to introduce non-linearity
into the model (Azadeh et al. 2007). The tanh function maps inputs to a range between —1 and 1, providing a
zero-centered output that facilitates balanced training and improves convergence, 2) a single hidden layer is
specified, based on the universal approximation theorem, which states that a neural network with one hidden
layer can approximate any continuous function (Wang 2003), 3) the number of neurons in the hidden layer
H is determined using the heuristic that suggests H should be approximately 2/3 of the size of the input layer
plus the size of the output layer (Heaton 2008). This rule of thumb balances model complexity by reducing the
risk of overfitting while maintaining sufficient model capacity. Given that the subsequent application includes
5 independent variables and 1 output variable, H is set equal to four.

1 The terms w, 7, y, and ¢ are the precision (i.e. inverse variance) parameters to be estimated.
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2.2 Bayesian Estimation

A Bayesian approach is used to estimate the model, offering key advantages, especially in handling latent vari-
ables. This is particularly useful in neural networks, where weights and biases are treated as random variables
with prior distributions. Instead of focusing on a single optimal value, Bayesian methods estimate their full pos-
terior distributions, capturing uncertainty and providing a more comprehensive view of plausible parameter
values. Bayesian estimation requires specifying the data likelihood and prior distributions for the parameters.
The data likelihood is a product of two Normal distributions for ; and v, ;, and two Half-Normal distributions
for ; and u ;:
Pyt {ads {md {ugd | X WL, W2, b1, 02, 0, v, ¢, 7)

Wy N/ v o
X 2Ny
Gy Py Ty ®3)
ONT NT/2 b N T
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The prior distributions for the weights, p(W1) and p(W2), and bias terms, p(b1) and p(b2), are Normal with
a mean of 0 and a precision of 0.01. Since the variance of a Normal distribution is the inverse of its precision,
this corresponds to a variance of 100, allowing for a wide range of possible values and reflecting limited prior
information about the network parameters. The precision parameters p(w), p(w), p(¢h), and p(z) follow Gamma
distributions. For p(w) and p(7), both the shape and rate hyperparameters are set to 0.001, resulting in a very
flat and uninformative prior. The variance of a Gamma distribution equals the shape parameter divided by
the square of the rate parameter, which in this case yields a variance of 1,000, indicating considerable prior
uncertainty. In contrast, the priors for p(y) and p(¢), which govern the inefficiency terms, use a shape of 7 and
a rate of 0.5. Because the mean of a Gamma-distributed random variable equals the ratio of its shape to its rate,
these values imply a prior mean of 14 for the corresponding precision parameters. Given that the mean of a Half-
Normal distribution equals +/(1/ pI‘eCiSiOII)\/Z/_ﬁ, this specification translates into a prior mean inefficiency of
approximately 0.2. This value is consistent with the recommendation of Van den Broeck et al. (1994), and ensures
the prior is centered around plausible values observed in empirical applications. The posterior distribution,
obtained by combining the likelihood and priors, is:

p({ai}7 {’71'}7 {ut,i}’WLWZ’hl’ bsza v, ¢,T | {yt,i}a {Xt,i})
X p({yt,i}’ {ai}v {’71'}’ {ut,i} | {Xt,i}’wszvhl’ b29w’ v, ¢’T) (4)
X p(W1) X p(W2) X p(b1) X p(b2) X p(w) X p(yw) X p(p) X p(z)

Samples from the posterior distribution are obtained using Markov Chain Monte Carlo simulation.

2.3 Conventional SFA Model and Comparison

To fulfill the main objective of this study, which is to highlight the consequences of ignoring non-linearities in
the production frontier when estimating persistent and transient inefficiencies, we also specify a conventional
Cobb-Douglas SFA model. This specification serves as a benchmark and is obtained by defining the deterministic
component of the frontier y, ; as alinear combination of the log-transformed input variables and their associated
parameters:
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To ensure comparability, all distributional assumptions for the model’s random components are kept identical
to those used in the neural network SFA model. The same applies to the prior distributions used for Bayesian
estimation.

After estimating both the neural network and conventional SFA models, we conduct Bayesian hypothesis
testing to compare the resulting inefficiency estimates. This testing procedure is based on the posterior draws of
the inefficiency scores. Specifically, we focus on two summary statistics: the means and the standard deviations
of the inefficiencies. The procedure involves the following steps: (1) extracting the mean and standard deviation
of the inefficiency scores from each posterior draw, (2) sorting these values in ascending order, (3) computing
the differences between the two models for each draw, and (4) discarding the lowest and highest 2.5 % of the
differences to construct a 95 % credible interval. If this interval includes zero, we do not reject the null hypothesis
that the two models yield equivalent inefficiency moments. The null and alternative hypotheses are formally
stated as follows:

Hy:0,—0,=0

Hi:0,—06,#0 ©

where 6, and 6, denote the posterior means (or standard deviations) of the inefficiency scores from the
Cobb-Douglas and neural network SFA models, respectively.

Finally, we compare the competing models based on their marginal log-likelihoods, which are approximated
using the Laplace—Metropolis estimator (Lewis and Raftery 1997). The relative support for each model is assessed
using Bayes factors, defined as the ratio of the marginal likelihoods of two models:

p(D | M)
BF, =+t ——1°, ()]
27 p(D | My)
where p(D | M;) denotes the marginal likelihood of model M; given the data D. Assuming equal prior probabil-
ities p(M;) = p(M,) = 0.5, the posterior probability of model M; is given by Bayes’ theorem:

p(D | M) - p(M;)

p(M; | D) = .
Y:p(D | M) - p(M))

®)

Posterior probabilities are normalized so that they sum to one across models. The model with the highest pos-
terior probability is considered the most strongly supported by the data. In addition, the Deviance Information
Criterion (DIC), introduced by Spiegelhalter et al. (2002), is also reported for each model, with lower values
indicating a better fit.

3 Data

To empirically compare the neural network SFA model with the conventional SFA model, we use the dataset from
Kerstens et al. (2019).2 The dataset, recorded monthly, includes the output and inputs of 16 Chilean hydroelectric
power plants over the entire year of 1997, comprising a total of 192 observations. The output variable is the
electricity generated (Q) in Gigawatt-hours (GWh), while the three input variables are: (a) the water volume (M)
in thousands of cubic meters, (b) the labor quantity (L), measured by the total number of full-time employees,
and (c) the value of capital (K) in real Chilean pesos. The raw observations for the output variable (Q) and the
three input variables (M, L, and K) are illustrated analytically in Figures 2, 3, 4, and 5, respectively. In addition

2 Kerstens et al. (2019) use a subset of a larger dataset originally constructed by Atkinson and Halabi (2005) and later made publicly
accessible by Atkinson and Dorfman (2009).
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to these inputs, the model specification includes an intercept and a monthly time trend to capture temporal
variation throughout the year.

4 Results

The utilized sampling scheme involves a total of 700,000 iterations, with the first 300,000 discarded as a burn-
in phase to allow the Markov Chains to stabilize. After burn-in, 400,000 iterations are used, but only every
10™ jteration is retained, resulting in 40,000 posterior samples. Thinning helps reduce autocorrelation between
consecutive samples, ensuring more reliable parameter estimates. The parameter estimates from both the neu-
ral network SFA model and the conventional SFA model are presented in the Appendix in Tables A.1 and A.2,
respectively. In addition to standard statistics (i.e. mean, standard deviation, and 95 % credible interval), the
corresponding Geweke’s diagnostic and Monte Carlo standard error (MCSE) are also reported to evaluate the
convergence and accuracy of the MCMC simulations. The Geweke’s diagnostic compares the means of the first
and last portions of the Markov chain; when the chain has converged to its stationary distribution, these means
should not differ systematically. Hence, values close to zero indicate satisfactory convergence. The MCSE quanti-
fies the uncertainty associated with estimating the posterior mean from a finite number of draws and provides
an indication of the effective sample size. Small MCSE values suggest that the posterior estimates are numeri-
cally stable and that sampling autocorrelation is minimal. Together, these diagnostics confirm that the MCMC
chains have mixed well and that the reported parameter estimates are based on reliable and well-converged
posterior samples.

The results from the neural network SFA model, presented in Table A.1, indicate that several weights W1,
which determine how each input variable contributes to the activation of the hidden neurons, exhibit strong
posterior signals with narrow credible intervals that exclude zero. In particular, weights associated with the
labor and capital inputs contribute significantly to the non-linear structure of the estimated production frontier.
For example, the parameter W15, linking labor to the first hidden neuron, has a posterior mean of 7.781 with a
95 % credible interval well above zero, indicating a strong positive contribution. The weights in the output layer
(W2) determine how each hidden neuron contributes to the final prediction of the production frontier. Among
them, W2, stands out with a posterior mean of 6.816 and a 95 % credible interval of [3.771, 11.689], suggesting
that the second hidden neuron plays a substantial and statistically significant role in shaping the model’s output.

The bias terms b1, and b1, are large in magnitude and significant, highlighting their role in shifting the
activation functions and improving model flexibility. Overall, the estimated network parameters confirm that
the neural network SFA model effectively captures complex patterns between the input variables and the output,
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Figure 6: Expected output versus inputs and time (M, L, K and t).

beyond what a linear specification can achieve. In contrast, the Cobb—Douglas SFA model presented in Table A.2
imposes constant elasticities, with each input affecting output in a fixed, proportional manner. Although all
estimated coefficients in the Cobb—Douglas model are significant, the linear functional form limits its ability to
represent more complex or varying relationships among inputs and output.

The relationships between each input variable and time with the expected output resulted from the neural
network SFA model are illustrated in Figure 6. These relationships are shaped by the tanh activation function
in the neural network’s hidden layer, resulting in S-shaped curves. Initially, increasing water quantity has little
effect on the expected output, but beyond a certain threshold, a sharp increase occurs, suggesting that water
quantity becomes a major factor driving production. For labor, lower values correspond to reduced output,
and after a certain point, further increases in labor have minimal positive impact. Similarly, capital has little
effect on the expected output when it is below a specific level, but once it crosses this threshold, it significantly
boosts production, though additional increases in capital yield diminishing effects. Finally, the expected output
increases rapidly in the early periods of time but stabilizes as time progresses. These non-linear relationships,
including threshold effects, cannot be captured by standard linear functional forms like the Cobb-Douglas, as
suggested by the constant positive elasticities shown in Table A.2 of the Appendix. This highlights the importance
of using neural networks to uncover more complex input-output relationships.

Moreover, Figure 7 presents the density plots of persistent and transient inefficiencies for both the neural
network SFA model and the conventional SFA model with a Cobb-Douglas functional form. In the left plot, which
shows persistent inefficiency, the average for the neural network SFA model is slightly lower at 0.146 compared
to 0.159 in the conventional SFA model. However, more substantial differences are observed in the right plot,
which shows the transient inefficiency densities for the two models. Both distributions are right-skewed, but
transient inefficiencies are significantly higher in the conventional SFA model. The average transient inefficiency
is estimated at 0.235 for the neural network SFA model, while it is notably larger at 0.467 for the conventional SFA
model. Additionally, the conventional model exhibits more outliers in the distribution of transient inefficiencies,
suggesting a greater spread in inefficiency across units. The above differences in the inefficiency scores across
the two models are empirically tested for significance using the procedure outlined in Subsection 2.3. Figure 8
presents histograms of the differences in the mean persistent and transient inefficiencies, highlighting the
posterior mean differences along with their corresponding 95 % credible intervals. Focusing on Figure 8a (left
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Figure 8: Histograms of differences in mean inefficiencies.

panel), the difference in the mean persistent inefficiencies between the two models is relatively small, at 0.012.
This is consistent with the previously reported averages: 0.159 for the conventional Cobb-Douglas model and
0.146 for the neural network SFA model. The 95 % credible interval for the difference, [—0.088, 0.114], includes
zero, indicating that the difference is not significant. In contrast, Figure 8b (right panel) shows a substantial dif-
ference in the mean transient inefficiencies. The average transient inefficiency is 0.467 under the Cobb—Douglas
model and 0.235 under the neural network SFA model, yielding a posterior mean difference of approximately
0.232. The corresponding 95 % credible interval, [0.093, 0.350], lies entirely above zero, providing strong evi-
dence that the models yield significantly different estimates of transient inefficiency. This result suggests that
the conventional Cobb—Douglas specification inflates the level of transient inefficiency, likely due to its inability
to flexibly capture the underlying input—output relationship.

Figure 9 shows the posterior distributions of the differences in the standard deviations of persistent and
transient inefficiencies between the two models. These distributions offer insight into whether the variability in
inefficiency is significantly affected by the choice of functional form. In Figure 9a (left panel), the mean differ-
ence in the standard deviation of persistent inefficiencies is relatively small at 0.011. The 95 % credible interval
ranges from —0.045 to 0.068, which includes zero. This indicates that there is no significant difference in the dis-
persion of persistent inefficiency estimates across the two models. In contrast, Figure 9b (right panel) presents
a strikingly different picture for transient inefficiencies. The posterior mean difference in standard deviations
is 0.219, with a 95 % credible interval of [0.094, 0.314], which lies entirely above zero. This clearly indicates that
the two models yield significantly different levels of variability in the transient inefficiency component. The
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Table 1: Comparison of neural network SFA and conventional SFA models.

Model Marginal log likelihood Prior probability Posterior probability DIC
Neural network SFA —9.442 0.5 1 1,270.900
SFA —38.492 0.5 0 1809.200

greater dispersion observed under the Cobb—Douglas model suggests that it may inflate the heterogeneity in
time-varying inefficiency compared to the more flexible neural network specification.

Finally, Table 1 compares the marginal log likelihoods, prior probabilities, posterior probabilities, and DIC
values for the neural network SFA and conventional SFA models. The neural network SFA model achieves a
posterior probability of 1 and a lower DIC, indicating a clearly better fit to the data compared to the conventional
specification. Combined with the results in Figures 8 and 9, this provides strong empirical evidence that the
Cobb-Douglas model not only underperforms in terms of overall fit but also systematically inflates transient
inefficiency. This highlights the importance of using more flexible functional forms, such as neural networks,
when estimating production frontiers and inefficiency components.

5 Concluding Remarks

This study introduces a Bayesian neural network SFA model designed to capture non-linear relationships
between inputs and outputs while estimating both persistent and transient inefficiencies. This is achieved by
specifying a generalized true random effects model in which the deterministic part of the production frontier is
modeled using a neural network. Rather than relying on pre-defined functional forms such as the Cobb-Douglas,
the neural network learns the input-output relationship from the data by expressing the frontier as a weighted
sum of non-linear transformations of the input variables. This flexible structure enables the model to approx-
imate complex production relationships more accurately, thereby improving the reliability of the inefficiency
estimates. For comparison, we also consider a generalized true random effects SFA model with the conventional
linear Cobb-Douglas functional form. Both models are estimated within a Bayesian framework, and the com-
parison focuses on selected moments of the inefficiency distributions as well as overall model fit. The models
are applied to panel data from Chilean hydroelectric power plants.

The empirical findings from the neural network SFA model reveal complex non-linear relationships
between all inputs and output, patterns that are missed by the constant elasticities implied by the
Cobb-Douglas specification. Both persistent and, more notably, transient inefficiency scores are inflated under
the Cobb-Douglas SFA model compared to the neural network alternative. While the differences in the
mean and standard deviation of persistent inefficiencies are not significant, the differences for transient
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inefficiencies are both substantial and significant. Moreover, model comparison based on Bayes factors and DIC
strongly favors the neural network SFA model, indicating that it provides a better fit to the data.

These findings have important implications for practitioners aiming to assess and improve firm perfor-
mance. The choice of functional form in stochastic frontier models can substantially influence the estimated
levels of inefficiency, particularly transient inefficiency, which reflects short-term performance fluctuations.
Relying on a restrictive specification like the Cobb-Douglas may lead to inflated inefficiency estimates, potentially
resulting in misguided managerial responses. In contrast, the neural network SFA model, by accommodating
non-linear input-output relationships, offers more reliable inefficiency estimates. Moreover, the superior model
fit indicated by the Bayes factor and DIC comparison suggests that flexible, data-driven approaches better cap-
ture the underlying production technology. Practitioners are therefore encouraged to adopt more adaptable
modeling frameworks, such as neural networks, when evaluating efficiency, especially in complex or data-rich
environments.

From a policy perspective, the finding that conventional models inflate transient inefficiency has important
implications. Transient inefficiency often reflects short-term performance variability that can result from tem-
porary shocks, such as market volatility, or regulatory adjustments. If policymakers rely on estimates derived
from restrictive functional forms, they may overstate short-term inefficiency and misinterpret temporary devi-
ations as persistent performance gaps. This could lead to misguided interventions or resource allocations. By
adopting more flexible approaches, such as the proposed neural network SFA, policymakers can obtain a clearer
picture of firms’ true performance dynamics and design more targeted and proportionate policy measures.

Despite its promising results, this study has some limitations that should be acknowledged. The analysis is
based on a specific neural network structure with a fixed activation function and number of hidden neurons,
which may influence the model’s flexibility and performance. Moreover, the empirical application focuses on a
single dataset from the energy sector, and thus the generalizability of the findings to other industries remains
to be explored. These limitations also point toward meaningful directions for future research.

To further enhance the analysis, future research could explore two potential extensions. First, while the
tanh activation function is widely used, alternative activation functions, such as the sigmoid and Rectified Linear
Unit, could be tested to determine if they provide better model performance in capturing complex relation-
ships. Second, within a Bayesian framework, the number of neurons in the neural network could be empirically
determined using shrinkage priors, as suggested by Hauzenberger et al. (2025).

Data availability: The data and code to reproduce the results are provided as Supplementary Material.

Appendix

Table A.1: Neural network SFA estimates.

Variable Mean Std 95 % credible interval GD MCSE
w1, —18.610 7.414 [—33.143, —4.646] 0.189 0.729
w1y, 1.054 0.606 [0.172, 2.400] 0.340 0.027
w1s, 7.781 1.698 [4.687,11.419] —0.352 0.128
w1y, —5.696 1.340 [—8.475, —3.286] —0.387 0.100
W1s —0.224 0.097 [—0.429, —0.049] —0.224 0.002
w1, , 6.924 0.769 [5.734, 8.140] 0.485 0.042
w1y, 0.133 0.028 [0.091, 0.196] 0.133 0.003
w1, 0.056 0.014 [0.032, 0.087] 0.056 0.001
w1, 0.016 0.007 [0.003,0.032] 0.016 0.000
Wis, 0.003 0.003 [—0.002, 0.008] 0.003 0.000
W1, 3 8.923 7.758 [—6.771, 23.670] 0.367 0.388

W1,4 3.542 1.603 [0.857,7.052] 0.079 0.802
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Table A.1: (continued)

Variable Mean Std 95 % credible interval GD MCSE
W35 —15.941 5.050 [—27.025, —7.549] —0.316 0.316
Wiy3 —4.083 1.555 [—7.701, —1.695] —0.795 0.078
W15,3 0.089 0.338 [—0.688, 0.696] 0.002 0.011
W14 —6.430 7.686 [—19.222, 8.720] 1.319 0.384
W1y, —3.777 3.726 [—14.024, —0.868] 1.349 0.019
W13, 6.950 3.060 [2.838, 15.655] 0.685 0.015
W44 4.398 4.230 [0.896, 15.751] 0.852 0.021
Wi, —0.817 2.054 [—7.592, 0.459] 0.658 0.010
w2, —0.461 0.042 [—0.547, —0.382] 0.999 0.001
w2, 6.816 2.116 [3.771,11.689] 0.406 0.344
W2, —0.315 0.035 [—0.387, —0.247] 0.003 0.000
w2, —1.557 0.142 [—1.875, —1.307] 0.003 0.000
b1, —18.604 7.854 [—34.356, —2.733] —0.588 0.835
b1, —6.944 0.753 [—8.191, —5.734] 12.079 0.413
b1, 9.903 7.809 [—5.439, 25.358] 0.103 0.341
b1, —8.383 8.369 [—23.812, 8.372] 1.446 1.620
b2 —2.033 1.863 [—6.442, 0.565] —0.189 0.323
® 685.181 674.124 [72.185, 2,574.721] 0.624 4192
v 20.530 5.942 [10.719, 33.703] —0.534 0.036
¢ 11.783 3.205 [7.109, 19.564] —1.624 0.048
T 38.473 12.335 [21.593, 68.327] 1.643 0.220

Std stands for Standard Deviation, GD for Geweke Diagnostic, and MCSE for Monte Carlo Standard Error.

Table A.2: SFA estimates.

Variable Mean Std 95 % credible interval GD MCSE
B 1.341 0.208 [0.938,1.753] —0.134 0.001
B, 0.546 0.029 [0.489, 0.602] —0.049 0.000
Ps 0.194 0.044 [0.108, 0.279] —0.558 0.000
N 0.250 0.035 [0.182, 0.319] —0.654 0.000
Bs 0.030 0.014 [0.004, 0.057] 1.067 0.000
[ 587.429 626.925 [54.774, 2,301.905] —0.907 3.782
W 19.402 5.841 [9.829, 32.570] —1.152 0.031
) 2.923 1.034 [1.819, 5.374] 0.769 0.017
T 12.600 4.240 [6.246, 22.500] —0.322 0.043

Std stands for Standard Deviation, GD for Geweke Diagnostic, and MCSE for Monte Carlo Standard Error.
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