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Abstract: Difference in differences (DD) is widely used to find policy/treatment effects with observational data,

but applying DD to limited dependent variables (LDV’s) Y has been problematic. This paper addresses how to

apply DD and related approaches, such as “ratio in ratios” and “ratio in odds ratios”, to LDV’s under the unify-

ing framework of ‘generalized linear models with link functions’. We review and evaluate DD and the related

approaches with simulation and empirical studies, and recommend ‘Poisson Quasi-MLE’ for non-negative (such

as count or zero-censored) Y and (multinomial) logit MLE for binary, fractional or multinomial Y .
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1 Introduction

Difference in Differences (DD) is one of the most popular research designs in social sciences. Not just in social

sciences, DD has been gaining popularity also in natural sciences; see, e.g. Jena et al. (2015), Cataife and Pagano

(2017), and McGrath et al. (2019). There are various references for DD: Lee (2005, 2016a), Angrist and Pischke

(2009), Blundell and Dias (2009), Lechner (2011), Lee and Kim (2014), Kim and Lee (2017), Lee and Sawada (2020),

Ariella and Lang (2020), Roth et al. (2023) and De Chaisemartin and d’Haultfoeuille (2020, 2023).

DD is basically for linear models with additive components, which makes applying DD to limited depen-

dent variables (LDV’s) problematic. This paper provides answers to this problem, using the unifying idea of

‘generalized linear models (GLM) with link functions’. An earlier version (arXiv: 2111.12948) of this paper pre-

sented the GLM-based approach first in 2021, which has been cited by Callaway (2023), McMichael (2023),

Markowitz and Smith (2024) and Freeman et al. (2025), among others. The approach subsequently appeared also

in Taddeo et al. (2022) and Wooldridge (2023).

The GLM approach specifies the conditional mean regression, but two approaches requiring weaker

assumptions appeared recently. One is Tchetgen et al. (2024) who specify an “extended propensity score

function”, instead of the conditional mean regression. The other is Kim and Lee (2025), who use a “causal-

reduced-form” and apply the usual DD to LDV’s to find a non-negatively weighted average of heterogeneous

effects. The goal of this paper is to explain the GLM-based approach in detail so that it can be readily applied by

practitioners, and review the literature.
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Consider an outcome Yit for unit i at time t = 2, 3, a time-constant treatment qualification dummy Qi, and

a binary treatment Dit; we set t = 2, 3 to avoid the confusion with dummy variable values 0, 1. The hallmark of

DD is that Dit is the interaction of Qi and 1[t = 3]: Dit = Qi1[t = 3], where 1[A] ≡ 1 if A holds and 0 otherwise;

only the Qi = 1 group is treated at t = 3, and untreated otherwise.

DD can be implemented with panel data or repeated cross-sections (RCS). We focus on RCS in this paper,

while relating RCS to panel data whenever necessary, because RCS are easier to deal with as they can be handled

as cross-section iid data; also, our empirical analysis uses RCS. If one desires to apply a RCS method in our paper

to panel data, then the simplest way is to pool the panel data and regard the time-series data for unit i as a

cluster/group with related observations. Inference with clustering in RCS can be done by block bootstrap or a

clustering-robust variance.

With a sampling dummy Si independent of the other random variables, RCS have

Di = QiSi where Si ≡ 1[unit i is sampled at t = 3].

In RCS, there is a huge reservoir of units, and random sampling is done each period. Hence, we can safely

assume that each unit appears only in one period. Let Yd
it
be the potential version of Yit for Dit = d, and Yd

i
=

(1− Si )Y
d
i2
+ SiY

d
i3

be the RCS potential outcome. LetWit denote covariates, andWi ≡ (1 − Si)Wi2 + SiWi3 be

the RCS covariates; RCS variables are derived from the underlying panel model variables. Henceforth, unless

unclear, we often omit the subscript i indexing units.

As a preliminary, ignoring the covariatesW for a while, define for RCS:

𝜇QS ≡ E(Y|Q, S) = 𝜆−1(𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD), 𝛽𝜏 ≡ 𝛽3 − 𝛽2, (1.1)

where 𝜆(⋅) is a ‘link function’ as in GLM (Nelder and Wedderburn 1972), (𝛽2, 𝛽3) are the period-(2,3) intercepts,

𝛽𝜏 is the time effect of t = 3 relative to t = 2, 𝛽q is the group effect of Q = 1, and 𝛽d is the desired treatment

effect.

Since (Q, S) generates four cells for four parameters (𝛽2, 𝛽𝜏 , 𝛽q, 𝛽d) in (1.1), there seems no loss of generality

in (1.1). However, (1.1) does include a restriction: QS should not appear separately from the treatment D. If the

group effect of Q changes across time, then QS becomes relevant other than through D. This restriction – no

change in the group effect over time – is the DD parallel/common trend assumption.

For continuous Y , 𝜆(⋅) in (1.1) is the identity, in which case DD is defined as

𝜇11 − 𝜇10 − (𝜇01 − 𝜇00 ) = 𝛽2 + 𝛽𝜏 + 𝛽q + 𝛽d − (𝛽2 + 𝛽q )− {(𝛽2 + 𝛽𝜏 )− 𝛽2} = 𝛽d:

DD removes 𝛽2 + 𝛽𝜏S + 𝛽qQ to leave 𝛽dD that changes across both times and groups. In practice, to

account for the covariatesW , a linear model such as

E(Y|Q, S,W ) = 𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD+ 𝛽′
𝑤
W (1.2)

is typically estimated to find the slope of D as the treatment effect.

For LDV’s, the story changesmuch. E.g., consider Y = 1[0 ≤ Y∗] where Y∗ is the latent continuous outcome.

With the N(0, 1) distribution functionΦ(⋅), the probit is

E(Y|Q, S) = P(Y = 1|Q, S) = Φ(𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD). (1.3)

One way to stick to DD is estimating (1.3) to interpret 𝛽d as the effect on Y∗, not on Y . E.g., if 𝛽d = 2, then D

shifts Y∗ by twice the standard deviation (SD) of Y∗. However, many practitioners desire the effect as a change

in P(Y = 1|Q, S), not in Y∗.

The ‘marginal effect’ that is a change of P(Y = 1|Q, S) in (1.3) due to D is

Φ(𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽d )−Φ(𝛽2 + 𝛽𝜏S + 𝛽qQ). (1.4)

Ai andNorton (2003) noted that this is not the correct effect, but their criticismapplies to the case of an interaction

treatment, where both Q and S are genuine treatments and the interest is in the effect of taking both treatments
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(e.g. drugs) together. Differently from this, Q and S are not treatments per se in the usual DD; D = QS just

happened to be the way the treatment was implemented. Indeed, Puhani (2012, eq. (10)) showed that (1.4) with

S = Q = 1 is a legitimate treatment effect of interest.

The complication involving (1.3) and (1.4) arises because DD is applied to a nonlinear model, although

DD is designed basically for linear models. To drive home our point, consider the ‘log link’ 𝜆(⋅) = ln(⋅) ⇔
𝜆
−1(⋅) = exp(⋅), with which (1.1) becomes

𝜇QS ≡ E(Y|Q, S) = exp(𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD). (1.5)

This is appropriate for non-negative Y due to the lower bound 𝜇QS > 0. For (1.5), ‘ratio in ratios (RR)’ removes

the time and group effects, and ‘RR minus one’ renders

‘proportional effect’:

(
𝜇11

𝜇10

)
∕
(
𝜇01

𝜇00

)
− 1 =

E
(
Y 1
3
− Y0

3
|Q = 1

)
E
(
Y0
3
|Q = 1

) = exp(𝛽d )− 1, (1.6)

which is proven below. Just as the linear model is estimated instead of the DD to find 𝛽d, the exponential

regression model (1.5) is usually estimated instead of the RR.

For positive outcomes, one might consider DD with lnY , which raises the issue of transforming Y before

applying DD or RR. For this issue, Athey and Imbens (2006) proposed “change in changes” based on Y -

transformation-invariant distributional effects, neither an additive (for DD) nor multiplicative (for RR) effect.

Also, Roth and Sant’Anna (2023) considered distribution-functon-based DD that is invariant/insensitive to any

strictlymonotonic transformation ofY to propose amoment inequality test for parallel trends. Athey and Imbens

(2006) and Roth and Sant’Anna (2023) are not exactly practical, becauseW should be controlled conditionally.

For binary or multinomial outcomes, ‘logit link’ can be used:

𝜇QS ≡ E(Y|Q, S) = exp(𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD)

1+ exp(𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD)
; (1.7)

the logit link is 𝜆(⋅) ≡ ln{⋅∕(1 − ⋅)} ⇔ 𝜆
−1(⋅) = exp(⋅)∕{1+ exp(⋅)}. For (1.7), “ratio in odds-ratios (ROR)” sim-

ilar to RR removes the time and group effects, and ROR minus one renders a “proportional odds effect” similar

to (1.6). For binary outcomes, instead of estimating ROR directly, the logistic model in (1.7) is typically estimated,

and for multinomial outcomes, multinomial logistic model is estimated.

In the remainder of this paper, Section 2 reviews the literature of DD with LDV, and lists this paper’s contri-

butions near the end. Sections 3 and 4 examine RR and ROR, whereW is explicitly controlled in addition to (Q, S)

and estimation is done with Maximum Likelihood Estimator (MLE) or Quasi-MLE (QMLE). Section 5 presents an

empirical analysis. Finally, Section 6 concludes this paper. The Appendix examines RORwithmultinomial Y , and

provides a simulation study showing that the usual linear-model DD can bemisleading for LDV’s, and RR or ROR

had better be used.

2 Literature for DD with LDV

2.1 Early Papers on DD with LDV

Despite the frequent appearance of LDV’s in reality, studies on DD with LDV are fairly scarce. The first highly

cited paper is Ai and Norton (2003) who suggested to use the cross-derivative as the treatment effect: with our

notation,

𝜕2E(Y|Q = q, S = s,W )∕𝜕q𝜕s (or to use the analogous “cross− difference”). (2.1)

Ai and Norton (2003) has been cited about 7,500 times in Google Scholar.

Ai and Norton (2003) is correct when the interest is in the interaction of two genuine treatments. However,

QS itself is not a treatment in DD. Rather, QS just represents the way how the single, not double, treatment D is

administered: only to theQ = 1 group at t = 3. Hence, as was noted in Section 1, Puhani (2012, eq. (10)) showed
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thatΦ(𝛽2 + 𝛽𝜏 + 𝛽q + 𝛽d) − Φ(𝛽2 + 𝛽𝜏 + 𝛽q) is an appropriate treatment effect. Puhani (2012) has been

cited about 880 times in Google Scholar.

Wooldridge (2023, p. C39) concurred with Puhani: “Puhani’s definition is the correct one for identifying 𝜏2
when the PT assumption is stated in terms of the linear index”, where 𝜏2 is the average effect on the treated at

the post-treatment period and ‘PT’ means parallel trends. Puhani (2012) addressed only the effect identification,

whereas Ai and Norton (2003) discussed how to estimate (2.1) as well, and showed with an empirical example

that (2.1) can differ from the slope of D = QS in sign.

Unaware of the early version of our paper in 2021, Taddeo et al. (2022) applied GLM to DD with LDV, as they

proposed to use RR for count outcomes, and ROR for binary outcomes. Differently from our paper, however,

Taddeo et al. (2022) considered neither zero-censored nor fractional outcome, although they mentioned cate-

gorical outcomes briefly. Also, the word ‘QMLE’ never appeared, and the types of covariates were not discussed

although they matter much for categorical outcomes.

Taddeo et al. (2022, p. 404) also suggested a sensitivity analysis for parallel trend assumption. E.g., as to be

seen later, the multiplicative form of parallel trends requires a RR form with only Y0
t
’s (analogous to the RR in

(1.6)) being equal to one. Replacing the constant one with another number can reveal how the treatment effect

is affected when the number deviates from one. For instance, if an empirical finding gets reversed when the

constant is 1.5, then it takes a 50 % violation of the parallel trends, and thus the initial finding may be deemed to

be robust to violations of parallel trends.

2.2 DD and Staggered DD with LDV

The paper that overlaps most with our paper is Wooldridge (2023), which was written to generalize Wooldridge

(2021) for linear DD models to nonlinear ones; for this reason, the working paper version of Wooldridge

(2023) was available only in 2022. Wooldridge (2023) initially examined the canonical two-group two-period

DD, and then moved onto staggered DD which has been gaining popularity these days; see, e.g. Callaway and

Sant’Anna (2021), Goodman-Bacon (2021), Sun and Abraham (2021), Athey and Imbens (2022), Liu et al. (2024),

and Borusyak et al. (2024).

Table 1 at the end of Section 2 of Wooldridge (2023) summarizes the recommendation for the appropriate

estimator for each type of LDV: Poisson QMLE for count, zero-censored and non-negative outcomes; logit for

binary and fractional outcomes; andmultinomial logit for multinomial/categorical outcomes. These recommen-

dations agree with our paper, which is whyWooldridge (2023) overlaps much with our paper. A word of caution

for those trying to read our paper andWooldridge’s: our (Qi,Dit,Wit) is (Di,Wit,Xit) in the notation ofWooldridge

(2023), which can be confusing.

Given the similarity between our paper and Wooldridge (2023), the reader may wonder what the differ-

ences are between the two papers. Wooldridge (2023) is more general than our paper, as it addresses staggered

DD with LDV in multi-period settings. Wooldridge (2023) also compares ‘pooled estimators using all observa-

tions together’ to ‘imputation estimators using only the untreated observations to impute the counterfactual

untreated outcomes of the Q = 1 group at t = 3’. In imputation estimators, the imputed entity is subtracted

from the outcome average of the Q = 1 group at t = 3, which our paper using all observations together does

not examine. Wooldridge (2023) further provides conditions to make the two types of estimators the same. In

the following, we show what our paper has that Wooldridge (2023) does not.

First, when the adopted model is estimated for the LDV Y generated by its latent continuous version Y∗

with a linear index 𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD+ 𝛽′
𝑤
W , our paper shows that 𝛽d can be viewed either as the effect of

D on Y∗, or as the proportional effect on Y for the log link as in (1.6) or the proportional-odds effect for the logit

link. Even if Y∗ is inconceivable, still the proportional effect interpretation holds. In contrast to this, Wooldridge

(2023) takes one extra step to estimate E
(
Y 1
3
− Y0

3
|Q = 1,W

)
(or E

(
Y 1
3
− Y0

3
|W)

), which is not a necessity; e.g.,

1∑
i

Qi

∑
i

Qi

{
exp

(
𝛽2 + 𝛽𝜏 + 𝛽q + 𝛽d + 𝛽′

𝑤
Wi

)
− exp

(
𝛽2 + 𝛽𝜏 + 𝛽q + 𝛽′

𝑤
Wi

)}

is an estimator with the log link and QMLE estimates
(
𝛽2, 𝛽𝜏 , 𝛽q, 𝛽d, 𝛽

′
𝑤

)′
.



S. Lee and M.-j. Lee: DD, RR and ROR for LDV — 5

Second, we also review the more recent literature on DD with LDV in 2024 and 2025: Tchetgen et al. (2024)

and Kim and Lee (2025), who tried to reduce the regression function specification errors. Kim and Lee (2025) is

reviewed shortly below, whereas Tchetgen et al. (2024) is reviewed in Section 4 after ROR is introduced because

their approach is applicable only with ROR.

Third, covariates are often “brushed aside” in the DD literature. That is, a theory is developed withoutW

first, and when W appears, a remark such as “The theory developed without W holds with W , either by con-

ditioning on W or by controlling W linearly” is made. Wooldridge (2023) also assumes time-constant W , and

either condition onW or controlW linearly. HandlingW “lightly” in this way can be problematic, because the

nature ofW matters much in panel data (i.e. unit-constant/varying and time-constant/varying), and it is more

so for categorical/multinomial outcomes, as the nature ofW is three-dimensional (unit-constant/varying, time-

constant/varying, and category-constant/varying), where normalizations matter much even for RCS as can be

seen in Lee (2015) and our Appendix for multinomial outcomes.

Fourth, in addition to the above three main contributions, there are also someminor ones: (i) DD identifica-

tion conditions are usually stated and verified for panel data models, but since we use QMLE/MLE with RCS, we

verify themwith RCS; (ii) “triple ratios” are used to deal with non-parallel multiplicative trends; (iii) we provide

the details on justifying RR for zero-censored outcomes; (iv) for proportional odds effect which is difficult to

grasp, we show a ‘rare event condition’ which turns the proportional odds effect into a proportional effect; and

(v) we present the exact maximand of the QMLE/MLE, so that it can be easily understood and implemented by

practitioners, going well beyond presenting a summary table as in Table 1 of Wooldridge (2023).

2.3 Causal Reduced Form for OLS to DD with LDV

Recently, Kim and Lee (2025) showed that, for any form of Y (binary, count, continuous, . . . ) with meaningful

Y 1 − Y0, a linearmodel holds always forΔY ≡ Y 3 − Y 2, towhich ordinary least squares (OLS) can be applied.

To see how, recall Dit = Qi1[t = 3] and observe:

Y2 = Y0
2
, Y3 = Y0

3
+
(
Y 1
3
− Y0

3

)
Q ⇒ ΔY ≡ Y3 − Y2 = ΔY0 +

(
Y 1
3
− Y0

3

)
Q.

Under PTΔY0 ⨿ Q|W , take E(⋅|Q,W) onΔY where ‘ ⨿’ stands for independence:

E(ΔY|Q,W ) = E(ΔY0|W )+ E
(
Y 1
3
− Y0

3
|Q = 1,W

)
⋅ Q

⇒ ΔY = E(ΔY0|W )+ E
(
Y 1
3
− Y0

3
|Q = 1,W

)
Q+ U, U ≡ ΔY − E(ΔY|Q,W ).

TheΔY equation linear in Q holds for any Y , and it is a “causal reduced form (CRF)” in the sense that it is a

reduced/derived form with a causal parameter 𝜏1(W):

ΔY = E(ΔY0|W )+ 𝜏1(W )Q+ U, 𝜏1(W ) ≡ E
(
Y 1
3
− Y0

3
|Q = 1,W

)
, E(U|Q,W ) = 0. (CRF)

CRF may sound strange, but it has been used fruitfully in Lee (2018) and Lee et al. (2025) for binary exogenous

D; Lee (2021), Lee et al. (2023), Choi et al. (2023), and Kim and Lee (2024) for binary endogenous D; Lee (2024) for

binary exogenous D with a mediator; and Kim (2025) for network/spillover effect.

To remove E(ΔY0|W) from the CRF, take E(⋅|W) on the CRF:

E(ΔY|W ) = E(ΔY0|W )+ 𝜏1(W ) ⋅ pW where pW ≡ E(Q|W ).

Subtract this from the CRF to getΔY − E(ΔY|W) = 𝜏1(W) ⋅ (Q − pW ) + U . Now, OLS ofΔY − E(ΔY|W) on

Q − pW can be done, which is equivalent to OLS ofΔY onQ − pW becauseQ − pW is orthogonal to E(ΔY|W).

The propensity score pW can be estimated with probit or logit.

Kim and Lee (2025) showed that OLS ofΔY on Q − pW is consistent to:

E{𝑤o𝑤(W )𝜏1(W )} where 𝑤o𝑤(W ) ≡
pW (1− pW )

E{pW (1− pW )} ≥ 0 with E{𝑤o𝑤(W )} = 1;
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OW stands for “overlap weight”. CRF is nonparametric as no parametric assumption is invoked, and OLS to the

CRF is consistent to E{𝑤o𝑤(W )𝜏1(W )} for any LDV, as long as Y 1 − Y0 makes sense. Extending this finding to

more general cases, such as multi-periods, non-binary D and endogenous Q, remains to be explored.

The fact that OLS estimates anOW-average of heterogeneous effects is well known (e.g. Angrist 1998; Angrist

and Pischke 2009) under the “saturated model” assumption – i.e., pW is equal to the linear projection of Q on

W – which is, however, not necessary in the above OLS. See Choi and Lee (2023) for details on OW and its

advantages. OW has been gaining popularity in statistics, epidemiology, and medical science; see, e.g. Li et al.

(2018),Mao et al. (2019), Li (2019), Zhou et al. (2020), Thomas et al. (2020), Aminian et al. (2021), Cheng et al. (2022),

Anderson et al. (2023), Wei et al. (2023), Matsouaka and Zhou (2024), and Xu et al. (2025).

3 Ratio in Ratios (RR) for Non-Negative Outcome

This section studies RR for non-negative outcomes including count and zero-censored outcomes. First, the iden-

tification aspect is examined. Second, although RR can be done by nonparametrically estimating the conditional

means in RR, this is not how RR is done in practice; instead, a practical semiparametric estimator for RR using

an exponential regression model is advocated. Third, several remarks are made.

3.1 Proportional Effect Identification with RR

To simplify notation when covariatesW are allowed for, define

𝜇QS(𝑤) ≡ E(Y|𝑤,Q, S) ≡ E(Y|W = 𝑤,Q, S);

note 𝜇Q0(𝑤) = E(Y 2|W2 = 𝑤,Q) and 𝜇Q1(𝑤) = E(Y3|W3 = 𝑤,Q). Analogously to (1.6), define RR or

‘proportional-effect +1 givenW = 𝑤’:

RR(𝑤) ≡
𝜇11(𝑤)

𝜇10(𝑤)
∕𝜇01(𝑤)

𝜇00(𝑤)
.

The identification condition for RR(𝑤) is “unity multiplicative trends”:(
E
(
Y0
3
|𝑤,Q = 1

)
E
(
Y0
2
|𝑤,Q = 1

))∕(E
(
Y0
3
|𝑤,Q = 0

)
E
(
Y0
2
|𝑤,Q = 0

)) = 1; (IDRR )

keep in mind that S is independent of the other random variables. In IDRR, E
(
Y0
3
|𝑤,Q = 1

)
is the counterfactual,

because only Y 1
3
is realized for Q = 1 at t = 3.

IDRR is analogous to the usual linear-model DD parallel trend condition:{
E
(
Y0
3
|𝑤,Q = 1

)
− E

(
Y0
2
|𝑤,Q = 1

)}
−
{
E
(
Y0
3
|𝑤,Q = 0

)
− E

(
Y0
2
|𝑤,Q = 0

)}
= 0, (IDDD )

which dictates that the counterfactual E
(
Y0
3
|𝑤,Q = 1

)
be constructed as E

(
Y0
2
|𝑤,Q = 1

)
+ E

(
Y0
3
|𝑤,Q = 0

)
−

E
(
Y0
2
|𝑤,Q = 0

)
. In the same vein, IDRR dictates that the counterfactual be constructed multiplicatively as the

baseline untreated outcome of the Q = 1 group times the ratio of the control group means at t = 3 to t = 2:

E
(
Y0
3
|𝑤,Q = 1

)
= E

(
Y0
2
|𝑤,Q = 1

)
×
E
(
Y0
3
|𝑤,Q = 0

)
E
(
Y0
2
|𝑤,Q = 0

) . (3.1)

The main point is that RR(𝑤) − 1 is the ‘proportional effect on the treated at the post-treatment period’, as

the first and last terms in the following show:
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RR(𝑤)− 1 =
(
E(Y|𝑤,Q = 1, S = 1)

E(Y|𝑤,Q = 1, S = 0)

)
∕
(
E(Y|𝑤,Q = 0, S = 1)

E(Y|𝑤,Q = 0, S = 0)

)
− 1

=
(
E
(
Y 1
3
|𝑤,Q = 1

)
E
(
Y0
2
|𝑤,Q = 1

))∕(E
(
Y0
3
|𝑤,Q = 0

)
E
(
Y0
2
|𝑤,Q = 0

)) − 1 (as S ⨿ ‘the other variables’)

=
E
(
Y 1
3
|𝑤,Q = 1

)
E
(
Y0
3
|𝑤,Q = 1

) ⋅
(
E
(
Y0
3
|𝑤,Q = 1

)
E
(
Y0
2
|𝑤,Q = 1

))∕(E
(
Y0
3
|𝑤,Q = 0

)
E
(
Y0
2
|𝑤,Q = 0

)) − 1

=
E
(
Y 1
3
|𝑤,Q = 1

)
E
(
Y0
3
|𝑤,Q = 1

) − 1 =
E
(
Y 1
3
− Y0

3
|𝑤,Q = 1

)
E
(
Y0
3
|𝑤,Q = 1

) (under ID RR ). (3.2)

Instead of the difference effect E
(
Y 1
3
− Y0

3
|𝑤,Q = 1

)
, examining the proportional effect can be beneficial

(Yadlowsky et al. 2021). E.g., suppose E
(
Y0
3
|𝑤,Q = 1

)
= G(𝑤) for a function G(⋅) and the proportional effect is a

constant 𝛽d. Then the difference effect E
(
Y 1
3
− Y0

3
|𝑤,Q = 1

)
= 𝛽dG(𝑤) introduces effect heterogeneity unneces-

sarily, compared with the simple 𝛽d. Proportional effects for exponential models have been advocated in many

studies: Lee and Kobayashi (2001), Dukes and Vansteelandt (2018) and Ciani and Fisher (2019), among others.

If the dimension ofW is low (or ifW is discrete), RR(𝑤) can be estimated nonparametrically, but typically

the dimension ofW is high in practice, and thus we explore a simpler semiparametric exponential regression

next – semiparametric because only E(Y|W ,Q, S) is specified, not the full distribution of Y|(W ,Q, S).

3.2 Poisson Quasi-MLE (QMLE)

In view of (1.5), suppose that a panel data exponential model holds for Yd
it
:

E
(
Yd
t
|W2,W3,Q

)
= E

(
Yd
t
|Wt,Q

)
= exp

(
𝛽t + 𝛽qQ+ 𝛽dd + 𝛽′

𝑤
Wt

)
(3.3)

If periods 1,… , T were available, thenW1,… ,WT would appear in the first term. Then IDRR holds with (3.3):(
E
(
Y0
3
|𝑤,Q = 1

)
E
(
Y0
2
|𝑤,Q = 1

))∕(E
(
Y0
3
|𝑤,Q = 0

)
E
(
Y0
2
|𝑤,Q = 0

))

=
(
exp

(
𝛽3 + 𝛽q + 𝛽′

𝑤
𝑤
)

exp
(
𝛽2 + 𝛽q + 𝛽′𝑤𝑤

)
)
∕
(
exp

(
𝛽3 + 𝛽′

𝑤
𝑤
)

exp
(
𝛽2 + 𝛽′𝑤𝑤

)) = 1. (3.4)

For the corresponding RCS model, the observed Y in RCS is: due to D = QS,

Y = (1− S)Y2 + SY3 = (1− S)Y0
2
+ S ⋅

{
(1− Q)Y0

3
+ QY 1

3

}
= (1− S)Y0

2
+ S(1− Q)Y0

3
+ DY 1

3
.

Take E(⋅|W2,W3,Q, S) on this Y and invoke (3.3): recalling 𝛽𝜏 ≡ 𝛽3 − 𝛽2 in (1.1),

E(Y|W2,W3,Q, S) = (1− S) exp
(
𝛽2 + 𝛽qQ+ 𝛽′

𝑤
W2

)
+ S(1− Q) exp

(
𝛽3 + 𝛽qQ+ 𝛽′

𝑤
W3

)
+ D exp

(
𝛽3 + 𝛽qQ+ 𝛽d + 𝛽′

𝑤
W3

)
= exp

(
𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD+ 𝛽′

𝑤
W

)
, W ≡ (1− S)W2 + SW3 (3.5)

⇒ RR(𝑤)− 1 = exp(𝛽d )− 1; (3.6)

the second equality can be verified by substituting Q, S = 0, 1 into both sides. If 𝛽d is near zero, then 𝛽d is an

approximate proportional effect. RCS data and the model (3.5) can be used to estimate 𝛽d along with the other

parameters.
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The heterogeneous effect can be easily allowed by replacing 𝛽d with 𝛽d(Wt ) = 𝛽d0 + 𝛽′
d𝑤
Wt. Then we have

𝛽d(W ) = 𝛽d0 + 𝛽′
d𝑤
W in RCS, and (3.5) becomes

E(Y|W ,Q, S) = exp
{
𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽d(W )D+ 𝛽′

𝑤
W

}
⇒ RR(𝑤)− 1 = exp{𝛽d(𝑤)} − 1.

It is often believed that if a treatment effect is random but a constant effect is assumed, then its mean effect

would be estimated. However, this is false as the following explains.

The staggered DD literature revealed that, if a constant effect is assumed when the true effect is hetero-

geneous, then the popular two-way fixed effect estimator is consistent to a weighted average of heterogeneous

effects with some weights negative. This paints a rather pessimistic picture, but positive findings also exist:

if OLS is applied to a constant-effect model when the effect is actually heterogeneous in W , then the OLS is

consistent to an OW average of heterogeneous effects; see Lee and Han (2024) and references therein. This

kind of positive scenario was already noted when Kim and Lee (2025) was reviewed. It would take another

full paper to investigate the analogous question for proportional effect in general settings, which we thus

eschew.

The simplest estimator for (3.5) is Poisson QMLE, whose maximand is:∑
i

{
Yi
(
X′
i
b
)
− exp

(
X′
i
b
)}
, Xi ≡

(
1, Si,Qi,Di,W

′
i

)′
, b =

(
b2, b𝜏 , bq, bd, b

′
𝑤

)′

as in Poisson MLE. The first order condition at b = 𝛽 is
∑

i

{
Yi − exp

(
X′
i
𝛽
)}
Xi = 0 for 𝛽 ≡

(
𝛽2, 𝛽𝜏 , 𝛽q, 𝛽d, 𝛽

′
𝑤

)′
,

and the second order derivative −∑iXiX
′
i
exp

(
X′
i
b
)
is n.d. for all b. Hence, just under E(Y|X) = exp(X′𝛽),

Poisson QMLE is consistent for 𝛽 . For heterogeneous effects, we may use 𝛽d(W ) = 𝛽d0 + 𝛽′
d𝑤
W in Poisson

QMLE.

The difference between Poisson QMLE and Poisson MLE is that the first-order condition is taken just as a

moment condition to estimate 𝛽 in the former. Hence, the asymptotic variance of PoissonQMLE is estimatedwith

a “sandwich-form” estimator. Since Poisson QMLE requires only E(Y|X) = exp(X′𝛽), not the full distribution of

Y|X, it is advocated by Santos Silva andTenreyro (2006),whichhas been cited about 9,300 times inGoogle Scholar
as of this writing.

3.3 Remarks

Here we make remarks on the applicability of the above RR identification and Poisson QMLE to count and zero-

censored outcomes. The semiparametric exponential model (3.5) is appropriate for these, as it requires only the

lower bound 0 ≤ Y .

3.3.1 Remarks on Count Outcomes

Suppose (3.5) holds under

Y = exp(Y∗ ), Y∗
≡ 𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD+ 𝛽′

𝑤
W + U,

E{exp(U )|W2,W3,Q, S} = E{exp(U )|W2,W3,Q} = 1.

Then we can interpret 𝛽d as the DD effect on Y∗, whereas exp(𝛽d) − 1 is the proportional effect on Y . However,

if Y is a count outcome with P(Y = y|X) = {exp(X′𝛽)}y exp{−exp(X′𝛽)}∕y! (i.e. Poisson distribution), then

there is no Y∗, and the proportional effect interpretation on the observed Y with RR is the only way to inter-

pret the slope 𝛽d of D in the exponential model. This statement applies also to count outcomes based on other

distributions such as Negative Binomial.
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If 𝛽q𝜏 tQ with 𝛽q𝜏 ≠ 0 appears as a regressor in (3.3), then IDRR fails due to 𝛽q𝜏 tQ:(
exp

(
𝛽3 + 𝛽q + 3𝛽q𝜏 +𝑤′𝛽𝑤

)
exp

(
𝛽2 + 𝛽q + 2𝛽q𝜏 +𝑤′𝛽𝑤

)
)
∕
(
exp

(
𝛽3 +𝑤′𝛽𝑤

)
exp

(
𝛽2 +𝑤′𝛽𝑤

)) = exp(𝛽q𝜏 ) ≠ 1; (3.7)

call this “non-unity multiplicative trends” – a RR analog for non-parallel (i.e. additive) trends in DD. Using tQ as

a regressor is an easy way to test/allow for non-unity multiplicative trends, but tQ cannot be used if only two

periods are available, because using tQ is equivalent to using QS = D.

One way to allow for non-unity multiplicative trends with more than two waves is using tQ as an extra

regressor as just noted, and using tQ in the usual linear DD appeared in, e.g. Goodman-Bacon (2018), Dobkin et al.

(2018), and Hwang and Lee (2020). For panel data, tQ can be used as such, but for RCS, Q𝜏
i
≡ Qi

∑
tSitt should be

used where Sit = 1 if i is sampled in period t and 0 otherwise. Then, the untreated group ratio/difference is

allowed to change systematically with tQ over time, and any deviation from the systematic change is taken as

the treatment effect. Using tQ can be generalized to using (tQ, t2Q) as in Friedberg (1998) andWolfers (2006), and

going further, (tQ, t2Q, t3Q,…) as in Lee (2016b).

Another way to deal with this kind of trend discrepancy is using triple ratios, or “ratio in ratios in ratios

(RRR)” generalizing RR, analogously to triple differences (Lee 2016b) to allow for non-parallel trends in DD.With

t = 1, 2, 3 available, let:

(
E
(
Y0
t
|𝑤,Q = 1

)
E
(
Y0
t−1|𝑤,Q = 1

))∕( E
(
Y0
t
|𝑤,Q = 0

)
E
(
Y0
t−1|𝑤,Q = 0

)) = 𝛾 for t = 2, 3, (IDRRR )

which allows IDRR to be violated when 𝛾 ≠ 1 as follows.

WithmQt(𝑤) ≡ E(Y|𝑤,Q, sampled at t), observe

RRR(𝑤) ≡

[
m13(𝑤)

m12(𝑤)

/{
m03(𝑤)

m02(𝑤)

}]/[
m12(𝑤)

m11(𝑤)
∕
{
m02(𝑤)

m01(𝑤)

}]

=
[(

E
(
Y 1
3
|𝑤,Q = 1

)
E
(
Y0
2
|𝑤,Q = 1

))/(
E
(
Y0
3
|𝑤,Q = 0

)
E
(
Y0
2
|𝑤,Q = 0

))]
/[(

E
(
Y0
2
|𝑤,Q = 1

)
E
(
Y0
1
|𝑤,Q = 1

))/(
E
(
Y0
2
|𝑤,Q = 0

)
E
(
Y0
1
|𝑤,Q = 0

))]

=
E
(
Y 1
3
|𝑤,Q = 1

)
E
(
Y0
3
|𝑤,Q = 1

) ⋅
[(

E
(
Y0
3
|𝑤,Q = 1

)
E
(
Y0
2
|𝑤,Q = 1

))/(
E
(
Y0
3
|𝑤,Q = 0

)
E
(
Y0
2
|𝑤,Q = 0

))]
/[(

E
(
Y0
2
|𝑤,Q = 1

)
E
(
Y0
1
|𝑤,Q = 1

))∕(E
(
Y0
2
|𝑤,Q = 0

)
E
(
Y0
1
|𝑤,Q = 0

))].
The last two terms in [⋅] are both equal to 𝛾 to cancel each other. Hence, under IDRRR, RRR identifies the

same effect as RR identifies, even when IDRR fails.

3.3.2 Remarks on Zero-Censored Outcomes

Consider a RCS zero-censored model:

Y = max(0, Y∗ ) = Y∗1[0 < Y∗], Y∗
≡ 𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD+ 𝛽′

𝑤
W + U

⇒ E(Y|X ) = E(Y∗1[0 < Y∗]|X ). (3.8)

Since E(Y|X) = E(Y∗1[0 < Y∗]|X) is non-negative without any upper bound, the exponential regression model
(3.5) can be adopted, although it may not be as appealing as for count outcomes because the transformation

max(0, ⋅) is not smooth.
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Santos Silva and Tenreyro (2011) showed that the exponential regression holds for (3.8) if Yi =
∑Mi

j=1Zi j,

where Mi is a non-negative integer random variable such as Poisson count, and (Zi1, Zi2,…) are iid positive

random variables with Zij ⨿Mi|Xi; Y = 0 occurs ifM = 0. Then,

E(Y|X ) = E(M|X )E(Zj|X )
= exp

{
𝛼2 + 𝛽2 + (𝛼𝜏 + 𝛽𝜏 )S + (𝛼q + 𝛽q )Q+ 𝛽dD+ (𝛼𝑤 + 𝛽𝑤 )

′W
}

if E(M|X ) = exp
(
𝛼2 + 𝛼𝜏S + 𝛼qQ+ 𝛼′

𝑤
W

)
,

E(Zj|X ) = exp
(
𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD+ 𝛽′

𝑤
W

)
. (3.9)

It is not clear what Y∗ is here, but the interpretation of exp(𝛽d) − 1 as a proportional effect on Y still holds

regardless of what Y∗ might be.

An example for Yi =
∑Mi

j=1Zi j is that Yi is the person-i expenditure on unfrozen fish in a year, Zij is the expen-

diture on unfrozen fish in month j, Mi is the number of the unfrozen-fish-purchasing months, Qi = 1 if living

close enough to sea to access unfrozen fish, and Di = QiSi is a policy to increase unfrozen fish prices. Here,Mi

is how frequently unfrozen fish are purchased, which is unlikely to be affected by the policy because one cannot

stock up on unfrozen fish, whereas Zij would be affected.

4 Ratio in Odds Ratios (ROR)

This section studies ROR.We examine the identification aspect first, followedby logit-based estimation for binary

and fractional outcomes, and then by a review on Tchetgen et al. (2024). ROR is also applicable to multinomial

outcome, but it is presented (along with a simulation study) in the Appendix due to the complexity involving

multiple equations and additional notation.

4.1 Proportional Odds Effect Identification with ROR

For binary Y , define the ‘odds conditional on (W = 𝑤,Q = q, S = s)’ for RCS as

Rqs(Y ;𝑤) ≡
P(Y = 1|𝑤,Q = q, S = s)

P(Y = 0|𝑤,Q = q, S = s)
which leads to (4.1)

R11(Y ;𝑤) = R11
(
Y 1
3
;𝑤

)
, R01(Y ;𝑤) = R01

(
Y0
3
;𝑤

)
,

R10(Y ;𝑤) = R10
(
Y0
2
;𝑤

)
, R00(Y ;𝑤) = R00

(
Y0
2
;𝑤

)
.

Also define ‘Ratio in Odds Ratios (ROR) conditional onW = 𝑤’:

ROR(Y ;𝑤) ≡

(
R11(Y ;𝑤)

R10(Y ;𝑤)

)
∕
(
R01(Y ;𝑤)

R00(Y ;𝑤)

)
.

The identification condition to be invoked for ROR is

ROR(Y0;𝑤) =
(
R11

(
Y0
3
;𝑤

)
R10

(
Y0
2
;𝑤

))∕(R01
(
Y0
3
;𝑤

)
R00

(
Y0
2
;𝑤

)) = 1, (IDROR )

where R11
(
Y0
3
;𝑤

)
is a counterfactual. Just as in (3.1), IDROR dictates that the counterfactual R11

(
Y0
3
;𝑤

)
be con-

structed multiplicatively:

R11
(
Y0
3
;𝑤

)
= R10

(
Y0
2
;𝑤

)
×
R01

(
Y0
3
;𝑤

)
R00

(
Y0
2
;𝑤

) .
Doing analogously to (3.2), ROR(Y ; 𝑤) − 1 is the ‘proportional odds effect on the treated at the post-

treatment period t = 3’:
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ROR(Y ;𝑤)− 1 =
(
R11(Y ;𝑤)

R10(Y ;𝑤)

)
∕
(
R01(Y ;𝑤)

R00(Y ;𝑤)

)
− 1

=
(
R11

(
Y 1
3
;𝑤

)
R10

(
Y0
2
;𝑤

))∕(R01
(
Y0
3
;𝑤

)
R00

(
Y0
2
;𝑤

)) − 1

=
R11

(
Y 1
3
;𝑤

)
R11

(
Y0
3
;𝑤

) ⋅
(
R11

(
Y0
3
;𝑤

)
R10

(
Y0
2
;𝑤

))∕(R01
(
Y0
3
;𝑤

)
R00

(
Y0
2
;𝑤

)) − 1

=
R11

(
Y 1
3
;𝑤

)
R11

(
Y0
3
;𝑤

) − 1 =
R11

(
Y 1
3
;𝑤

)
− R11

(
Y0
3
;𝑤

)
R11

(
Y0
3
;𝑤

) (under IDROR ). (4.2)

Although odds ratio is extensively used in the medical and epidemiological literature, still it is not nec-

essarily easy to interpret the proportional odds effect. For this, suppose Y = 1 is a rare event in the sense

P
(
Y 1
3
= 0|𝑤,Q = 1

)
P
(
Y0
3
= 0|𝑤,Q = 1

) ≃ 1 for all𝑤; (4.3)

e.g. Y = 1 is a rare cancer occurrence such that P
(
Yd
3
= 0|𝑤,Q = 1

)
≃ 1 for all 𝑤 and d = 0, 1. Under (4.3),

ROR(Y ;𝑤) = R11
(
Y 1
3
;𝑤

)
∕R11

(
Y0
3
;𝑤

)
in (4.2) becomes

P
(
Y 1
3
= 1|𝑤,Q = 1

)
∕P

(
Y 1
3
= 0|𝑤,Q = 1

)
P
(
Y0
3
= 1|𝑤,Q = 1

)
∕P

(
Y0
3
= 0|𝑤,Q = 1

) ≃
P
(
Y 1
3
= 1|𝑤,Q = 1

)
P
(
Y0
3
= 1|𝑤,Q = 1

) .
Hence, the proportional odds effect (4.2) becomes the RR proportional effect (3.2):

ROR(Y ;𝑤)− 1 ≃
E
(
Y 1
3
− Y0

3
|𝑤,Q = 1

)
E
(
Y0
3
|𝑤,Q = 1

) under the rare event condition (4.3).

ROR(Y ; 𝑤) can be estimated nonparametrically by substituting sample analogs into the components of

ROR(Y ; 𝑤). However, as was the case for DD and RR(𝑤), this is not what practitioners would do. Instead, we

apply logistic regression next.

4.2 Logit for Binary Outcome

Analogously to (3.3), suppose that a panel data logistic model holds for Yd
it
:

E
(
Yd
t
|W2,W3,Q

)
= E

(
Yd
t
|Wt,Q

)
=

exp
(
𝛽t + 𝛽qQ+ 𝛽dd + 𝛽′

𝑤
Wt

)
1+ exp

(
𝛽t + 𝛽qQ+ 𝛽dd + 𝛽′𝑤Wt

) . (4.4)

The logistic panel data model for Y0
it
renders, with 𝛽𝜏 ≡ 𝛽3 − 𝛽2,

R11
(
Y0
3
;𝑤

)
= exp

(
𝛽2 + 𝛽𝜏 + 𝛽q + 𝛽′

𝑤
𝑤
)
, R01

(
Y0
3
;𝑤

)
= exp

(
𝛽2 + 𝛽𝜏 + 𝛽′

𝑤
𝑤
)
,

R10
(
Y0
2
;𝑤

)
= exp

(
𝛽2 + 𝛽q + 𝛽′

𝑤
𝑤
)
, R00

(
Y0
2
;𝑤

)
= exp

(
𝛽2 + 𝛽′

𝑤
𝑤
)
.

(4.5)

Hence, IDROR holds analogously to (3.4), because (4.5) yields

ROR(Y0;𝑤) =
(
R11

(
Y0
3
;𝑤

)
R10

(
Y0
2
;𝑤

))∕(R01
(
Y0
3
;𝑤

)
R00

(
Y0
2
;𝑤

)) = 1.

For the corresponding RCS, Y = (1− S)Y0
2
+ S(1− Q)Y0

3
+ DY 1

3
holds. Analogously to (3.5) and (3.6), take

E(⋅|W2,W3,Q, S) on Y and invoke (4.4) to get

E(Y|W2,W3,Q, S) =
exp

(
𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD+ 𝛽′

𝑤
W

)
1+ exp

(
𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽dD+ 𝛽′𝑤W

) ,W ≡ (1− S)W2 + SW3. (4.6)
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Also, R11
(
Y 1
3
;𝑤

)
= exp

(
𝛽2 + 𝛽𝜏 + 𝛽q + 𝛽d +𝑤′𝛽𝑤

)
and R11

(
Y0
3
;𝑤

)
in (4.5) yield

ROR(Y ;𝑤)− 1 =
{
R11

(
Y 1
3
;𝑤

)
∕R11

(
Y0
3
;𝑤

)}
− 1 = exp(𝛽d )− 1.

Estimate 𝛽d by the MLE with (4.6) to use exp(𝛽d) − 1 as the proportional odds effect, which is also the RR

proportional effect when Y = 1 is a rare event as in (4.3).

Suppose 𝛽q𝜏 tQ with 𝛽q𝜏 ≠ 0 appears as an extra regressor in (4.4). Then the parallel trends do not hold for

the latent Y∗. The appearance of 𝛽q𝜏 tQ also ruins IDROR for binary Y because IDROR becomes (3.7), just as 𝛽q𝜏 tQ

ruins IDRR in (3.7). As in (3.7), using tQ is an easy way to test or allow for non-parallel trends in Y∗. Overall, the

comments made for (3.7) hold more or less the same for ROR as well.

To allow for heterogeneous effect, suppose now that the slope of d in (4.4) is 𝛽d(Wt); e.g. 𝛽d(Wt ) = 𝛽d0 +
𝛽′
d𝑤
Wt. Then (4.6) and ROR(Y ; 𝑤) − 1 become, respectively,

E(Y|W ,Q, S) =
exp

{
𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽d(W )D+ 𝛽′

𝑤
W

}
1+ exp

{
𝛽2 + 𝛽𝜏S + 𝛽qQ+ 𝛽d(W )D+ 𝛽′𝑤W

} ,
ROR(Y ;𝑤)− 1 = exp{𝛽d(𝑤)} − 1.

ROR is not applicable to ordinal outcomes, but they can be reduced to binary in multiple ways, and then the

overlapping information in those ways can be combined with minimum distance estimation (see, e.g. Lee 2005,

2015).

4.3 Logit for Fractional Outcome

When Y takes on a value in [0,1], Y is a fractional outcome; e.g. the share of asset invested in stocks. There are

two types of fractional outcomes: (i) P(Y = 0 or Y = 1) = 0 and (ii) P(Y = 0 or Y = 1) > 0. Since logistic

regression always gives a value in (0,1), it can be adopted for type-(i) fractional outcome. As for type (ii), anal-

ogously to max(0, Y∗), we can use Y = max{0, min(Y∗, 1)}. Since max{0, min(⋅, 1)} is not smooth, one may
object to adopting a logistic model for type (ii), but the following provides a justification under 0 < E(Y|X) < 1

for all X.

For a function BX of X with 0 < BX < 1 for all X, consider maximizing

E{Y lnBX + (1− Y ) ln(1− BX )} = E[E(Y|X ) lnBX + {1− E(Y|X )} ln(1− BX ) ] (4.7)

with respect to (wrt) BX . Differentiate (4.7) wrt BX to obtain

E
[
E(Y|X )B−1

X
− {1− E(Y|X )}(1− BX )

−1 ] {= 0 when BX = E(Y|X )}.
Further differentiate this wrt BX to see that BX = E(Y|X) is the unique maximizer:

E
[
−E(Y|X )B−2

X
− {1− E(Y|X )}(1− BX )

−2 ] < 0.

Using this fact, Papke and Wooldridge (1996) maximized wrt b:

∑
i

{
Yi ln

exp
(
X′
i
b
)

1+ exp
(
X′
i
b
) + (1− Yi ) ln

1

1+ exp
(
X′
i
b
)
}

under E(Y|X ) = exp(X′𝛽 )
1+ exp(X′𝛽 )

;

Xi and b were defined for the Poisson QMLE. The first-order condition is

∑
i

{
Yi −

exp
(
X′
i
b
)

1+ exp
(
X′
i
b
)
}
Xi = 0 (satisfied at b = 𝛽 ).

As in Poisson QMLE, a “sandwich form” variance estimator should be used.
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4.4 ROR and Extended Propensity Score

A disadvantage of proportional odds effect is its interpretation difficulty, unless the rare event condition (4.3)

holds. For this, Tchetgen et al (2024; “TPR”) proposed to find E
(
Y 1
3
− Y0

3
|W ,Q = 1

)
under a condition close to

IDROR, as explained in this subsection. Although we assume discrete Y to ease exposition here, since each value

of y ≠ 0 is paired with y = 0, one might think of Y just as binary.

Define: for y ≠ 0,

Rqsy(Y ;𝑤) ≡
P(Y = y|𝑤,Q = q, S = s)

P(Y = 0|𝑤,Q = q, S = s)
which leads to (4.8)

R11y(Y ;𝑤) = R11y
(
Y 1
3
;𝑤

)
, R01y(Y ;𝑤) = R01y

(
Y0
3
;𝑤

)
,

R10y(Y ;𝑤) = R10y
(
Y0
2
;𝑤

)
, R00y(Y ;𝑤) = R00y

(
Y0
2
;𝑤

)
.

Also, assume “odds ratio equi-confounding” which generalizes IDROR:

𝛽2(𝑤, y) = 𝛽3(𝑤, y) 𝑤here 𝛽t(𝑤, y) ≡ ln
P
(
Y0
t
= y|𝑤,Q = 1

)
∕P

(
Y0
t
= 0|𝑤,Q = 1

)
P
(
Y0
t
= y|𝑤,Q = 0

)
∕P

(
Y0
t
= 0|𝑤,Q = 0

) ;
with y = 1, ‘𝛽2(𝑤, 1) = 𝛽3(𝑤, 1) for all𝑤’ is equivalent to IDROR.

Using the Baye’s rule, rewrite 𝛽 t(𝑤, y) as:

𝛽t(𝑤, y) = ln
P
(
Q = 1|𝑤, Y0

t
= y

)
∕P

(
Q = 1|𝑤, Y0

t
= 0

)
P
(
Q = 0|𝑤, Y0

t
= y

)
∕P

(
Q = 0|𝑤, Y0

t
= 0

)
= ln

P
(
Q = 1|𝑤, Y0

t
= y

)
P
(
Q = 0|𝑤, Y0

t
= y

) − ln
P
(
Q = 1|𝑤, Y0

t
= 0

)
P
(
Q = 0|𝑤, Y0

t
= 0

) (4.9)

⟺ ln
P
(
Q = 1|𝑤, Y0

t
= y

)
1− P

(
Q = 1|𝑤, Y0

t
= y

) = ln
P
(
Q = 1|𝑤, Y0

t
= 0

)
P
(
Q = 0|𝑤, Y0

t
= 0

) + 𝛽t(𝑤, y) (4.10)

putting the last term of (4.9) on the opposite side. TPR calls P
(
Q = 1|𝑤, Y0

t
= y

)
“the extended propensity score

function (given y)”.

TPR approximates the first term on the right-hand side of (4.10) linearly with 𝜂′
t
𝑤, and 𝛽 t(𝑤, y) with 𝛼′

𝑤
𝑤+

𝛼y y (no t in 𝛼’s, due to 𝛽2(𝑤, y) = 𝛽3(𝑤, y)), where 𝜂t and 𝛼’s are parameters; TPR also allows the interaction

term 𝛼′
𝑤y
𝑤y, which is omitted here. The logit of P

(
Q = 1|𝑤, Y0

t
= y

)
in the left-hand side of (4.10) renders:

P
(
Q = 1|W , Y0

t

)
=

exp
(
𝜂′
t
W + 𝛼′

𝑤
W + 𝛼yY

0
t

)
1+ exp

(
𝜂′
t
W + 𝛼′

𝑤W + 𝛼yY
0
t

) =
exp

{
(𝜂t + 𝛼𝑤 )

′W + 𝛼yY
0
t

}
1+ exp

{
(𝜂t + 𝛼𝑤 )

′W + 𝛼yY
0
t

} .
Now,

(
𝜂′
2
+ 𝛼′

𝑤
, 𝛼y

)′
can be estimated with the logistic MLE using only the t = 2 observations due to Y2 = Y0

2
.

However, 𝜂3 + 𝛼𝑤 cannot be estimated in the analogous way because theQ = 1 group does not have Y0
3
, which

is addressed next.

Observe:

P
(
Q = 1|W , Y0

3

)
= P

(
Q = 0|W , Y0

3

)
⋅ exp

{
(𝜂3 + 𝛼𝑤 )

′W + 𝛼yY
0
3

}
which implies

E
{
(1− Q) exp{(𝜂3 + 𝛼𝑤 )

′W + 𝛼yY3} − Q|W}
= 0 (4.11)

⇒ E( E
[
(1− Q) exp

{
(𝜂3 + 𝛼𝑤 )

′W + 𝛼yY
0
3

}
− Q|W , Y0

3

] |W ) = 0

⇒ E( E
[
(1− Q) exp

{
(𝜂3 − 𝜂2 )

′W + (𝜂2 + 𝛼𝑤 )
′W + 𝛼yY

0
3

}
− Q|W , Y0

3

] |W ) = 0

⇒ E( E
[
(1− Q) exp

{
(𝜂3 − 𝜂2 )

′W + (𝜂2 + 𝛼𝑤 )
′W + 𝛼yY

0
3

}
− Q|W , Y0

3

]
⋅W ) = 0.
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The last unconditional moment condition identifies 𝜂3 − 𝜂2 as the solution, if 𝜂2 + 𝛼𝑤 and 𝛼y are

known, for which 𝛽 t(𝑤, y) should be time-constant, so that 𝜂2 + 𝛼𝑤 and 𝛼y found at t = 2 can be substituted

into the moment condition at t = 3 to identify 𝜂3 − 𝜂2. Henceforth, write (𝜂3 − 𝜂2)
′W + (𝜂2 + 𝛼𝑤)

′W as

(𝜂3 + 𝛼𝑤)
′W as in (4.11).

With all parameters identified, the DD effect E
(
Y 1
3
|Q = 1

)
− E

(
Y0
3
|Q = 1

)
is:

E(Y3|Q = 1)−
E
[
(1− Q)Y3 exp

{
(𝜂3 + 𝛼𝑤 )

′W + 𝛼yY3
} ]

E
[
(1− Q) exp

{
(𝜂3 + 𝛼𝑤 )

′W + 𝛼yY3
} ] . (4.12)

To understand the second term, observe that its numerator is equal to:

E
[
E
{
(1− Q)Y0

3
exp{(𝜂3 + 𝛼𝑤 )

′W + 𝛼yY
0
3
} |W , Y0

3

} ]
= E

[
Y0
3
exp

{
(𝜂3 + 𝛼𝑤 )

′W + 𝛼yY
0
3

}
⋅ E

{
(1− Q)|W , Y0

3

} ]
= E

[
Y0
3
exp

{
(𝜂3 + 𝛼𝑤 )

′W + 𝛼yY
0
3

}
⋅

1

1+ exp
{
(𝜂3 + 𝛼𝑤 )

′W + 𝛼yY
0
3

}
]

= E
{
Y0
3
P
(
Q = 1|W , Y0

3

) }
= E

{
E
(
Y0
3
Q|W , Y0

3

) }
= E

(
Y0
3
Q
)
.

Analogously, the denominator of the second term in (4.12) is E(Q), which thus makes the second term of (4.12)

equal to E
(
Y0
3
|Q = 1

)
.

Evaluating the contribution of TPR, they turn ROR into something that involves only P(Q|⋅), using the Bayes’
rule. This way, one has to specify a binary model for Q, not for Y , which renders no advantage for binary Y

though. For non-binary Y , such as ordinal, multinomial or even continuous, not specifying the outcome prob-

ability/density would be an advantage. However, it is not clear whether 𝛽2(𝑤, y) = 𝛽3(𝑤, y) holds or not for a

general Y , as IDROR and its generalization 𝛽2(𝑤, y) = 𝛽3(𝑤, y) were motivated by the (multinomial) logit form

of the Y0
t
probability.

This problem notwithstanding, the main contribution of TPR is that, given the difficulty of interpreting

proportional odds effect unless the rare event condition is invoked, TPR showed away to find the usual DD effect

under the IDROR-type condition 𝛽2(𝑤, y) = 𝛽3(𝑤, y), avoiding the interpretation difficulty of proportional odds

effect.

5 Empirical Analysis

In this section, we estimate the effects of the Affordable Care Act Dependent Coverage Provision (‘DCP’) on var-

ious health outcomes. Under the DCP that went into effect in September 2010, dependents can remain on the

parent’s private health plan until age 26. The treatment group is dependents aged 23–25, and the control group

is dependents aged 27–29; 26 was excluded due to the treatment status ambiguity. Our data are from the Behav-

ioral Risk Factor Surveillance System for 2007–2013, which is health-related telephone surveys in the U.S. Almost

the same data were used in Barbaresco et al (2015) (‘BCQ’, henceforth), with small differences occurring due to

updates, imputed values, data cleaning, etc.

BCQ considered 18 outcomes, of which we use 12. Each outcome variable has a different sample size, as we

replaced “Don’t Know” and “Refused” with missing values. With the sample size in brackets [⋅], the 12 outcome
variables are: (1) ‘any health insurance’ [127,618], (2) ‘any primary (care) doctor’ [127,533], (3) needed medical

care in the past year not taken due to cost (‘cost blocked care’) [108,433], (4) current smoker [126,557], (5) ‘risky

drinker (in the past 30 days)’ [122,035], (6) ‘obese (BMI≥30)’ [121,294], (7) ‘pregnant (while) unmarried’ [40,006],

(8) ‘(alcoholic) drinks (in the past) 30 days’ [121,845], (9) BMI [121,290], (10) days of the last 30 not in good mental

health (‘days poor mental’) [125,681], (11) days of the last 30 not in good physical health (‘days poor physical’)

[125,766], and (12) days of the last 30 with health-related limitations (‘days health limits’) [71,079]. The first seven

outcomes are binary, and the remaining five are non-negative (counts or continuous).
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Table 1 presents summary statistics on covariates: age, gender, race, marital status, education, state unem-

ployment rate, ‘any DCP’ for any state mandate on DCP although the dependent may not be covered, household

income, the number of children, ‘cell phones only’ (vs. cell phone plus landline), student, and unemployed.

Because the treatment group is younger than the control group by 2–6 years, the treatment group has fewer

married, fewer college degree, lower household income, fewer children, more students, and more unemployed.

Also, the treatment group has the lower state unemployment rate, higher any DCP, and higher cell phone

only.

Let ‘Lin-DD’ stand for the linear model DD using (1.2). Table 2 shows 𝛽q𝜏 (non-parallel/multiplicative trends)

and 𝛽d (effect) estimates, although the effect of interest is the proportional effect exp(𝛽d) − 1 due to Y being an

LDV. Poisson QMLE estimates are 𝛽̃q𝜏 and 𝛽̃d, and Lin-DD estimates ignoring the LDV nature are 𝛽q𝜏 and 𝛽d. In

Table 2, age-clustering-robust standard errors are computed using the survey weights.

Three main findings emerge from Table 2, which are also seen in the simulation part of the Appendix: (i)

RR and ROR estimates differ much from Lin-DD estimates; (ii) ROR estimates are overall greater than Lin-DD

whereas RR estimates are overall smaller than Lin-DD; and (iii) tests for 𝛽q𝜏 = 0 in Lin-DD and in RR or ROR

give the same conclusions at the 5% significance level. Also, comparing RR, ROR and Lin-DD in their qualitative

conclusions on testing for 𝛽d = 0, they lead to the same conclusions at the 5% significance level, except for

‘cost blocked care’.

Turning to interpreting effect magnitude, proportional odds effects for binary outcomes are a little dif-

ficult to interpret; e.g. DCP increases the odds of ‘any health insurance’ by about 41%, an approximation to

exp(0.41) − 1 ≃ 51%. This should not be taken as a drastic effect, because odds ratios can easily take on large
values, which is, in fact, one of the reasons why some researchers prefer odds ratios. Compared with the over-

all large magnitudes in proportional odds effects for binary outcomes, the proportional effect magnitudes for

non-negative outcomes are in a smaller scale and easier to interpret, ranging just over −0.004 to 0.263; e.g.
DCP increases ‘drinks 30 days’ by about 26%, an approximation to exp(0.26) − 1 ≃ 30%. As an example for
proportional odds effects becoming proportional effects for rare events, unmarried pregnancies are fairly rare

Table 1: Summary statistics of covariates: mean & standard deviation (SD).

Covariates Treated Control Covariates Treated Control

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age (age 23 omitted) Household income (less than $10 K omitted)

Age 24 0.35 (0.48) – $10 K–$15 K 0.07 (0.26) 0.05 (0.22)

Age 25 0.32 (0.47) – $15 K–$20 K 0.10 (0.30) 0.08 (0.27)

Age 27 – 0.31 (0.46) $20 K–$25 K 0.12 (0.32) 0.10 (0.30)

Age 28 – 0.34 (0.48) $25 K–$35 K 0.14 (0.35) 0.13 (0.33)

Age 29 – 0.35 (0.48) $35 K–$50 K 0.16 (0.37) 0.16 (0.37)

Female 0.51 (0.50) 0.51 (0.50) $50 K–$75 K 0.14 (0.35) 0.18 (0.39)

Race (non-Hispanic whites omitted) $75 K $ over 0.19 (0.39) 0.24 (0.43)

Black 0.11 (0.31) 0.11 (0.32) Number of children

Hispanic 0.23 (0.42) 0.22 (0.41) 1 0.23 (0.42) 0.23 (0.42)

Others 0.09 (0.28) 0.08 (0.27) 2 0.16 (0.36) 0.23 (0.42)

Married 0.30 (0.46) 0.56 (0.50) 3 0.05 (0.23) 0.11 (0.31)

Education (less than HS degree omitted) 4 0.02 (0.13) 0.04 (0.19)

High school (HS) 0.28 (0.45) 0.26 (0.44) 5 or more 0.01 (0.09) 0.02 (0.12)

Non-4-yr college 0.30 (0.46) 0.27 (0.44)

College graduate 0.31 (0.46) 0.36 (0.48) Cell phone only 0.70 (0.46) 0.67 (0.47)

State unemp. rate 7.23 (2.72) 7.37 (2.73) Student 0.11 (0.31) 0.05 (0.23)

Any DCP 0.26 (0.44) 0.04 (0.21) Unemployed 0.13 (0.34) 0.12 (0.33)

Any DCP: the state has any DCP mandate despite that the person is not covered.
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Table 2: Non-parallel/multiplicative trend 𝛽q𝜏 & effect 𝛽d : estimate (t-value).

Outcome variable RR and ROR Lin-DD (linear model DD)

𝜷̃q𝝉 𝜷̃d DD 𝜷q𝝉 DD 𝜷d

Estimate (tv) Estimate (tv) Estimate (tv) Estimate (tv)

Binary outcome

Any health insurance −0.009 (−0.27) 0.407 (3.06) −0.002 (−0.34) 0.068 (2.88)

Any primary doctor 0.010 (0.39) 0.145 (1.28) 0.002 (0.34) 0.028 (1.18)

Cost blocked care 0.014 (2.78) −0.167 (−1.82) 0.003 (3.54) −0.029 (−1.97)
Current smoker −0.053 (−2.70) 0.204 (2.89) −0.009 (−2.86) 0.035 (3.15)

Risky drinker 0.027 (1.63) −0.092 (−2.44) 0.005 (1.90) −0.019 (−2.88)
Obese 0.032 (1.90) −0.081 (−1.07) 0.007 (1.86) −0.018 (−1.02)
Pregnant unmarried 0.008 (0.12) −0.079 (−0.36) 0.000 (0.11) −0.003 (−0.39)

Non-negative outcome

Drinks 30 days −0.085 (−3.48) 0.263 (3.05) −1.346 (−4.03) 4.242 (3.04)

BMI −0.001 (−0.83) −0.004 (−0.73) −0.035 (−0.86) −0.104 (−0.66)
Days poor mental −0.004 (−0.15) 0.050 (0.43) −0.019 (−0.18) 0.203 (0.43)

Days poor physical −0.037 (−0.94) 0.189 (1.18) −0.087 (−0.96) 0.423 (1.13)

Days health limits 0.019 (0.47) 0.052 (0.30) 0.050 (0.40) 0.149 (0.28)

Table 3: Effects under parallel/multiplicative trends.

Outcome variable RR and ROR Lin-DD

Estimate (tv) Estimate (tv)

Binary outcome

Any health insurance 0.375 (4.57) 0.061 (4.41)

Any primary doctor 0.178 (5.26) 0.035 (4.76)

Cost blocked care −0.113 (−1.34) −0.019 (−1.38)
Current smoker 0.016 (0.49) 0.003 (0.49)

Risky drinker 0.006 (0.23) 0.001 (0.13)

Obese 0.033 (1.06) 0.008 (1.10)

Pregnant unmarried −0.049 (−0.58) −0.002 (−0.57)

Non-negative outcome

Drinks 30 days −0.037 (−0.50) −0.569 (−0.39)
BMI −0.009 (−3.21) −0.227 (−3.19)
Days poor mental 0.036 (0.82) 0.136 (0.76)

Days poor physical 0.057 (2.32) 0.113 (1.90)

Days health limits 0.121 (3.05) 0.329 (2.54)

(4–5%) in our data, and consequently, we can interpret the ROR estimate−0.078 for ‘pregnant unmarried’ as a
8% decrease due to DCP.

BCQ checked out the parallel trend assumption with graphs plotting the pre-treatment trends across the

treatment and control groups. BCQ also estimated theirmodels using different time periods or usingmore aggre-

gated data. Whereas these are informal ways of testing for parallel trends, our approach of using tQ as an extra

regressor provides a formal yet simple way of testing parallel/unity-multiplicative trends. The 𝛽̃q𝜏 estimates

reveal that parallel trend assumption in Y∗ and the analogous IDRR/IDROR assumptions do not hold at least for

‘cost blocked care’, ‘current smoker’, and ‘drinks 30 days’ while tests for 𝛽q𝜏 = 0 in Lin-DD give almost the same

conclusions.
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To appreciate better howmuch difference allowing 𝛽q𝜏 ≠ 0makes, Table 3 repeats Table 2 under the restric-

tion 𝛽q𝜏 = 0 (i.e. without using tQ as a regressor). The differences between Tables 2 and 3 are substantial both

in terms of effect magnitude and t-value. In RR and ROR, only ‘any health insurance’ maintained their statistical

significance, whereas ‘current smoker’, ‘risky drinker’ and ‘drinks 30 days’ become misleadingly insignificant

by imposing 𝛽q𝜏 = 0 falsely. Also, ‘any primary doctor’, BMI, ‘days poor physical’ and ‘days health limits’

become significant by imposing 𝛽q𝜏 = 0 unnecessarily. In Lin-DD as well, only ‘any health insurance’ main-

tains its statistical significance in Tables 2 and 3, whereas the statistical significance of seven other outcomes is

switched.

The main finding in BCQ is that DCP increases ‘any health insurance’, ‘any primary doctor’ and ‘risky

drinker’, but decreases BMI. This finding is similar to that of the RR and ROR column in Table 3, except for

‘risky drinker’ that is insignificant in Table 3. This similarity is due to 𝛽q𝜏 = 0 assumed in both BCQ and

Table 3.

Since Table 3 imposes the unnecessary restriction 𝛽q𝜏 = 0, it is interesting to compare the finding in BCQ

to that in Table 2. The RR and ROR column of Table 2 reveals significantly increasing effects on ‘any health

insurance’, ‘current smoker’ and ‘drinks 30 days’, and a significantly decreasing effect on ‘risky drinker’. Hence,

only the increasing effect on ‘any health insurance’ is shared by BCQ and the RR and ROR column of Table 2; the

sign of ‘risky drinker’ changes across BCQ and the RR and ROR column of Table 2. Overall, the differences due

to allowing 𝛽q𝜏 ≠ 0 are large.

6 Conclusions

Difference in Differences (DD) is one of themost popular approaches in finding the effect of a binary treatmentD

on an outcome Y . However, DD is suitable for linearmodels, and consequently, applying DD to limited dependent

variables (LDV’s), or more generally to nonlinear models, has been problematic. Many researchers with LDV’s

simply ignore the LDV nature to use a linear model.

The goal of this paper is to explore what can be done in this case, adopting the framework of generalized

linear models (GLM) with link functions. Because several papers have been published on GLM for DD with LDV

since an early version of our paper in 2021, we reviewed the literature including recent studies not covered by

the other reviews. The main recommendation is using Poisson QMLE for non-negative (such as count or zero-

censored) Y and (multinomial) logit MLE for binary, fractional or multinomial Y . This agrees with the other

studies adopting GLM. Despite the overlap, however, this paper differs from the other reviews as follows.

First, we focused on proportional (odds) effect using ‘ratio in ratios (RR)’ or ‘ratio in odds ratios (ROR)’,

instead of trying to obtain the usual average effect on the treated (or on the population) which requires an

unnecessary extra step. Second, as was noted just above, we reviewed the recent literature on DD with LDV

that has not been covered by the other reviews. Third, we paid more attention to covariate (W) types, instead

of simply assuming a time-constant W . Fourth, we made further minor contributions, such as verifying the

identification condition for repeated cross sections (RCS) and proposing triple ratios to deal with non-parallel

multiplicative trends.

Our simulation study revealed that RR and ROR can give much different findings from DD, although our

empirical study showed that the DD findings may not differ much from RR and ROR as well. Also, using a

power function of t times the policy qualification dummy to account for non-parallel/multiplicative trendsmade

big differences in our empirical findings, compared to imposing the parallel/multiplicative trend restriction

unnecessarily from the outset.
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Appendix

A.1 Simulation Study

Our simulation study addresses four types of LDV’s: (i) positive continuous, (ii) count, (iii) zero-censored, and (iv)

binary. Poisson QMLE is applied to (i), (ii) and (iii), and logistic MLE to (iv); their estimates are comparedwith the

linearmodel DD (‘Lin-DD’). FractionalY is not tried because it is not yet clear how to generate fractionalY subject

to the exponential regression, and multinomial Y is addressed separately below because it is inconceivable to

apply Lin-DD to multinomial outcome.

In the following, we explain (i) and Table A1 in detail, from which it will be clear how (ii), (iii) and (iv)

are dealt with and how to interpret the other tables. In all cases, the effect of interest is exp(𝛽d) − 1, which

is the proportional (odds) effect, but we examine 𝛽d mainly, because knowing 𝛽d is equivalent to knowing

exp(𝛽d) − 1.

For (i) positive continuous outcome, we generate Yit for t = 0, 1, 2, 3:

Yit = exp(𝛽t + 𝛽qQi + 𝛽q𝜏 tQi + 𝛽dDit + Uit ) where

P(Qi = 0) = P(Qi = 1) = 0.5, Dit = Qi1[t = 3], Ui0,Ui1,Ui2,Ui3 iid N(0, 1) ⨿ Qi,

𝛽0 = −2, 𝛽1 = −2, 𝛽2 = −1, 𝛽3 = −1, 𝛽q = 0.5, 𝛽q𝜏 = 0, 0.5, 𝛽d = 0, 0.5;

(A.1)

𝛽q𝜏 = 0 makes the parallel trends hold in Y∗ and IDRR hold in Y , but not 𝛽q𝜏 = 0.5.

From the Yit’s in (A.1), the RCS outcome Yi and its regressor Xi are obtained:

Si is the sampled period for i, Sit ≡ 1[Si = t], P(Sit = 1) = 0.25 for all t,

Yi =
3∑

t=0
SitYit, Q𝜏

i
≡ Qi

3∑
t=1

Sitt, Xi ≡
(
1, Si1, Si2, Si3,Qi,Q

𝜏
i
,Di

)′
for parameters {𝛽0 + ln(1.64), 𝛽1 − 𝛽0, 𝛽2 − 𝛽0, 𝛽3 − 𝛽0, 𝛽q, 𝛽q𝜏 , 𝛽d};

(A.2)

1.64 comes from E{exp(Uit)} = 1.64 with Uit ∼ N(0, 1), which appears due to

E(Yit|Qi, Si ) = E
{
exp(𝛽t + 𝛽qQi + 𝛽q𝜏 tQi + 𝛽dDit )⋅ E{exp(Uit )}.

That is, having E{exp(Uit)} = 1.64 and 𝛽0 is equivalent to having E{exp(Uit)} = 1 and 𝛽0 + ln(1.64). For the

other LDV models, the RCS data are generated analogously.

Table A1 presents the results from 5,000 repetitionswithN = 250 and 10,000; each entry shows the absolute

bias (|Bias|), SD, andRootMean SquaredError (RMSE).WithN = 250, Lin-DDestimates𝛽q𝜏 and𝛽d do sometimes

better than the Poisson QMLE 𝛽̃q𝜏 and 𝛽̃d, but this is due to the low SD’s; the |Bias| of Lin-DD 𝛽d is huge in several

cases. With N = 10, 000, the |Bias|’s for the Lin-DD estimates remain almost the same as those with N = 250

whereas the gaps in SD between Lin-DD and Poisson QMLE are reduced, and consequently, Poisson QMLE does

better than Lin-DD. Using tQ solves the problem of IDRR violation for Poisson QMLE, but not for Lin-DD; 𝛽q𝜏 in

Lin-DD is biased much even when 𝛽q𝜏 = 0. In short, Table A1 demonstrates that Lin-DD is highly biased when

the true model is exponential for positive Y .

For (ii) count outcome, similarly to (A.1), Yit is generated from the Poisson distribution with parameter

exp(𝛽 t + 𝛽qQi + 𝛽q𝜏 tQi + 𝛽dDit) for t = 0, 1, 2, 3. Then Yi and Xi are generated as in (A.2), and Poisson
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Table A1: Positive Y : |Bias|, SD and (RMSE).
N= 250 𝜷q𝝉 , 𝜷d : 0, 0 𝜷q𝝉 , 𝜷d : 0.5, 0 𝜷q𝝉 , 𝜷d : 0, 0.5 𝜷q𝝉 , 𝜷d : 0.5, 0.5

𝛽̃q𝜏 0.00 0.23 (0.23) 0.00 0.24 (0.24) 0.00 0.23 (0.23) 0.00 0.24 (0.24)

𝛽̃d 0.01 0.60 (0.60) 0.01 0.60 (0.60) 0.01 0.60 (0.60) 0.01 0.60 (0.60)

DD 𝛽q𝜏 0.12 0.15 (0.19) 0.48 0.33 (0.59) 0.12 0.15 (0.19) 0.48 0.33 (0.59)

DD 𝛽d 0.08 0.46 (0.47) 1.05 1.38 (1.73) 0.08 0.56 (0.57) 3.48 1.96 (4.00)

N = 10,000

𝛽̃q𝜏 0.00 0.04 (0.04) 0.00 0.04 (0.04) 0.00 0.04 (0.04) 0.00 0.04 (0.04)

𝛽̃d 0.00 0.10 (0.10) 0.00 0.10 (0.10) 0.00 0.10 (0.10) 0.00 0.10 (0.10)

DD 𝛽q𝜏 0.12 0.02 (0.13) 0.48 0.05 (0.49) 0.12 0.02 (0.13) 0.48 0.05 (0.49)

DD 𝛽d 0.08 0.07 (0.11) 1.03 0.22 (1.05) 0.07 0.09 (0.11) 3.44 0.30 (3.45)

𝛽q𝜏 = 0 for parallel trends in Y∗ & IDRR in Y ; 𝛽d (exp(𝛽d)− 1) is the desired effect; 𝛽̃q𝜏 , 𝛽̃d : Poisson QMLE; 𝛽q𝜏 , 𝛽d : linear-model DD.

Table A2: Poisson count Y : |Bias|, SD and (RMSE).
N= 250 𝜷q𝝉 , 𝜷d : 0, 0 𝜷q𝝉 , 𝜷d : 0.5, 0 𝜷q𝝉 , 𝜷d : 0, 0.5 𝜷q𝝉 , 𝜷d : 0.5, 0.5

𝛽̃q𝜏 0.01 0.40 (0.40) 0.00 0.38 (0.38) 0.01 0.40 (0.40) 0.00 0.38 (0.38)

𝛽̃d 0.00 0.85 (0.85) 0.00 0.78 (0.78) 0.01 0.84 (0.84) 0.00 0.78 (0.78)

DD 𝛽q𝜏 0.08 0.10 (0.13) 0.10 0.14 (0.17) 0.08 0.10 (0.13) 0.10 0.14 (0.17)

DD 𝛽d 0.06 0.31 (0.31) 0.61 0.47 (0.77) 0.17 0.33 (0.37) 1.88 0.53 (1.95)

N = 10,000

𝛽̃q𝜏 0.00 0.06 (0.06) 0.00 0.05 (0.05) 0.00 0.06 (0.06) 0.00 0.05 (0.05)

𝛽̃d 0.00 0.12 (0.12) 0.00 0.10 (0.10) 0.00 0.11 (0.11) 0.00 0.10 (0.10)

DD 𝛽q𝜏 0.08 0.02 (0.08) 0.10 0.02 (0.10) 0.08 0.02 (0.08) 0.10 0.02 (0.10)

DD 𝛽d 0.05 0.05 (0.07) 0.62 0.07 (0.63) 0.16 0.05 (0.16) 1.89 0.08 (1.89)

𝛽q𝜏 = 0 for parallel trends in Y∗ & IDRR in Y ; 𝛽d (exp(𝛽d)− 1) is the desired effect; 𝛽̃q𝜏 , 𝛽̃d : Poisson QMLE; 𝛽q𝜏 , 𝛽d : linear-model DD.

QMLE is implemented. The same parameters as in (A.2) are estimated except for the intercept because ln(1.64)

is no more present. Table A2 presents the simulation results, and what was mentioned for Table A1 applies to

Table A2 almost word to word.

For (iii) zero-censored outcome, we use (3.9) where Mi ∼ Poisson(1) with P(Mi = 0) = 0.37 and Yit =∑Mi

j=0Zijt with Zijt = exp{𝛽 t + 𝛽qQi + 𝛽q𝜏 tQi + 𝛽dDit + N(0, 1)}. The same parameters as in (A.2) are esti-
mated except for the intercept because exp(1) from E(M) is added to 𝛽0 in view of (3.9). Despite the big difference

in the data generating processes, Table A3 differ little from Tables A1 and A2, and all comments made for

Tables A1 and A2 apply to Table A3 as well. The similarities in the findings from Tables A1–A3 seem to stem

from the common exponential regression specification.

For (iv) binary outcome, Yit is generated with Logistic Uit:

Yit = 1[0 < 𝛽t + 𝛽qQi + 𝛽q𝜏 tQi + 𝛽dDit + Uit], Ui0,Ui1,Ui2,Ui3 are iid Logistic.

𝛽q𝜏 = 0 makes the parallel trends hold for Y∗, and makes IDROR hold for Y .

Since the logistic regression is used in Table A4, the results in Table A4 differ much from those in Tables

A1–A3. First, the overall magnitude of |Bias| is much smaller than in Tables A1–A3. Second, surprisingly, when
𝛽q𝜏 = 𝛽d = 0, the Lin-DD estimates with almost zero bias do several times better than the logistic MLE esti-

mates. Third, biases in Lin-DD are persistent even when N increases to 10,000, which implies that Lin-DD will

be eventually dominated by logistic MLE for a large enough N . Nevertheless, less harm is seen in using Lin-DD

for binary Y , compared with the other LDV’s.
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Table A3: Zero-censored Y : |Bias|, SD and (RMSE).
N= 250 𝜷q𝝉 , 𝜷d : 0, 0 𝜷q𝝉 , 𝜷d : 0.5, 0 𝜷q𝝉 , 𝜷d : 0, 0.5 𝜷q𝝉 , 𝜷d : 0.5, 0.5

𝛽̃q𝜏 0.01 0.31 (0.31) 0.01 0.32 (0.32) 0.01 0.31 (0.31) 0.01 0.32 (0.32)

𝛽̃d 0.01 0.80 (0.80) 0.02 0.80 (0.80) 0.01 0.80 (0.80) 0.02 0.80 (0.80)

DD 𝛽q𝜏 0.12 0.19 (0.22) 0.47 0.42 (0.63) 0.12 0.19 (0.22) 0.47 0.42 (0.63)

DD 𝛽d 0.07 0.59 (0.60) 1.04 1.76 (2.04) 0.07 0.71 (0.72) 3.44 2.48 (4.24)

N = 10,000

𝛽̃q𝜏 0.00 0.05 (0.05) 0.00 0.05 (0.05) 0.00 0.05 (0.05) 0.00 0.05 (0.05)

𝛽̃d 0.00 0.12 (0.12) 0.00 0.13 (0.13) 0.00 0.12 (0.12) 0.00 0.13 (0.13)

DD 𝛽q𝜏 0.12 0.03 (0.13) 0.48 0.07 (0.49) 0.12 0.03 (0.13) 0.48 0.07 (0.49)

DD 𝛽d 0.08 0.09 (0.12) 1.03 0.28 (1.06) 0.07 0.11 (0.13) 3.43 0.39 (3.46)

𝛽q𝜏 = 0 for parallel trends in Y∗ & IDRR in Y ; 𝛽d (exp(𝛽d)− 1) is the desired effect; 𝛽̃q𝜏 , 𝛽̃d : Poisson QMLE; 𝛽q𝜏 , 𝛽d : linear model DD.

Table A4: Binary Y : |Bias|, SD and (RMSE).
N= 250 𝜷q𝝉 , 𝜷d : 0, 0 𝜷q𝝉 , 𝜷d : 0.5, 0 𝜷q𝝉 , 𝜷d : 0, 0.5 𝜷q𝝉 , 𝜷d : 0.5, 0.5

𝛽̃q𝜏 0.01 0.50 (0.50) 0.01 0.51 (0.51) 0.01 0.50 (0.50) 0.01 0.51 (0.51)

𝛽̃d 0.02 1.16 (1.16) 0.04 1.18 (1.19) 0.04 1.15 (1.15) 0.13 1.54 (1.55)

DD 𝛽q𝜏 0.02 0.07 (0.08) 0.35 0.08 (0.36) 0.02 0.07 (0.08) 0.35 0.08 (0.36)

DD 𝛽d 0.02 0.21 (0.21) 0.02 0.21 (0.21) 0.39 0.21 (0.45) 0.43 0.20 (0.48)

N = 10,000

𝛽̃q𝜏 0.00 0.07 (0.07) 0.00 0.07 (0.07) 0.00 0.07 (0.07) 0.00 0.07 (0.07)

𝛽̃d 0.00 0.17 (0.17) 0.00 0.17 (0.17) 0.00 0.17 (0.17) 0.00 0.17 (0.17)

DD 𝛽q𝜏 0.02 0.01 (0.03) 0.35 0.01 (0.35) 0.02 0.01 (0.03) 0.35 0.01 (0.35)

DD 𝛽d 0.02 0.03 (0.04) 0.02 0.03 (0.04) 0.39 0.03 (0.39) 0.43 0.03 (0.43)

𝛽q𝜏 = 0 for parallel trends in Y∗ & IDROR in Y ; 𝛽d (exp(𝛽d)− 1) is the desired effect; 𝛽̃q𝜏 , 𝛽̃d : logit estimates; 𝛽q𝜏 , 𝛽d : linear-model DD.

A.2 Multinomial Logit for DD with Multinomial Outcome

A.2.1 Identification

For multinomial outcome Y taking on a value among 0, 1,… , C classes, define the ‘class-c odds’ (with the base

class 0) conditional on (W = 𝑤,Q = q, S = s) as

Rc
qs
(Y ;𝑤) ≡

P(Y = c|𝑤,Q = q, S = s)

P(Y = 0|𝑤,Q = q, S = s)
which implies

Rc
11
(Y ;𝑤) = Rc

11

(
Y 1
3
;𝑤

)
, Rc

01
(Y ;𝑤) = Rc

01

(
Y0
3
;𝑤

)
,

Rc
10
(Y ;𝑤) = Rc

10

(
Y0
2
;𝑤

)
, Rc

00
(Y ;𝑤) = Rc

00

(
Y0
2
;𝑤

)
,

analogously to (4.1). Also define ‘class-c ROR conditional onW = 𝑤’:

RORc(Y ;𝑤) ≡

(
Rc
11
(Y ;𝑤)

Rc
10
(Y ;𝑤)

)/(
Rc
01
(Y ;𝑤)

Rc
00
(Y ;𝑤)

)
.

The identification condition for RORc with multinomial outcome is

RORc(Y0;𝑤) =
(
Rc
11

(
Y0
3
;𝑤

)
Rc
10

(
Y0
2
;𝑤

))/(
Rc
01

(
Y0
3
;𝑤

)
Rc
00

(
Y0
2
;𝑤

))= 1. (IDRORc )
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As in (4.2), RORc(Y ; 𝑤) − 1 is equal to the ‘class-c proportional odds effect on the treated at the post-

treatment period t = 3’:

RORc(Y ;𝑤)− 1 =
Rc
11

(
Y 1
3
;𝑤

)
− Rc

11

(
Y0
3
;𝑤

)
Rc
11

(
Y0
3
;𝑤

) under IDRORc.

Also, as in (4.3), if Y = c ≠ 0 is a rare event in the sense of (4.3), then

RORc(Y ;𝑤)− 1 ≃
P
(
Y 1
3
= c|𝑤,Q = 1

)
− P

(
Y0
3
= c|𝑤,Q = 1

)
P
(
Y0
3
= c|𝑤,Q = 1

) (A.3)

which is the class-c proportional effect on the treated at the post-treatment period.

A.2.2 Estimation

In panel multinomial choice with classes c = 0, 1,… , C, there are a few possibilities for regressors, depending

on whether they vary across units, classes or times. Here, we consider three types of regressors: Ai varying only

across units (e.g. race),Hit varying only across units and times (e.g. income), andWict varying across units, classes

and times (e.g. expense from choosing class c). Let the ‘latent utility from class c’ of unit i at period t = 2, 3 be

Ld
itc

≡ 𝛽tc + 𝛽qcQi + 𝛽dcd + 𝛽′
ac
Ai + 𝛽′

hc
Hit + 𝛽′

𝑤c
Witc + Uitc, c = 0, 1,… , C (A.4)

where the error terms (Ui20,… ,Ui2C,Ui30,… ,Ui3C) are iid with the type-I extreme value distribution, and

independent of all regressors at all times (‘strict exogeneity’).

The potential choice Yd
it
with D = d is

Yd
it
=

C∑
j=0

(
j × 1

[
Ld
itj
> Ld

itk
for all k ≠ j

])
;

Yd
it
takes on 0, 1,… , C, depending on which class gives the maximum utility. Using (A.4), the choice probabilities

for the untreated Y0
it
= c ∈ {0, 1,… , C} are:

P
(
Y0
it
= c|Qi,Ai,Hit,Wi20,… ,Wi2C,Wi30,… ,Wi3C

)
= P

(
Y0
it
= c|Qi,Ai,Hit,Wit0,… ,WitC

)
=

exp
(
𝛽tc + 𝛽qcQi + 𝛽′

ac
Ai + 𝛽′

hc
Hit + 𝛽′

𝑤c
Witc

)
C∑
j=0

exp
(
𝛽t j + 𝛽q jQi + 𝛽′

a j
Ai + 𝛽′

h j
Hit + 𝛽′

𝑤 j
Witj

)

=
exp

(
Δ𝛽tc +Δ𝛽qcQi +Δ𝛽′

ac
Ai +Δ𝛽′

hc
Hit − 𝛽′

𝑤0
Wit0 + 𝛽′

𝑤c
Witc

)
1+

C∑
j=1

exp
(
Δ𝛽t j +Δ𝛽q jQi +Δ𝛽′

a j
Ai +Δ𝛽′

h j
Hit − 𝛽′

𝑤0
Wit0 + 𝛽′

𝑤 j
Wijt

) ,

Δ𝛽t j ≡ 𝛽t j − 𝛽t0, Δ𝛽q j ≡ 𝛽q j − 𝛽q0, Δ𝛽a j ≡ 𝛽a j − 𝛽a0, Δ𝛽h j ≡ 𝛽h j − 𝛽h0;

the last equality holds, dividing throughby exp
(
𝛽t0 + 𝛽q0Qi + 𝛽′

a0
Ai + 𝛽′

h0
Hit + 𝛽′

𝑤0
Wit0

)
for the base class c = 0.

The numerator of the last ratio is one for the base class 0. IDRORc holds for P
(
Y0
it
= c|⋅), whose proof is similar to

the proof for IDROR.

Analogously derive the model for P
(
Y 1
it
= c|⋅), which then gives (i omitted)

Rc
11
(Yd;𝑤) = exp

(
Δ𝛽3c +Δ𝛽qc +Δ𝛽dcd +Δ𝛽′

ac
A+Δ𝛽′

hc
H3 − 𝛽′

𝑤0
W30 + 𝛽′

𝑤c
W3c

)
where Δ𝛽dc ≡ 𝛽dc − 𝛽d0.
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Since P
(
Y 1
it
= c|⋅) differs from P

(
Y0
it
= c|⋅) only in the extra termΔ𝛽dc, we get the class-c proportional effect, if

the rare event condition (4.3) holds:

{
Rc
11

(
Y 1
3
;𝑤

)
∕Rc

11

(
Y0
3
;𝑤

)}
− 1 = exp(Δ𝛽dc )− 1.

In RCS, we observe Y ≡ (1 − S)Y 2 + SY 3 where Yt = 0,… , C, along with Q, S and

A, H ≡ (1− S)H2 + SH3, W0 ≡ (1− S)W20 + SW30, … , WC ≡ (1− S)W2C + SW3C;

with i omitted. The choice probabilities are, withΔ2𝛽3 j ≡ Δ𝛽3 j − Δ𝛽2 j, j = 0, 1… C,

P(Y = c|Q, S,A,H,W0,… ,WC )

=
exp

{
Δ𝛽2c +Δ2𝛽3cS +Δ𝛽qcQ+Δ𝛽dcD+Δ𝛽′

ac
A+Δ𝛽′

hc
H − 𝛽′

𝑤0
W0 + 𝛽′

𝑤c
Wc

}
1+

C∑
j=1

exp
(
Δ𝛽2 j +Δ2𝛽3 jS +Δ𝛽q jQ+Δ𝛽d jD+Δ𝛽′

a j
A+Δ𝛽′

h j
H − 𝛽′

𝑤0
W0 + 𝛽′

𝑤 j
Wj

) .

The numerator is 1 for c = 0, because all differences are relative to c = 0.

BecauseD alters the choice probability for class c by 𝛽dc, the “net increase” in the propensity to choose class c

relative to the base class 0 isΔ𝛽dc ≡ 𝛽dc − 𝛽d0, not 𝛽dc. EstimateΔ𝛽d1,… ,Δ𝛽dC with cross-sectionmultinomial
logit using the last display. Then, exp(Δ𝛽dc) − 1 is the class-c proportional odds effect relative to the class 0, and

the class-c proportional effect as well when Y = c is a rare event in the sense of (4.3).

A.2.3 Simple Simulation Study for Multinomial Outcome

Table A5 presents the results from a simulation study for multinomial outcome.

Our simulation study using the above P(Y = c|Q, S,A,H,W0,… ,WC) with C = 2 has the following design

(the error terms generated as in (A.4), and Hit excluded):

A ∼ Uniform(−1, 1), W2c,W3c for c = 0, 1, 2 are iid N(0, 1), P(Q = 1) = 0.5,

P(S = 1) = 0.5, 𝛽20 = 𝛽30 = 𝛽q0 = 𝛽d0 = 𝛽a0 = 𝛽𝑤0 = 0 (for class 0),

𝛽21 = 𝛽22 = −4, 𝛽31 = 𝛽32 = −5, 𝛽q1 = 𝛽q2 = −0.5 (for classes 1,2),

𝛽d1 = 𝛽d2 = 0.5, 𝛽a1 = 𝛽a2 = 0.5, 𝛽𝑤1 = 𝛽𝑤2 = 0.5 (for classes 1,2).

That is, the class-0 parameters are all zero, and the parameters of classes 1 and 2 are the same. Due to

𝛽20 = 𝛽30 = 0 but 𝛽21 = 𝛽22 = −4 and 𝛽31 = 𝛽32 = −5 (much smaller intercepts for classes 1 and 2 relative
to class 0), the events Y = 1, 2 are rare.

Table A5:Multinomial Y : 3 classes, N = 10, 000, 5,000 repetitions.

Class c= 1 Class c= 2

True, |Bias| SD, RMSE AvgSD True, |Bias| SD, RMSE AvgSD

Δ𝛽2c −4.0, 0.019 0.15, 0.023 0.15 −4.0, 0.030 0.15, 0.024 0.15

Δ2𝛽3c −1.0, 0.017 0.28, 0.078 0.28 −1.0, 0.011 0.28, 0.077 0.28

Δ𝛽qc −0.5, 0.004 0.23, 0.055 0.23 −0.5, 0.006 0.23, 0.054 0.23

Δ𝛽dc 0.5, 0.004 0.41, 0.166 0.41 0.5, 0.007 0.41, 0.168 0.41

Δ𝛽ac 0.5, 0.003 0.16, 0.026 0.17 0.5, 0.005 0.17, 0.027 0.17

𝛽𝑤0 0.0, 0.001 0.07, 0.004 0.07

𝛽wc 0.5, 0.000 0.09, 0.008 0.10 0.5, 0.001 0.09, 0.008 0.10

AvgSD is the average of the asymptotic SD estimates.
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Table A5 presents the simulation results, where each entry consists of true values (True), |Bias|, SD, RMSE,
and the average of the asymptotic SD estimates (AvgSD). Overall, biases are very small, and AvgSD’s are almost

the same as the (simulation) SD’s. The multinomial logit with RCS works well even for rare events Y = 1, 2.
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