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Abstract: Difference in differences (DD) is widely used to find policy/treatment effects with observational data,
but applying DD to limited dependent variables (LDV’s) Y has been problematic. This paper addresses how to
apply DD and related approaches, such as “ratio in ratios” and “ratio in odds ratios”, to LDV’s under the unify-
ing framework of ‘generalized linear models with link functions’. We review and evaluate DD and the related
approaches with simulation and empirical studies, and recommend ‘Poisson Quasi-MLE’ for non-negative (such
as count or zero-censored) Y and (multinomial) logit MLE for binary, fractional or multinomial Y.
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1 Introduction

Difference in Differences (DD) is one of the most popular research designs in social sciences. Not just in social
sciences, DD has been gaining popularity also in natural sciences; see, e.g. Jena et al. (2015), Cataife and Pagano
(2017), and McGrath et al. (2019). There are various references for DD: Lee (2005, 2016a), Angrist and Pischke
(2009), Blundell and Dias (2009), Lechner (2011), Lee and Kim (2014), Kim and Lee (2017), Lee and Sawada (2020),
Ariella and Lang (2020), Roth et al. (2023) and De Chaisemartin and d’Haultfoeuille (2020, 2023).

DD is basically for linear models with additive components, which makes applying DD to limited depen-
dent variables (LDV’s) problematic. This paper provides answers to this problem, using the unifying idea of
‘generalized linear models (GLM) with link functions’. An earlier version (arXiv: 2111.12948) of this paper pre-
sented the GLM-based approach first in 2021, which has been cited by Callaway (2023), McMichael (2023),
Markowitz and Smith (2024) and Freeman et al. (2025), among others. The approach subsequently appeared also
in Taddeo et al. (2022) and Wooldridge (2023).

The GLM approach specifies the conditional mean regression, but two approaches requiring weaker
assumptions appeared recently. One is Tchetgen et al. (2024) who specify an “extended propensity score
function”, instead of the conditional mean regression. The other is Kim and Lee (2025), who use a “causal-
reduced-form” and apply the usual DD to LDV’s to find a non-negatively weighted average of heterogeneous
effects. The goal of this paper is to explain the GLM-based approach in detail so that it can be readily applied by
practitioners, and review the literature.
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Consider an outcome Y, for unitiat timet = 2,3, a time-constant treatment qualification dummy Q;, and
a binary treatment D,; we sett = 2, 3 to avoid the confusion with dummy variable values 0, 1. The hallmark of
DD is that D;; is the interaction of Q; and 1[t = 3]:D;; = Q;1[t = 3], where 1[A] = 1if A holds and 0 otherwise;
only the Q; = 1groupistreatedatt = 3, and untreated otherwise.

DD can be implemented with panel data or repeated cross-sections (RCS). We focus on RCS in this paper,
while relating RCS to panel data whenever necessary, because RCS are easier to deal with as they can be handled
as cross-section iid data; also, our empirical analysis uses RCS. If one desires to apply a RCS method in our paper
to panel data, then the simplest way is to pool the panel data and regard the time-series data for unit i as a
cluster/group with related observations. Inference with clustering in RCS can be done by block bootstrap or a
clustering-robust variance.

With a sampling dummy S; independent of the other random variables, RCS have

D;=0Q;5; where §;=1[unitiissampledatt=23].

In RCS, there is a huge reservoir of units, and random sampling is done each period. Hence, we can safely
assume that each unit appears only in one period. Let Yi‘f be the potential version of Y, for D; = d, and Yi‘i =
1- Si)Yg + SiYg be the RCS potential outcome. Let W, denote covariates, and W; = (1 — S)W, + S;W be
the RCS covariates; RCS variables are derived from the underlying panel model variables. Henceforth, unless
unclear, we often omit the subscript i indexing units.

As a preliminary, ignoring the covariates W for a while, define for RCS:

Hos =E(Y1Q,8) = A7 (fp+ .S+ Q+PD), B =Ps— P, (1.1)

where A(-) is a ‘link function’ as in GLM (Nelder and Wedderburn 1972), (§,, f5) are the period-(2,3) intercepts,
B is the time effect of ¢ = 3relativetot = 2, is the group effect of @ = 1, and 3 is the desired treatment
effect.

Since (Q, S) generates four cells for four parameters (8, B, B4, B4) in (1.1), there seems no loss of generality
in (1.1). However, (1.1) does include a restriction: QS should not appear separately from the treatment D. If the
group effect of Q changes across time, then QS becomes relevant other than through D. This restriction — no
change in the group effect over time - is the DD parallel/common trend assumption.

For continuous Y, A(-) in (1.1) is the identity, in which case DD is defined as

M — Hio — (Hor — Hoo) = By + B + By + Ba — (B + By) — {(Bo + B.) — B} = By

DD removes g, + .S + B,Q to leave §,D that changes across both times and groups. In practice, to
account for the covariates W, a linear model such as

E(Y|Q,S, W) = f, + .S+ f,Q + D + p,, W (1.2)

is typically estimated to find the slope of D as the treatment effect.
For LDV’s, the story changes much. E.g., consider Y = 1[0 < Y*] where Y™ is the latent continuous outcome.
With the N(0, 1) distribution function ®(-), the probit is

E(Y]Q,S) = P(Y =1]Q,8) = (B, + .S + B,Q + f.D). (13)

One way to stick to DD is estimating (1.3) to interpret 8, as the effect on ¥*, not on Y. E.g., if f; = 2, then D
shifts Y* by twice the standard deviation (SD) of Y*. However, many practitioners desire the effect as a change
inP(Y = 1]Q,S), notin Y*.

The ‘marginal effect’ that is a change of P(Y = 1|Q, S) in (1.3) due to D is

q)(ﬂZ + ﬁ‘rs + ﬁqQ + ﬁd) - (D(ﬁz + ﬂrS + ﬂqQ) (14)

Aiand Norton (2003) noted that this is not the correct effect, but their criticism applies to the case of an interaction
treatment, where both Q and S are genuine treatments and the interest is in the effect of taking both treatments
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(e.g. drugs) together. Differently from this, Q and S are not treatments per se in the usual DD; D = QS just
happened to be the way the treatment was implemented. Indeed, Puhani (2012, eq. (10)) showed that (1.4) with
S = Q = lisalegitimate treatment effect of interest.

The complication involving (1.3) and (1.4) arises because DD is applied to a nonlinear model, although
DD is designed basically for linear models. To drive home our point, consider the ‘loglink’ A(:) = In() &
A7) = exp(-), with which (1.1) becomes

pos = E(Y1Q,S) = exp(f, + B,S + f,Q + BD). (15)

This is appropriate for non-negative ¥ due to the lower bound pos > 0. For (1.5), ‘ratio in ratios (RR)’ removes
the time and group effects, and ‘RR minus one’ renders

‘proportional effect’: (/411) / (MH> -1= w =exp(fy) — 1, (1.6)
Mo Hoo E(Y3O|Q =1)

which is proven below. Just as the linear model is estimated instead of the DD to find f,;, the exponential

regression model (1.5) is usually estimated instead of the RR.

For positive outcomes, one might consider DD with InY, which raises the issue of transforming Y bhefore
applying DD or RR. For this issue, Athey and Imbens (2006) proposed “change in changes” based on Y-
transformation-invariant distributional effects, neither an additive (for DD) nor multiplicative (for RR) effect.
Also, Roth and Sant’Anna (2023) considered distribution-functon-based DD that is invariant/insensitive to any
strictly monotonic transformation of Y to propose a moment inequality test for parallel trends. Athey and Imbens
(2006) and Roth and Sant’Anna (2023) are not exactly practical, because W should be controlled conditionally.

For binary or multinomial outcomes, ‘logit link’ can be used:

exp(f, + B.S + B,Q + ByD)

: 1.7
1+ exp(B, + B.5 + B0 + fuD)’ .7

fos = E(Y]Q,S) =

thelogitlinkis A() = In{-/ — )} & A7) = exp(-)/{1+ exp())}. For (1.7), “ratio in odds-ratios (ROR)” sim-
ilar to RR removes the time and group effects, and ROR minus one renders a “proportional odds effect” similar
to (1.6). For binary outcomes, instead of estimating ROR directly, the logistic model in (1.7) is typically estimated,
and for multinomial outcomes, multinomial logistic model is estimated.

In the remainder of this paper, Section 2 reviews the literature of DD with LDV, and lists this paper’s contri-
butions near the end. Sections 3 and 4 examine RR and ROR, where W is explicitly controlled in addition to (Q, S)
and estimation is done with Maximum Likelihood Estimator (MLE) or Quasi-MLE (QMLE). Section 5 presents an
empirical analysis. Finally, Section 6 concludes this paper. The Appendix examines ROR with multinomial Y, and
provides a simulation study showing that the usual linear-model DD can be misleading for LDV’s, and RR or ROR
had better be used.

2 Literature for DD with LDV

2.1 Early Papers on DD with LDV

Despite the frequent appearance of LDV’s in reality, studies on DD with LDV are fairly scarce. The first highly
cited paper is Ai and Norton (2003) who suggested to use the cross-derivative as the treatment effect: with our
notation,

0’E(Y|Q = q,S =5s,W)/dqos (or to use the analogous “cross — difference”). (VA

Ai and Norton (2003) has been cited about 7,500 times in Google Scholar.

Ai and Norton (2003) is correct when the interest is in the interaction of two genuine treatments. However,
QS itself is not a treatment in DD. Rather, QS just represents the way how the single, not double, treatment D is
administered: only tothe Q = 1groupatt = 3.Hence, as was noted in Section 1, Puhani (2012, eq. (10)) showed
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that @B, + B, + B, + o) — @B, + B, + B,)isanappropriate treatment effect. Puhani (2012) has been
cited about 880 times in Google Scholar.

Wooldridge (2023, p. C39) concurred with Puhani: “Puhani’s definition is the correct one for identifying 7,
when the PT assumption is stated in terms of the linear index”, where 7, is the average effect on the treated at
the post-treatment period and ‘PT” means parallel trends. Puhani (2012) addressed only the effect identification,
whereas Ai and Norton (2003) discussed how to estimate (2.1) as well, and showed with an empirical example
that (2.1) can differ from the slope of D = QS in sign.

Unaware of the early version of our paper in 2021, Taddeo et al. (2022) applied GLM to DD with LDV, as they
proposed to use RR for count outcomes, and ROR for binary outcomes. Differently from our paper, however,
Taddeo et al. (2022) considered neither zero-censored nor fractional outcome, although they mentioned cate-
gorical outcomes briefly. Also, the word ‘QMLE’ never appeared, and the types of covariates were not discussed
although they matter much for categorical outcomes.

Taddeo et al. (2022, p. 404) also suggested a sensitivity analysis for parallel trend assumption. E.g., as to be
seen later, the multiplicative form of parallel trends requires a RR form with only Yto’s (analogous to the RR in
(1.6)) being equal to one. Replacing the constant one with another number can reveal how the treatment effect
is affected when the number deviates from one. For instance, if an empirical finding gets reversed when the
constant is 1.5, then it takes a 50 % violation of the parallel trends, and thus the initial finding may be deemed to
be robust to violations of parallel trends.

2.2 DD and Staggered DD with LDV

The paper that overlaps most with our paper is Wooldridge (2023), which was written to generalize Wooldridge
(2021) for linear DD models to nonlinear ones; for this reason, the working paper version of Wooldridge
(2023) was available only in 2022. Wooldridge (2023) initially examined the canonical two-group two-period
DD, and then moved onto staggered DD which has been gaining popularity these days; see, e.g. Callaway and
Sant’Anna (2021), Goodman-Bacon (2021), Sun and Abraham (2021), Athey and Imbens (2022), Liu et al. (2024),
and Borusyak et al. (2024).

Table 1 at the end of Section 2 of Wooldridge (2023) summarizes the recommendation for the appropriate
estimator for each type of LDV: Poisson QMLE for count, zero-censored and non-negative outcomes; logit for
binary and fractional outcomes; and multinomial logit for multinomial/categorical outcomes. These recommen-
dations agree with our paper, which is why Wooldridge (2023) overlaps much with our paper. A word of caution
for those trying to read our paper and Wooldridge’s: our (Q;, D;;, W) is (D;, W, X;,) in the notation of Wooldridge
(2023), which can be confusing.

Given the similarity between our paper and Wooldridge (2023), the reader may wonder what the differ-
ences are between the two papers. Wooldridge (2023) is more general than our paper, as it addresses staggered
DD with LDV in multi-period settings. Wooldridge (2023) also compares ‘pooled estimators using all observa-
tions together’ to ‘imputation estimators using only the untreated observations to impute the counterfactual
untreated outcomes of the Q = 1group att = 3. In imputation estimators, the imputed entity is subtracted
from the outcome average of the Q = 1group at¢ = 3, which our paper using all observations together does
not examine. Wooldridge (2023) further provides conditions to make the two types of estimators the same. In
the following, we show what our paper has that Wooldridge (2023) does not.

First, when the adopted model is estimated for the LDV Y generated by its latent continuous version Y*
with a linear index f, + f,.S + f,Q + f;D + f3,,W, our paper shows that /3, can be viewed either as the effect of
Don Y*, or as the proportional effect on Y for the log link as in (1.6) or the proportional-odds effect for the logit
link. Even if Y* is inconceivable, still the proportional effect interpretation holds. In contrast to this, Wooldridge
(2023) takes one extra step to estimate E(Y31 - Ye? |Q =1, W) (or E(Y31 — Y30 |W)), which is not a necessity; e.g.,

ﬁZQi{exp(ﬁz + Be+ By + Ba+ B W) —exp( B+ B + B, +l§ivWi)}

~ ~ ~ ~ ~ !’
is an estimator with the log link and QMLE estimates ( BasBes By Bas ﬁ;) .
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Second, we also review the more recent literature on DD with LDV in 2024 and 2025: Tchetgen et al. (2024)
and Kim and Lee (2025), who tried to reduce the regression function specification errors. Kim and Lee (2025) is
reviewed shortly below, whereas Tchetgen et al. (2024) is reviewed in Section 4 after ROR is introduced because
their approach is applicable only with ROR.

Third, covariates are often “brushed aside” in the DD literature. That is, a theory is developed without W
first, and when W appears, a remark such as “The theory developed without W holds with W, either by con-
ditioning on W or by controlling W linearly” is made. Wooldridge (2023) also assumes time-constant W, and
either condition on W or control W linearly. Handling W “lightly” in this way can be problematic, because the
nature of W matters much in panel data (i.e. unit-constant/varying and time-constant/varying), and it is more
so for categorical/multinomial outcomes, as the nature of W is three-dimensional (unit-constant/varying, time-
constant/varying, and category-constant/varying), where normalizations matter much even for RCS as can be
seen in Lee (2015) and our Appendix for multinomial outcomes.

Fourth, in addition to the above three main contributions, there are also some minor ones: (i) DD identifica-
tion conditions are usually stated and verified for panel data models, but since we use QMLE/MLE with RCS, we
verify them with RCS; (ii) “triple ratios” are used to deal with non-parallel multiplicative trends; (iii) we provide
the details on justifying RR for zero-censored outcomes; (iv) for proportional odds effect which is difficult to
grasp, we show a ‘rare event condition’ which turns the proportional odds effect into a proportional effect; and
(v) we present the exact maximand of the QMLE/MLE, so that it can be easily understood and implemented by
practitioners, going well beyond presenting a summary table as in Table 1 of Wooldridge (2023).

2.3 Causal Reduced Form for OLS to DD with LDV

Recently, Kim and Lee (2025) showed that, for any form of Y (binary, count, continuous, ...) with meaningful
Y! — v° alinear model holds always for AY = ¥, — Y,, to which ordinary least squares (OLS) can be applied.
To see how, recall D, = Q;1[t = 3] and observe:

Y, =Y, Y, =Y)+ (Y- Y§)Q = AY = ¥, — ¥, = AY’ + (Y — ¥7)Q.
Under PT AY? 11 Q| W, take E(-|Q, W) on AY where ‘ LI’ stands for independence:
E(AY|Q,W) =E(AY|W)+E(Y; - Y2|Q=1W)-Q
= AY = E(AY’|W)+E(Y; —Y2|Q=1W)Q+U, U=AY—EAY|Q,W).

The AY equation linear in Q holds for any Y, and it is a “causal reduced form (CRF)” in the sense that it is a
reduced/derived form with a causal parameter 7,(W):

AY = E(AY°|W) + t;(W)Q+ U, 7y(W)=E(Y; — Y|Q =1, W), E(U|Q, W) =0. (CRF)

CRF may sound strange, but it has been used fruitfully in Lee (2018) and Lee et al. (2025) for binary exogenous
D; Lee (2021), Lee et al. (2023), Choi et al. (2023), and Kim and Lee (2024) for binary endogenous D; Lee (2024) for
binary exogenous D with a mediator; and Kim (2025) for network/spillover effect.

To remove E(AY®|W) from the CRF, take E(-|W) on the CRF:

E(AY|W) = E(AY°|W) + 7(W) - p,, where py, = E(Q|W).

Subtract this from the CRF to get AY — E(AY|W) = 7;(W)-(Q — py) + U.Now,OLSof AY — E(AY|W)on
Q — py canbedone, whichis equivalentto OLSof AYon@Q — p,, because Q — p,, isorthogonal to E(AY|W).
The propensity score py,, can be estimated with probit or logit.

Kim and Lee (2025) showed that OLS of AY on Q — p,, is consistent to:

E{w’*(W)7,(W)} where w’“(W)= % > 0 with E{w’*(W)} =1,
wll = Dw
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OW stands for “overlap weight”. CRF is nonparametric as no parametric assumption is invoked, and OLS to the
CRF is consistent to E{w*“(W)z,(W)} for any LDV, as long as Y! — Y° makes sense. Extending this finding to
more general cases, such as multi-periods, non-binary D and endogenous Q, remains to be explored.

The fact that OLS estimates an OW-average of heterogeneous effects is well known (e.g. Angrist 1998; Angrist
and Pischke 2009) under the “saturated model” assumption - i.e., p, is equal to the linear projection of Q on
W - which is, however, not necessary in the above OLS. See Choi and Lee (2023) for details on OW and its
advantages. OW has been gaining popularity in statistics, epidemiology, and medical science; see, e.g. Li et al.
(2018), Mao et al. (2019), Li (2019), Zhou et al. (2020), Thomas et al. (2020), Aminian et al. (2021), Cheng et al. (2022),
Anderson et al. (2023), Wei et al. (2023), Matsouaka and Zhou (2024), and Xu et al. (2025).

3 Ratio in Ratios (RR) for Non-Negative Outcome

This section studies RR for non-negative outcomes including count and zero-censored outcomes. First, the iden-
tification aspect is examined. Second, although RR can be done by nonparametrically estimating the conditional
means in RR, this is not how RR is done in practice; instead, a practical semiparametric estimator for RR using
an exponential regression model is advocated. Third, several remarks are made.

3.1 Proportional Effect Identification with RR

To simplify notation when covariates W are allowed for, define
Hos(w) = E(Y|w, Q,S) = E(Y|W = w, Q,S);

note pugy(w) = E(Y,|W, = w,Q) and py(w) = E(Y3|W; = w,Q). Analogously to (16), define RR or
‘proportional-effect +1 given W = w’

(W), py (W)

RR = .
(w) Hap(W) " page(w)

The identification condition for RR(w) is “unity multiplicative trends”:

E(Y0lw,Q=1)\ ,(E(Y)w,Q=0)\ ..
(E<Y§|w,o=1>>/<f<yé|w,o= 0)) =k (IDge)

keep in mind that S is independent of the other random variables. In IDg,, E ( Yé’ lw, Q = 1) is the counterfactual,
because only Ys1 isrealizedforQ = latt = 3.
IDy is analogous to the usual linear-model DD parallel trend condition:

(E(¥010.0=1) ~ E(¥01w.Q = 1)} — {E(¥010.0 = 0) ~ E(¥}l.0 = 0)} =0, (1D,,)

which dictates that the counterfactual E(Y;|w, Q = 1) be constructed as E(Y;|w,Q =1) + E(Y?|w,Q =0) —
E (Yg |, Q = 0). In the same vein, IDg, dictates that the counterfactual be constructed multiplicatively as the
baseline untreated outcome of the Q = 1 group times the ratio of the control group meansatt = 3tot = 2:

E(Y)|w,Q=0)

BP0, 0=0)" (3.1)

E(Y)lw,Q=1) =E(Y)|w,Q =1) X

The main point is that RR(w) — 1is the ‘proportional effect on the treated at the post-treatment period’, as
the first and last terms in the following show:
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RR(w) —1= ( E¥w.Q =1, 5—1)>/<E(Y|w,Q:0,S=1)> .

<E(Y|w 0=18=0) E(Y|w,Q0=0,5S=0)
< (Viw,Q=1) >/<E(Y§|w,Q=0)

) — 1 (as S ‘the other variables’)

E(Y)|w,Q=1) E(Y)|w,Q=0)
_E(Yjlw,Q=1 '<E(Y§|w,Q=1)>/(E(Y3°|w,Q=0)) .y
- E(Y)|w,Q= E(Y)|w,Q=1) E(Y)|w,Q=0)

(under ID gp). (3.2)

)
)
_ E(V;lw,0=1) - E(Y} - Y)|w,Q=1)
E(Ylw,Q=1) E(Y|w,Q=1)
(

Instead of the difference effect E Y; - Y??lw, Q= 1), examining the proportional effect can be beneficial
(Yadlowsky et al. 2021). E.g., suppose E(Ye?lw, Q= 1) = G(w) for a function G(-) and the proportional effect is a
constant §,. Then the difference effect E (V3 -Yw,Q=1) = f,G(w) introduces effect heterogeneity unneces-

sarily, compared with the simple ﬁd. Proportional effects for exponential models have been advocated in many
studies: Lee and Kobayashi (2001), Dukes and Vansteelandt (2018) and Ciani and Fisher (2019), among others.

If the dimension of W is low (or if W is discrete), RR(w) can be estimated nonparametrically, but typically
the dimension of W is high in practice, and thus we explore a simpler semiparametric exponential regression
next — semiparametric because only E(Y|W, Q, S) is specified, not the full distribution of Y|(W, Q, S).

3.2 Poisson Quasi-MLE (QMLE)
In view of (1.5), suppose that a panel data exponential model holds for Yl‘f :
E(Y{|Wy,W;, Q) = E(Y{|W,, Q) = exp(f, + f,Q + Pud + B, W) (3.3)

If periods 1, ..., T were available, then W, ..., W would appear in the first term. Then IDg, holds with (3.3):

(stttuce=n )/ (Evto=o))
(

_ exp(f; + B, + fl,w) /(exp Bs + ﬂl’vw)> _q 3.4)
exp(f, + b, + A, w) exp(f, + fl,w) ' '

For the corresponding RCS model, the observed Y in RCS is: dueto D = QS,

=1 -9, +SY; =(1-9)Y) +S- {(1-Q)Y) +QY;}
=(1-9)Y, +S1-Q)Y, + DY;.
Take E(-|W,, W3, Q, S) on this Y and invoke (3.3): recalling f, = f5 — f,in (11),

E(Y|W,, Wy, Q,8) = (1— S)exp(f, + B,Q + Bl W)
+SQA— Q) exp(Bs + BQ + B, W;) + D exp(fs + f,Q + By + B, W3)
=exp(fy + .S+ Q0+ D+ B, W), W=(1-W,+SW, (3.5)
= RR(w)—1=-exp(f;) —1; (3.6)

the second equality can be verified by substituting Q,S = 0,1 into both sides. If §, is near zero, then f, is an
approximate proportional effect. RCS data and the model (3.5) can be used to estimate §; along with the other
parameters.
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The heterogeneous effect can be easily allowed by replacing g, with f,(W,) = f4 + f;  W,. Then we have
Ba(W) = Py + B}, W in RCS, and (3.5) becomes

E(Y|W,Q,S) = exp{f, + f,S + ,Q + fo(W)D + B, W} = RR(w) — 1 = exp{ fy(w)} — 1.

It is often believed that if a treatment effect is random but a constant effect is assumed, then its mean effect
would be estimated. However, this is false as the following explains.

The staggered DD literature revealed that, if a constant effect is assumed when the true effect is hetero-
geneous, then the popular two-way fixed effect estimator is consistent to a weighted average of heterogeneous
effects with some weights negative. This paints a rather pessimistic picture, but positive findings also exist:
if OLS is applied to a constant-effect model when the effect is actually heterogeneous in W, then the OLS is
consistent to an OW average of heterogeneous effects; see Lee and Han (2024) and references therein. This
kind of positive scenario was already noted when Kim and Lee (2025) was reviewed. It would take another
full paper to investigate the analogous question for proportional effect in general settings, which we thus
eschew.

The simplest estimator for (3.5) is Poisson QMLE, whose maximand is:

> {v(x/b) —exp(x/b)}.  X;=(1.5.Q.DuW/)", b= (by.b,.by.by.b.,)
i

as in Poisson MLE. The first order conditionath = fis Y, {Y; — exp(X!$) }X; = 0 for f = (p,. B, Py Pa» ﬁ{u)/,
and the second order derivative —Zin-Xi’ exp(Xl.’ b) is n.d. for all b. Hence, just under E(Y|X) = exp(X’ ),
Poisson QMLE is consistent for f. For heterogeneous effects, we may use f;(W) = f,, + ﬂ(’in in Poisson
QMLE.

The difference between Poisson QMLE and Poisson MLE is that the first-order condition is taken just as a
moment condition to estimate § in the former. Hence, the asymptotic variance of Poisson QMLE is estimated with
a “sandwich-form” estimator. Since Poisson QMLE requires only E(Y|X) = exp(X’p), not the full distribution of
Y|X,itis advocated by Santos Silva and Tenreyro (2006), which has been cited about 9,300 times in Google Scholar
as of this writing.

3.3 Remarks

Here we make remarks on the applicability of the above RR identification and Poisson QMLE to count and zero-
censored outcomes. The semiparametric exponential model (3.5) is appropriate for these, as it requires only the
lower bound 0 < Y.

3.3.1 Remarks on Count Outcomes

Suppose (3.5) holds under

Y=exp(Y*), Y*=p,+p.S+p,Q+pD+pF,W+T,
E{exp(U)|W,, W3, Q,S} = E{exp(U)|W,, W5,Q} = 1.

Then we can interpret f, as the DD effect on Y*, whereas exp(f;) — 1is the proportional effect on Y. However,
if Y is a count outcome with P(Y = y|X) = {exp(X’#)}” exp{—exp(X’B)}/y! (ie. Poisson distribution), then
there is no Y*, and the proportional effect interpretation on the observed Y with RR is the only way to inter-
pret the slope f,; of D in the exponential model. This statement applies also to count outcomes based on other
distributions such as Negative Binomial.
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If B, tQ with . # 0 appears as a regressor in (3.3), then IDg, fails due to f,,tQ:

(exp(ﬂg + Py + 3P + W' By) >/<exp(/33 +uw'p,)

=exp(f,.) #1; (3.7
exp(f, + B, + 2B, + W' pB,,) exp(f, + w'p,) > Xplhes) #

call this “non-unity multiplicative trends” — a RR analog for non-parallel (i.e. additive) trends in DD. Using tQ as
a regressor is an easy way to test/allow for non-unity multiplicative trends, but tQ cannot be used if only two
periods are available, because using tQ is equivalent to using QS = D.

One way to allow for non-unity multiplicative trends with more than two waves is using tQ as an extra
regressor as just noted, and using tQ in the usual linear DD appeared in, e.g. Goodman-Bacon (2018), Dobkin et al.
(2018), and Hwang and Lee (2020). For panel data, ¢Q can be used as such, but for RCS, Q7 = Q;}’,S;t should be
used where S;; = 1ifiis sampled in period t and 0 otherwise. Then, the untreated group ratio/difference is
allowed to change systematically with tQ over time, and any deviation from the systematic change is taken as
the treatment effect. Using tQ can be generalized to using (tQ, t*Q) as in Friedberg (1998) and Wolfers (2006), and
going further, (tQ, ?Q, 3Q, ...) as in Lee (2016b).

Another way to deal with this kind of trend discrepancy is using triple ratios, or “ratio in ratios in ratios
(RRR)” generalizing RR, analogously to triple differences (Lee 2016b) to allow for non-parallel trends in DD. With
t = 1,2,3 available, let:

E(Yw,Q=1) E(Y|lw,0=0) \ _ _
(st =)/ (it g ) =7 6= o

which allows IDg; to be violated when y # 1 as follows.
With mot(w) = E(Y|w, Q, sampled at t), observe

e N
my,(w) mg,(w) my (W)’ | my(w)
_ [(E(Y3lw,Q=1) ( (Y2|w,Q=0)
E(Y)|w,Q=1) E(Y)|w,Q=0)
E(Y)|w,Q=1) E(Y)|w,Q=0)
E(Y)|w,Q=1) E(Y)|w,Q=0)
_E(Y3lw,Q=1) E(Y)|w,Q=1) E(Y|lw,Q=0)
" ehi.0-1) |(ewto-1)/ (etiu-o=o) )
( (Yw,Q = )>/ E(Y)|w,Q=0)
E(Y)|w,Q=1) E(Y|w,0=0) /[
The last two terms in [-] are both equal to y to cancel each other. Hence, under IDggz, RRR identifies the
same effect as RR identifies, even when IDg; fails.

3.3.2 Remarks on Zero-Censored Outcomes

Consider a RCS zero-censored model:
Y =max(0,Y*) =Y*1[0 < Y*], Y*=p,+ .S+ p,Q+pD+p,W+U
= E(Y|X) = E(Y*1[0 < Y*]|X). (3.8)

Since E(Y|X) = E(Y*1[0 < Y*]|X) is non-negative without any upper bound, the exponential regression model
(3.5) can be adopted, although it may not be as appealing as for count outcomes because the transformation
max(0, -) is not smooth.
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Santos Silva and Tenreyro (2011) showed that the exponential regression holds for (3.8) if Y; = zﬁlzﬁ,
where M; is a non-negative integer random variable such as Poisson count, and (Z;;, Z;, ...) are iid positive
random variables with Z;; 1T M;|X;; Y = 0occursif M = 0. Then,

E(Y|X) = E(M|X)E(Z;|X)

= exp{a, + f, + (@, + .)S + (a, + B,)Q + B,D + (&, + f,,) W}
if E(M|X)=exp(a, +a,S+a,0+a, W),
E(Z;|X) = exp(f, + .S+ B,Q + B.D+ B W). (3.9)

It is not clear what Y™ is here, but the interpretation of exp(f;) — 1 as a proportional effect on Y still holds
regardless of what Y* might be.

An example for ¥; = le‘.’ilzi jis that Y is the person-i expenditure on unfrozen fish in a year, Z;; is the expen-
diture on unfrozen fish in month j, M; is the number of the unfrozen-fish-purchasing months, Q; = 1if living
close enough to sea to access unfrozen fish, and D; = Q;S;is a policy to increase unfrozen fish prices. Here, M;
is how frequently unfrozen fish are purchased, which is unlikely to be affected by the policy because one cannot
stock up on unfrozen fish, whereas Z; would be affected.

4 Ratio in Odds Ratios (ROR)

This section studies ROR. We examine the identification aspect first, followed by logit-based estimation for binary
and fractional outcomes, and then by a review on Tchetgen et al. (2024). ROR is also applicable to multinomial
outcome, but it is presented (along with a simulation study) in the Appendix due to the complexity involving
multiple equations and additional notation.

4.1 Proportional Odds Effect Identification with ROR
For binary Y, define the ‘odds conditional on (W = w,Q = ¢,S = s) for RCS as

P(Y=1w,Q=¢q,S=5)

hich 1 4.1
PY=0{w.Q=q.5=s) which leads to 4.1

RqS(Y; w) =

Ry(Y;w) =Ry (Y3;w), Ry(Y;w)=Ry(Y;w),
Rp(Y;w) =Ry (Y w),  Rpp(Y;w) = Ryo(YVy; w).

Also define ‘Ratio in Odds Ratios (ROR) conditionalon W = w’:

R4(Y; w) Ry (Y, w)
ROR(Y; = 1= 0> .
() (Rlo(Y; w)>/(R00(Y; w))

The identification condition to be invoked for ROR is

0. 0.
ROR(Y®; w) = <R11(Y3 . w) >/(R01(Y3’ w) ) =1 (IDgog)

Ryp(Y);w) Ryp (Y w)

where Ry, (Yy; w) is a counterfactual. Just as in (3.1), IDg,y dictates that the counterfactual Ry (Y7; w) be con-
structed multiplicatively:
Ry (Y2; w)
Ry (Y0;w) = Ry (Y0 w) x 22532/
11( 3 ) 10( 2 ) ROO(YZO;W)
Doing analogously to (3.2), ROR(Y; w) — 1 is the ‘proportional odds effect on the treated at the post-
treatment period t = 3
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R, (Y;w) Ry (Y; w)
ROR(Y;w) —1= ( -1 o
s 0) <R10(Y w)>/<R00(Y w)>

<R11 ) <R01 > 1

R10 Roo (Y,
_ Ry(Y. (Rn > <R01(Y3?;w)> -1
Rn RlO 0(Y20§w)

_ Rn(Yg;w) Ry (Y33 w) — Ry (Y] w)

= —1= 3 (under ID,p). 4.2)
Ry (Y3 w) Rn(Yy?’ w) HOR

Although odds ratio is extensively used in the medical and epidemiological literature, still it is not nec-
essarily easy to interpret the proportional odds effect. For this, suppose Y = 1 is a rare event in the sense

P(Y; =0lw,Q=1)

~1 forall w; 43
P(Y9=0lw,Q=1) oratw @3

eg Y = 1is arare cancer occurrence such that P(Y¢ = 0jw,Q =1) ~1for all w and d = 0,1. Under (4.3),
ROR(Y; w) = Ry (Y3; w) /Ry (Y2; w) in (4.2) becomes
P(Y;=1w,Q=1)/P(Y; =0lw,Q=1) P(Y;=1w,Q=1)
P(Y)=1w,Q=1)/P(Y) =0lw,Q=1)  P(Y)=1w,Q=1)

Hence, the proportional odds effect (4.2) becomes the RR proportional effect (3.2):
E(Y}-Yw,Q=1
ROR(Y; w) — 1= L5 ~ Y3l 0 =1)
E(Y0w,Q =1)

ROR(Y; w) can be estimated nonparametrically by substituting sample analogs into the components of
ROR(Y; w). However, as was the case for DD and RR(w), this is not what practitioners would do. Instead, we
apply logistic regression next.

under the rare event condition (4.3).

4.2 Logit for Binary Outcome

Analogously to (3.3), suppose that a panel data logistic model holds for Yl.‘? :

exp(f, + f,Q + Pyd + B, W,)

E(YYW, W,,Q Y4w,, Q 4.4)
(YE1W, Ws. @) = E(X(IW-. Q) = 1+exp(B, + B,Q + Pad + fi, W)
The logistic panel data model for Yg renders, with ., = f; — f,,
Ry(Y)iw) =exp(fy+ P, + B, + Bl,w), Ry (Y);w) =exp(f, + p, + Bl,w), ws)

Ry (Y w) = exp(fy, + B, + B, w), Ryo (Y w) = exp(p, + B w).

Hence, IDy,, holds analogously to (3.4), because (4.5) yields

ROR(Y": w) = <R11(Y30§w) >/<R01(Y;9?w)) _1

Ry (V) w) Ry (Y3 w)

For the corresponding RCS, ¥ = (1—$)Y) + S(1 — Q)Y + DY; holds. Analogously to (3.5) and (3.6), take
E(-|W,, W5,0Q,S8) on Y and invoke (4.4) to get

exp(f, + B.S+ f,Q + faD + W)

POIWe Wor @9 = 1 exp (8, + 8.5+ B0+ D+ P W)’

= (1— )W, + SW,. 4.6)
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Also, Ry, (Y2; w) = exp(f, + . + f, + Pa+ W' B,,) and Ry (Y; w) in (4.5) yield
ROR(Y; w) — 1= {Ryy(Y3;w) /Ry (Vs w) } —1=exp(f) — 1.

Estimate f; by the MLE with (4.6) to use exp(f;) — 1 as the proportional odds effect, which is also the RR
proportional effect when Y = 1is arare event as in (4.3).

Suppose f,.tQ with . # 0 appears as an extra regressor in (4.4). Then the parallel trends do not hold for
the latent Y*. The appearance of f3,,tQ also ruins IDg for binary Y because IDg,, becomes (3.7), just as f,,tQ
ruins IDgg in (3.7). As in (3.7), using tQ is an easy way to test or allow for non-parallel trends in Y*. Overall, the
comments made for (3.7) hold more or less the same for ROR as well.

To allow for heterogeneous effect, suppose now that the slope of d in (4.4) is f,(W,); e.g. B (W) = By +
ﬁ(,iw W,. Then (4.6) and ROR(Y; w) — 1Dbecome, respectively,

exp{f, + .S+ p,Q + (WD + W}
1+ exp{f, + .S+ ,Q + fs(W)D + B[, W}’

ROR(Y; w) —1=exp{f(w)} — 1

E(Y|W,Q,5) =

RORis not applicable to ordinal outcomes, but they can be reduced to binary in multiple ways, and then the
overlapping information in those ways can be combined with minimum distance estimation (see, e.g. Lee 2005,
2015).

4.3 Logit for Fractional Outcome

When Y takes on a value in [0,1], Y is a fractional outcome; e.g. the share of asset invested in stocks. There are
two types of fractional outcomes: () P(Y = OorY = 1) = Oand () P(Y = OorY = 1) > 0. Since logistic
regression always gives a value in (0,1), it can be adopted for type-(i) fractional outcome. As for type (ii), anal-
ogously to max(0, Y*), we can use ¥ = max{0, min(¥Y*,1)}. Since max{0, min(-,1)} is not smooth, one may
object to adopting a logistic model for type (ii), but the following provides a justification under 0 < E(Y|X) < 1
for all X.

For a function By of X with 0 < By < 1for all X, consider maximizing

E{Y InBy + (1 —Y)In(1 — By)} = E[E(Y|X)InBy + {1 —E(Y|X)}In(1 - By) ] @.7)
with respect to (wrt) By. Differentiate (4.7) wrt By to obtain
E[ E(Y|X)By' — {1—E(YIX)}(1—By)™ | {=0 when By = E(Y|X)}.
Further differentiate this wrt By to see that By = E(Y|X) is the unique maximizer:
E[ —E(Y|X)B® — {1- E(Y|X)}(1 - By) 2| <.

Using this fact, Papke and Wooldridge (1996) maximized wrt b:

exp(X/b) B 1 _expX'p) .
Z{ Yi In 1+ exp(Xl.’b) +(1=¥)n 1+ exp(Xi’b) under E(Y1X) = 1+ exp(X'B)’

i

X; and b were defined for the Poisson QMLE. The first-order condition is

!
Z{ Y, exMXib)) }Xi =0 (satisfied at b = f3).

-
- 1+ exp(X'b

As in Poisson QMLE, a “sandwich form” variance estimator should be used.
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4.4 ROR and Extended Propensity Score

A disadvantage of proportional odds effect is its interpretation difficulty, unless the rare event condition (4.3)
holds. For this, Tchetgen et al (2024; “TPR”) proposed to find E(Y; — YJ|W,Q = 1) under a condition close to
IDyor, as explained in this subsection. Although we assume discrete Y to ease exposition here, since each value
of y # 0is paired with y = 0, one might think of Y just as binary.

Define: for y # 0,

(V:w) = P =)Iw,0=q,5=5)

R hich leads t 4.8
45y PY=0w.Q=q.5=5) which leads to (4.8)

Ry (Y;w) = Ry, (Y33 w), Ry (Y3 w0) = Ry (Y3 ),
Rigy(Y:w0) = Ry (Yy:w0), Ry (Y w) = Rygy (V5 w).

Also, assume “odds ratio equi-confounding” which generalizes IDyy:

P(Y) =ylw,Q=1)/P(Y) =0|w,Q =1)

P(Y? = ylw,Q=0)/P(Y? =0|w,Q =0)’

Bo(w,y) = fs(w, y) where p(w,y) =1n
withy = 1, ‘f,(w,1) = f5(w,1) for all w’ is equivalent to IDpop.
Using the Baye’s rule, rewrite f,(w, y) as:

P(Q=1w.Y} =y)/P(Q=1|w,Y] =0)
P(Q=0[w, Y’ =y)/P(Q=0Jw,Y’ =0)
)

fi(w,y)=1In

(4.9)

Q

(
_lnP(Q=1|w,Y§’=y P(Q=1w,Y?=0)
- Q

P(Q=0[w, Y0 =y) " P(Q=0jw,¥" =0)

PQ=1w,Y'=y) _ n P(Q=1w,Y’ =0)

1—PQ=1w. P =y) " P(Q=0w, Y0 =0) T ALY (410)

=N

putting the last term of (4.9) on the opposite side. TPR calls P(Q = 1|w, Yt0 = y) “the extended propensity score
function (given y)”.

TPR approximates the first term on the right-hand side of (4.10) linearly with #/w, and §,(w, y) with a/ w +
ayy (no tin a’s, due to f,(w,y) = fs(w,y)), where 5, and a’s are parameters; TPR also allows the interaction
term ], wy, which is omitted here. The logit of P(Q =1|w,Y? = y) in the left-hand side of (4.10) renders:

P(Q = 11w, ¥9) = exp(m W+ a/,W + a,Y?) _ exp{(n, + a,) W + a, Y]}
U 1t exp(mWH al, W+ a,Y))  1+exp{(n + a,) W +a, ¥}

Now, (ﬂé +al, ay)' can be estimated with the logistic MLE using only the ¢t = 2 observations due to Y, = YZO.
However, n; + @, cannot be estimated in the analogous way because the Q = 1group does not have Y2, which
is addressed next.
Observe:
P(Q=1W.Y]) =P(Q=0|W.Y7) - exp{(ns + a,)) W + a,Y; }

which implies
E{1— Q) exp{(n; + @, )W+ a,Y;} —Q[W} =0 (4.11)
= E(E[(1— Q) exp{(n; + a,)) W + o, Y} — Q|W. Y]] [W ) =0
= E(E[(1— Q) exp{(ns — ) W + (g, + a,)) W + a, Y] } — Q|W, Y]] [W ) =0
= E(E[(1—- Q) exp{(n; — m)' W + (1, + @, ) W + , ¥ } = QIW, Y]] - W ) =0.
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The last unconditional moment condition identifies #; — 7, as the solution, if #, + «,, and a, are
known, for which §,(w, y) should be time-constant, so that#, + «,, and a, found at ¢ = 2 can be substituted
into the moment condition at t = 3 to identify #; — #,. Henceforth, write (y; — n)’W + (, + a,)W as
(n; + a,)W asin (4.12).

With all parameters identified, the DD effect E(Y;|Q = 1) — E(YJ|Q = 1) is:

E[ 1-Q)Y; exp{(n; + a,)) W + @, Y;} |

Exslo=1- E[ 1—Q)exp{(ns + a,) W+ o, Y5} |

(4.12)

To understand the second term, observe that its numerator is equal to:

E[ E{(1— Q)Y] exp{(n; + @, ) W + &, Y]} |W, Y]} |
=E[ Y] exp{(n; + @, ) W + 2, Y] } - E{(1— Q)|W, Y} } |

1
=E| Y0 ex +a,)W+a, Yy}
0 exp{(; + ) VY3 } 1+ exp{(n; + @, W + &, ¥?

= E{ YIP(Q = 11W, Y1) } = E{ E(YiQIW,¥!) } = E(¥!0Q).

Analogously, the denominator of the second term in (4.12) is E(Q), which thus makes the second term of (4.12)
equal to E(YJ|Q =1).

Evaluating the contribution of TPR, they turn ROR into something that involves only P(Q|-), using the Bayes’
rule. This way, one has to specify a binary model for Q, not for Y, which renders no advantage for binary Y
though. For non-binary Y, such as ordinal, multinomial or even continuous, not specifying the outcome prob-
ability/density would be an advantage. However, it is not clear whether §,(w,y) = f5(w,y) holds or not for a
general Y, as IDgp and its generalization f,(w,y) = f5(w,y) were motivated by the (multinomial) logit form
of the Y? probability.

This problem notwithstanding, the main contribution of TPR is that, given the difficulty of interpreting
proportional odds effect unless the rare event condition is invoked, TPR showed a way to find the usual DD effect
under the ID,,p-type condition f,(w, y) = f,(w, y), avoiding the interpretation difficulty of proportional odds
effect.

5 Empirical Analysis

In this section, we estimate the effects of the Affordable Care Act Dependent Coverage Provision (‘DCP’) on var-
ious health outcomes. Under the DCP that went into effect in September 2010, dependents can remain on the
parent’s private health plan until age 26. The treatment group is dependents aged 23-25, and the control group
is dependents aged 27-29; 26 was excluded due to the treatment status ambiguity. Our data are from the Behav-
ioral Risk Factor Surveillance System for 2007-2013, which is health-related telephone surveys in the U.S. Almost
the same data were used in Barbaresco et al (2015) (‘BCQ’, henceforth), with small differences occurring due to
updates, imputed values, data cleaning, etc.

BCQ considered 18 outcomes, of which we use 12. Each outcome variable has a different sample size, as we
replaced “Don’t Know” and “Refused” with missing values. With the sample size in brackets [-], the 12 outcome
variables are: (1) ‘any health insurance’ [127,618], (2) ‘any primary (care) doctor’ [127,533], (3) needed medical
care in the past year not taken due to cost (‘cost blocked care’) [108,433], (4) current smoker [126,557], (5) ‘risky
drinker (in the past 30 days)’ [122,035], (6) ‘obese (BMI>30)’ [121,294], (7) ‘pregnant (while) unmarried’ [40,006],
(8) ‘(alcoholic) drinks (in the past) 30 days’ [121,845], (9) BMI [121,290], (10) days of the last 30 not in good mental
health (‘days poor mental’) [125,681], (11) days of the last 30 not in good physical health (‘days poor physical’)
[125,766], and (12) days of the last 30 with health-related limitations (‘days health limits’) [71,079]. The first seven
outcomes are binary, and the remaining five are non-negative (counts or continuous).
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Table 1 presents summary statistics on covariates: age, gender, race, marital status, education, state unem-
ployment rate, ‘any DCP’ for any state mandate on DCP although the dependent may not be covered, household
income, the number of children, ‘cell phones only’ (vs. cell phone plus landline), student, and unemployed.
Because the treatment group is younger than the control group by 2—6 years, the treatment group has fewer
married, fewer college degree, lower household income, fewer children, more students, and more unemployed.
Also, the treatment group has the lower state unemployment rate, higher any DCP, and higher cell phone
only.

Let ‘Lin-DD’ stand for the linear model DD using (1.2). Table 2 shows §,, (non-parallel/multiplicative trends)
and f, (effect) estimates, although the effect of interest is the proportional effect exp(f;) — 1due to Y being an
LDV. Poisson QMLE estimates are ,Bq, and ﬁd, and Lin-DD estimates ignoring the LDV nature are /?qf and ﬁd. In
Table 2, age-clustering-robust standard errors are computed using the survey weights.

Three main findings emerge from Table 2, which are also seen in the simulation part of the Appendix: (i)
RR and ROR estimates differ much from Lin-DD estimates; (ii) ROR estimates are overall greater than Lin-DD
whereas RR estimates are overall smaller than Lin-DD; and (iii) tests for ﬂqT = 0in Lin-DD and in RR or ROR
give the same conclusions at the 5 % significance level. Also, comparing RR, ROR and Lin-DD in their qualitative
conclusions on testing for f; = 0, they lead to the same conclusions at the 5 % significance level, except for
‘cost blocked care’.

Turning to interpreting effect magnitude, proportional odds effects for binary outcomes are a little dif-
ficult to interpret; e.g. DCP increases the odds of ‘any health insurance’ by about 41 %, an approximation to
exp(0.41) — 1 ~ 51 %. This should not be taken as a drastic effect, because odds ratios can easily take on large
values, which is, in fact, one of the reasons why some researchers prefer odds ratios. Compared with the over-
all large magnitudes in proportional odds effects for binary outcomes, the proportional effect magnitudes for
non-negative outcomes are in a smaller scale and easier to interpret, ranging just over —0.004 to 0.263; e.g.
DCP increases ‘drinks 30 days’ by about 26 %, an approximation to exp(0.26) — 1 ~ 30 %. As an example for
proportional odds effects becoming proportional effects for rare events, unmarried pregnancies are fairly rare

Table 1: Summary statistics of covariates: mean & standard deviation (SD).

Covariates Treated Control Covariates Treated Control
Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Age (age 23 omitted) Household income (less than $10 K omitted)
Age 24 0.35(0.48) - $10 K-$15K 0.07 (0.26) 0.05 (0.22)
Age 25 0.32(0.47) - $15 K-$20 K 0.10 (0.30) 0.08(0.27)
Age 27 - 0.31(0.46) $20 K-$25 K 0.12(0.32) 0.10 (0.30)
Age 28 - 0.34(0.48) $25 K-$35K 0.14 (0.35) 0.13(0.33)
Age 29 - 0.35(0.48) $35 K-$50 K 0.16 (0.37) 0.16 (0.37)
Female 0.51(0.50) 0.51(0.50) $50 K-$75K 0.14 (0.35) 0.18 (0.39)
Race (non-Hispanic whites omitted) $75K $ over 0.19 (0.39) 0.24 (0.43)
Black 0.11(0.31) 0.11(0.32) Number of children
Hispanic 0.23(0.42) 0.22 (0.41) 1 0.23(0.42) 0.23(0.42)
Others 0.09 (0.28) 0.08(0.27) 2 0.16 (0.36) 0.23(0.42)
Married 0.30 (0.46) 0.56 (0.50) 3 0.05(0.23) 0.11(0.31)
Education (less than HS degree omitted) 4 0.02 (0.13) 0.04 (0.19)
High school (HS) 0.28 (0.45) 0.26 (0.44) 5or more 0.01(0.09) 0.02(0.12)
Non-4-yr college 0.30(0.46) 0.27(0.44)
College graduate 0.31(0.46) 0.36 (0.48) Cell phone only 0.70 (0.46) 0.67 (0.47)
State unemp. rate 7.23(2.72) 7.37(2.73) Student 0.11(0.31) 0.05(0.23)
Any DCP 0.26 (0.44) 0.04 (0.21) Unemployed 0.13 (0.34) 0.12 (0.33)

Any DCP: the state has any DCP mandate despite that the person is not covered.
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Table 2: Non-parallel/multiplicative trend f,, & effect §,: estimate (t-value).

Outcome variable RR and ROR Lin-DD (linear model DD)
qu Bd DD Bq‘r DD ﬁd
Estimate (tv) Estimate (tv) Estimate (tv) Estimate (tv)

Binary outcome

Any health insurance —0.009 (—0.27) 0.407 (3.06) —0.002 (—0.34) 0.068 (2.88)
Any primary doctor 0.010 (0.39) 0.145 (1.28) 0.002 (0.34) 0.028 (1.18)
Cost blocked care 0.014 (2.78) —0.167 (—1.82) 0.003 (3.54) —0.029 (—1.97)
Current smoker —0.053 (—2.70) 0.204 (2.89) —0.009 (—2.86) 0.035 (3.15)
Risky drinker 0.027 (1.63) —0.092 (—2.44) 0.005 (1.90) —0.019 (—2.88)
Obese 0.032(1.90) —0.081(—1.07) 0.007 (1.86) —0.018 (—1.02)
Pregnant unmarried 0.008 (0.12) —0.079 (—0.36) 0.000 (0.11) —0.003 (—0.39)

Non-negative outcome

Drinks 30 days —0.085 (—3.48) 0.263 (3.05) —1.346 (—4.03) 4.242 (3.04)
BMI —0.001(—0.83) —0.004 (—0.73) —0.035 (—0.86) —0.104 (—0.66)
Days poor mental —0.004 (—0.15) 0.050 (0.43) —0.019 (—0.18) 0.203 (0.43)
Days poor physical —0.037 (—0.94) 0.189 (1.18) —0.087 (—0.96) 0.423(1.13)
Days health limits 0.019 (0.47) 0.052 (0.30) 0.050 (0.40) 0.149 (0.28)

Table 3: Effects under parallel/multiplicative trends.

Outcome variable RR and ROR Lin-DD

Estimate (tv) Estimate (tv)

Binary outcome

Any health insurance 0.375 (4.57) 0.061 (4.41)
Any primary doctor 0.178 (5.26) 0.035 (4.76)
Cost blocked care —0.113 (—1.34) —0.019 (—1.38)
Current smoker 0.016 (0.49) 0.003 (0.49)
Risky drinker 0.006 (0.23) 0.001(0.13)
Obese 0.033 (1.06) 0.008 (1.10)
Pregnant unmarried —0.049 (—0.58) —0.002 (—0.57)

Non-negative outcome

Drinks 30 days —0.037(—0.50) —0.569 (—0.39)
BMI —0.009 (—3.21) —0.227 (—3.19)
Days poor mental 0.036 (0.82) 0.136 (0.76)
Days poor physical 0.057 (2.32) 0.113 (1.90)
Days health limits 0.121 (3.05) 0.329 (2.54)

(4-5 %) in our data, and consequently, we can interpret the ROR estimate —0.078 for ‘pregnant unmarried’ as a
8 % decrease due to DCP.

BCQ checked out the parallel trend assumption with graphs plotting the pre-treatment trends across the
treatment and control groups. BCQ also estimated their models using different time periods or using more aggre-
gated data. Whereas these are informal ways of testing for parallel trends, our approach of using tQ as an extra
regressor provides a formal yet simple way of testing parallel/unity-multiplicative trends. The ﬁqT estimates
reveal that parallel trend assumption in ¥* and the analogous IDzz/IDgor assumptions do not hold at least for
‘cost blocked care’, ‘current smoker’, and ‘drinks 30 days’ while tests for ﬂqT = 0in Lin-DD give almost the same
conclusions.
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To appreciate better how much difference allowing g, # 0 makes, Table 3 repeats Table 2 under the restric-
tion ﬂqT = 0 (i.e. without using tQ as a regressor). The differences between Tables 2 and 3 are substantial both
in terms of effect magnitude and ¢-value. In RR and ROR, only ‘any health insurance’ maintained their statistical
significance, whereas ‘current smoker’, ‘risky drinker’ and ‘drinks 30 days’ become misleadingly insignificant
by imposing f,, = 0 falsely. Also, ‘any primary doctor’, BMI, ‘days poor physical’ and ‘days health limits’
become significant by imposing f#,, = 0 unnecessarily. In Lin-DD as well, only ‘any health insurance’ main-
tains its statistical significance in Tables 2 and 3, whereas the statistical significance of seven other outcomes is
switched.

The main finding in BCQ is that DCP increases ‘any health insurance’, ‘any primary doctor’ and ‘risky
drinker’, but decreases BMI. This finding is similar to that of the RR and ROR column in Table 3, except for
‘risky drinker’ that is insignificant in Table 3. This similarity is due to #,, = 0 assumed in both BCQ and
Table 3.

Since Table 3 imposes the unnecessary restriction f,, = 0, it is interesting to compare the finding in BCQ
to that in Table 2. The RR and ROR column of Table 2 reveals significantly increasing effects on ‘any health
insurance’, ‘current smoker’ and ‘drinks 30 days’, and a significantly decreasing effect on ‘risky drinker’. Hence,
only the increasing effect on ‘any health insurance’ is shared by BCQ and the RR and ROR column of Table 2; the
sign of ‘risky drinker’ changes across BCQ and the RR and ROR column of Table 2. Overall, the differences due
to allowing g, # 0 are large.

6 Conclusions

Difference in Differences (DD) is one of the most popular approaches in finding the effect of a binary treatment D
on an outcome Y. However, DD is suitable for linear models, and consequently, applying DD to limited dependent
variables (LDV’s), or more generally to nonlinear models, has been problematic. Many researchers with LDV’s
simply ignore the LDV nature to use a linear model.

The goal of this paper is to explore what can be done in this case, adopting the framework of generalized
linear models (GLM) with link functions. Because several papers have been published on GLM for DD with LDV
since an early version of our paper in 2021, we reviewed the literature including recent studies not covered by
the other reviews. The main recommendation is using Poisson QMLE for non-negative (such as count or zero-
censored) Y and (multinomial) logit MLE for binary, fractional or multinomial Y. This agrees with the other
studies adopting GLM. Despite the overlap, however, this paper differs from the other reviews as follows.

First, we focused on proportional (odds) effect using ‘ratio in ratios (RR)’ or ‘ratio in odds ratios (ROR)’,
instead of trying to obtain the usual average effect on the treated (or on the population) which requires an
unnecessary extra step. Second, as was noted just above, we reviewed the recent literature on DD with LDV
that has not been covered by the other reviews. Third, we paid more attention to covariate (W) types, instead
of simply assuming a time-constant W. Fourth, we made further minor contributions, such as verifying the
identification condition for repeated cross sections (RCS) and proposing triple ratios to deal with non-parallel
multiplicative trends.

Our simulation study revealed that RR and ROR can give much different findings from DD, although our
empirical study showed that the DD findings may not differ much from RR and ROR as well. Also, using a
power function of ¢ times the policy qualification dummy to account for non-parallel/multiplicative trends made
big differences in our empirical findings, compared to imposing the parallel/multiplicative trend restriction
unnecessarily from the outset.
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Appendix

A.1 Simulation Study

Our simulation study addresses four types of LDV’s: (i) positive continuous, (ii) count, (iii) zero-censored, and (iv)
binary. Poisson QMLE is applied to (i), (ii) and (iii), and logistic MLE to (iv); their estimates are compared with the
linear model DD (‘Lin-DD’). Fractional Y is not tried because it is not yet clear how to generate fractional Y subject
to the exponential regression, and multinomial Y is addressed separately below because it is inconceivable to
apply Lin-DD to multinomial outcome.

In the following, we explain (i) and Table Al in detail, from which it will be clear how (ii), (iii) and (iv)
are dealt with and how to interpret the other tables. In all cases, the effect of interest is exp(f;) — 1, which
is the proportional (odds) effect, but we examine f,; mainly, because knowing f, is equivalent to knowing
exp(fy) — 1

For (i) positive continuous outcome, we generate Y;; for ¢t = 0,1,2,3:

Yie = exp(f; + BQ; + By tQ; + Dy + Uy)  where
P(Ql = 0) = P(Ql = 1) = 05, Dit = Qll[t = 3], UiO’ Uil’ UiZ’ Ui3 lld N(O, 1) H Qi’ (Al)
Bo=-2 B=-2 f=-1 fy=—1 f,=05 f,=0, 05 p,=0, 05

B4 = 0 makes the parallel trends hold in Y* and IDg hold in Y, but not #,, = 0.5.
From the Y;’s in (A.1), the RCS outcome Y; and its regressor X; are obtained:

S, is the sampled period for i, S;; = 1[S; =1t], P(S; =1) =025 forall¢,

3 3

T — p— T 4
Y= ZsitYin = Qiz Sits  Xi = (1,4, Sp» Siz> @1 07, ;) (A2)
t=0 t=1

for parameters {f, +In(1.64), B, — By, B, — Po» Pz — Po» By Pye» Pa)s

1.64 comes from E{exp(U;)} = 1.64 with U;, ~ N(0,1), which appears due to
E(Y|0Q;,S) = E{exp(f, + ,Q; + B tQ; + PaDi)- E{exp(Uy)}.

That is, having E{exp(U;;)} = 1.64 and f, is equivalent to having E{exp(U;)} = 1and f, + In(1.64). For the
other LDV models, the RCS data are generated analogously.

Table Al presents the results from 5,000 repetitions with N = 250 and 10,000; each entry shows the absolute
bias (|Bias|), SD, and Root Mean Squared Error (RMSE). With N = 250, Lin-DD estimates ﬁqT and ﬁd do sometimes
better than the Poisson QMLE [N}qr and 3, but this is due to the low SD’s; the |Bias| of Lin-DD ﬁd ishuge in several
cases. With N = 10, 000, the |Bias|’s for the Lin-DD estimates remain almost the same as those with N = 250
whereas the gaps in SD between Lin-DD and Poisson QMLE are reduced, and consequently, Poisson QMLE does
better than Lin-DD. Using tQ solves the problem of ID, violation for Poisson QMLE, but not for Lin-DD; ﬁqT in
Lin-DD is biased much even when #,. = 0. In short, Table A1 demonstrates that Lin-DD is highly biased when
the true model is exponential for positive Y.

For (ii) count outcome, similarly to (A.1), Y;; is generated from the Poisson distribution with parameter
exp(f; + B,Qi + PB4 tQ; + PaD;) for t = 0,1,2,3. Then Y; and X; are generated as in (A.2), and Poisson
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Table A1: Positive Y: |Bias|, SD and (RMSE).

N =250 By B420,0 By B4:0.5,0 Bye» B4:0,05 Bygr» B4:0.5,05
ﬁqT 0.000.23 (0.23) 0.00 0.24 (0.24) 0.000.23 (0.23) 0.00 0.24 (0.24)
ﬁd 0.010.60 (0.60) 0.010.60 (0.60) 0.010.60 (0.60) 0.010.60 (0.60)
DD ﬂAqT 0.120.15(0.19) 0.48 0.33 (0.59) 0.12 0.15(0.19) 0.48 0.33(0.59)
DD ﬁd 0.08 0.46 (0.47) 1.051.38 (1.73) 0.08 0.56 (0.57) 3.481.96 (4.00)
N =10,000

ﬁqT 0.000.04 (0.04) 0.000.04 (0.04) 0.00 0.04 (0.04) 0.00 0.04 (0.04)
ﬁd 0.000.10 (0.10) 0.00 0.10 (0.10) 0.000.10 (0.10) 0.000.10 (0.10)
DD ﬁqT 0.120.02 (0.13) 0.48 0.05 (0.49) 0.12 0.02 (0.13) 0.48 0.05 (0.49)
DD ﬁd 0.08 0.07 (0.11) 1.030.22 (1.05) 0.07 0.09 (0.11) 3.440.30 (3.45)

Bq. =0 for parallel trends in V* &IDg in ¥; B, (exp(B4) — 1) is the desired effect; ﬁqr, B ,: Poisson QMLE; ﬁqr, ﬁd: linear-model DD.

Table A2: Poisson count Y: |Bias|, SD and (RMSE).

N = 250 Byer Bar 0,0 Byer B410.5,0 Byer B4t 0,05 Byer B410.5,0.5
By 0.010.40 (0.40) 0.00 0.38 (0.38) 0.010.40 (0.40) 0.00 0.38 (0.38)
By 0.00 0.85 (0.85) 0.000.78 (0.78) 0.010.84(0.84) 0.000.78 (0.78)
DD 4, 0.080.10 (0.13) 0.10 0.14 (0.17) 0.08 0.10 (0.13) 0.10 014 (0.17)
DD §, 0.06 0.31(0.31) 0.610.47 (0.77) 0.170.33(0.37) 1.88 0.53 (1.95)
N = 10,000

Byr 0.00 0.06 (0.06) 0.00 0.05 (0.05) 0.00 0.06 (0.06) 0.00 0.05 (0.05)
By 0.000.12 (0.12) 0.000.10 (0.10) 0.000.11(0.11) 0.000.10 (0.10)
DD f,, 0.08 0.02 (0.08) 0.10 0.02 (0.10) 0.08 0.02 (0.08) 0.100.02 (0.10)
DD §, 0.05 0.05 (0.07) 0.62 0.07 (0.63) 0.16 0.05 (0.16) 1.89.0.08 (1.89)

Bq. = 0for parallel trends in ¥* &IDg in ¥; B, (exp(B4) — 1) is the desired effect; ﬁqr, B ,: Poisson QMLE; ﬂAqT, B : linear-model DD.

QMLE is implemented. The same parameters as in (A.2) are estimated except for the intercept because In(1.64)
is no more present. Table A2 presents the simulation results, and what was mentioned for Table Al applies to
Table A2 almost word to word.

For (iii) zero-censored outcome, we use (3.9) where M; ~ Poisson(l) with P(M; = 0) = 0.37 and Y;; =
zﬁoz,.ﬁ with Zy;, = exp{f; + B,Q; + B4tQ; + fy4D; + N(0,1)}. The same parameters as in (A.2) are esti-
mated except for the intercept because exp(1) from E(M) is added to §, in view of (3.9). Despite the big difference
in the data generating processes, Table A3 differ little from Tables Al and A2, and all comments made for
Tables Al and A2 apply to Table A3 as well. The similarities in the findings from Tables A1-A3 seem to stem
from the common exponential regression specification.

For (iv) binary outcome, Y;; is generated with Logistic U;;:
Yie =10 < B + ByQ; + By tQ; + ByDie + Uyl, Uy, Uy, Uy, U are iid Logistic.

Bq: = 0 makes the parallel trends hold for Y*, and makes IDp, hold for Y.

Since the logistic regression is used in Table A4, the results in Table A4 differ much from those in Tables
A1-A3. First, the overall magnitude of |Bias| is much smaller than in Tables A1-A3. Second, surprisingly, when
Bq: = By = 0, the Lin-DD estimates with almost zero bias do several times better than the logistic MLE esti-
mates. Third, biases in Lin-DD are persistent even when N increases to 10,000, which implies that Lin-DD will
be eventually dominated by logistic MLE for a large enough N. Nevertheless, less harm is seen in using Lin-DD
for binary Y, compared with the other LDV’s.
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Table A3: Zero-censored Y: |Bias|, SD and (RMSE).

DE GRUYTER

N =250 By B4:0,0 Bgr» B4:0.5,0 Byc» B4:0,05 Byr» B420.5,0.5
ﬁq, 0.010.31(0.31) 0.010.32(0.32) 0.010.31(0.31) 0.010.32(0.32)
/Nic, 0.010.80(0.80) 0.02 0.80 (0.80) 0.010.80 (0.80) 0.02 0.80 (0.80)
DD ﬁqT 0.120.19(0.22) 0.470.42(0.63) 0.120.19(0.22) 0.470.42 (0.63)
DD ﬁd 0.07 0.59 (0.60) 1.041.76 (2.04) 0.07 0.71(0.72) 3.442.48 (4.24)
N =10,000

3(,, 0.00 0.05 (0.05) 0.000.05(0.05) 0.000.05(0.05) 0.00 0.05(0.05)
Bd 0.000.12(0.12) 0.000.13 (0.13) 0.000.12 (0.12) 0.000.13(0.13)
DD ﬁqT 0.120.03 (0.13) 0.48 0.07 (0.49) 0.12 0.03 (0.13) 0.48 0.07 (0.49)
DD ﬁd 0.08 0.09 (0.12) 1.03 0.28 (1.06) 0.07 0.11(0.13) 3.430.39(3.46)

Bq. = 0for parallel trends in Y* &IDg in ¥; B, (exp(B4) — 1) is the desired effect; /Ni‘qr,[id: Poisson QMLE; ﬁq,,ﬁd: linear model DD.

Table A4: Binary Y: |Bias|, SD and (RMSE).

N =250 Byer B410,0 Byer B410.5,0 Byer B4r 0,05 Byer B410.5,05
B 0.010.50 (0.50) 0.010.51(0.51) 0.010.50 (0.50) 0.010.51(0.51)
By 0.021.16 (1.16) 0.041.18 (1.19) 0.041.15 (1.15) 0.131.54 (1.55)
DD f,, 0.020.07 (0.08) 0.350.08 (0.36) 0.02 0.07 (0.08) 0.350.08 (0.36)
DD j, 0.020.21(0.21) 0.020.21(0.21) 0.39 0.21(0.45) 0.430.20 (0.48)
N = 10,000

Bor 0.00 0.07 (0.07) 0.00 0.07 (0.07) 0.00 0.07 (0.07) 0.00 0.07 (0.07)
Ba 0.000.17(0.17) 0.000.17(0.17) 0.00 0.17 (0.17) 0.000.17(0.17)
DD f,, 0.02 0.01(0.03) 0.350.01(0.35) 0.02 0.01(0.03) 0.350.01(0.35)
DD j, 0.020.03 (0.04) 0.020.03 (0.04) 0.390.03 (0.39) 0.430.03 (0.43)

Bq. = 0for parallel trends in Y* &IDgop in ¥; By (exp(By) — 1) is the desired effect; ,E’qr,ﬁd: logit estimates; ﬁq,, B, linear-model DD.

A.2 Multinomial Logit for DD with Multinomial Outcome

A.2.1 Identification

For multinomial outcome Y taking on a value among 0,1, ..., C classes, define the ‘class-c odds’ (with the base
class 0) conditional on (W = w,Q = ¢,S = s)as

analogously to (4.1). Also define ‘class-c ROR conditionalon W = w’:

Rgl(Y; w) >
R, (Y;w) )

)-1

The identification condition for ROR® with multinomial outcome is

R} (Y] w) >/<R81(Y3?; w)
RS, (V) w) RG, (Yys w)

RZS(Y; w) =

R} (Y;w) = R} (Y33 w),
RY(Y;w) = Ry (Y35 w),

RORY(Y;w) = (

P(Y=clw,Q=q,5=25)

P(Y=0{w,0=q,S=5)
Ry (Y w) = Rg1(Y??;w)’

Ril(Y; w)
REO(Y; w)

ROR°(Y®; w) = <

which implies

RSO(Y;W)=R(C)0(Y20;W)’

(IDgore)
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As in (4.2), ROR‘(Y; w) — 1is equal to the ‘class-c proportional odds effect on the treated at the post-
treatment period t = 3*
RS, (Y5: w) — R (V9 w)
R (Y3 w)

ROR‘(Y;w)—1= under ID -

Also, asin (4.3),if Y = c # 0is arare event in the sense of (4.3), then

P(Y; =clw,Q=1) = P(Y) =clw,Q =1)

ROR“(Y; w) —1~ (A.3)
P(Y! = clw,Q =1)
which is the class-c proportional effect on the treated at the post-treatment period.
A.2.2 Estimation
In panel multinomial choice with classes ¢ = 0,1, ..., C, there are a few possibilities for regressors, depending

on whether they vary across units, classes or times. Here, we consider three types of regressors: A; varying only
across units (e.g. race), H;, varying only across units and times (e.g. income), and W, , varying across units, classes
and times (e.g. expense from choosing class c). Let the ‘latent utility from class ¢’ of unit i at period ¢t = 2,3 be

LY = P + BocQi + Bacd + Bl A; + Br Hy + Bly Wi + Uy ¢=0,1,...,C (A4)

where the error terms (Uy, ..., Upe, Ussps .- » Uge) are iid with the type-I extreme value distribution, and
independent of all regressors at all times (‘strict exogeneity’).
The potential choice Y with D = dis
C
d_ ; d d 1)
vi=Y (jx1|ud > 18 forallk#)]|);
j=0

Yl.‘f takeson 0,1, ..., C, depending on which class gives the maximum utility. Using (A.4), the choice probabilities
for the untreated Yi‘g =ce{0,1,...,C} are:

P(Y? = clQ;, Ay, Hy, W20, ..., W2C, W30, ..., W;3C)
=P(Y) = clQ;, Ap Hyp, Wiggs ..., Wye)
exp(ﬁtc‘ + ﬁchi + ﬂ(/lCAi + ﬁ}’wHit + ﬂl,vcvvitc)
c
X exp( By + Dy Quct DA+ By Hut B, Wiy
}:
_ eXp(Aﬂtc + Aﬂchi + Aﬂ;CAi + Aﬁ;leit - ﬂ,’uo Wio + ﬁ:ucm/itc)

C
1+ 3 exp( Ay + Ay 0:+ A A+ AP Hy = o Wi+, Wy )
Jj=

>

APy = Prj = Pro» BBy = Byj = Poor APaj = Paj = Pao> APrj = Prj = Pros

the last equality holds, dividing through by exp (S + B0 Q; + BLyA; + BroHie + Bl Wi ) for thebase classc = 0.
The numerator of the last ratio is one for the base class 0. IDp. holds for P(Yl? = c|-), whose proof is similar to
the proof for IDggp.

Analogously derive the model for P(Y; = c|-), which then gives (i omitted)

R§(Y% w) = exp(Afs + Afye + APyed + APL A+ APy Hy — Bl Wy + B, W)

where Ay = Bac — Pao-
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Since P(Y}, = c|-) differs from P(Y = c|-) only in the extra term A, we get the class-c proportional effect, if
the rare event condition (4.3) holds:

{RS,(Y3; w) /RS (Y w) } —1=exp(Af,) — 1.
In RCS, we observe Y = (1 — S)Y, + SY;whereY, = 0,...,C, along with Q, S and
A, H=(1—8)H, +SH;, Wy=(1—8)Wy +SWy, ..., We = (1— )Wy + SWy;
with i omitted. The choice probabilities are, with A2ﬂ3j = Aﬂ3j - Aﬁzl-, j=0,1...C,
P(Y =c|Q,S, A, H,W,, ..., W)

exp{ A+ DB S + ABQ+ ABycD + AP A+ Al H — Bl Wo + 1, W, |

1+ 21 exp(Aﬂ2] + A58 + APyyQ + AByD + AR, A+ ABLH — B, W, + ﬁ;wwj)
]_

The numerator is 1 for ¢ = 0, because all differences are relative toc = 0.

Because D alters the choice probability for class c by f,., the “netincrease” in the propensity to choose class ¢
relative to the base class 0is Af 4. = f4. — Pao, DOt P4 Estimate Af 4, ..., Af 4 with cross-section multinomial
logit using the last display. Then, exp(Af,;.) — 1is the class-c proportional odds effect relative to the class 0, and
the class-c proportional effect as well when Y = cis a rare event in the sense of (4.3).

A.2.3 Simple Simulation Study for Multinomial Outcome

Table A5 presents the results from a simulation study for multinomial outcome.
Our simulation study using the above P(Y = ¢|Q,S,A,H, W, ..., W) with C = 2has the following design
(the error terms generated as in (A.4), and H;, excluded):

A ~ Uniform(-1,1), W,,, W;. forc=0,1,2areiid N(0,1), P(Q=1)=0.5,
P(SE=1) =05, Py = P39 =B = Pao = Bao = Puo =0 (for class 0),
P =Py =4 Ps =Py =-5 Py =Py =-05 (for classes 1,2),
Pir = Py =05, Py =Pup =05 P, =P =05 (for classes 1,2).

That is, the class-0 parameters are all zero, and the parameters of classes 1 and 2 are the same. Due to
Poy = Pz = 0butf, = fyy = —4and f; = f3, = —5 (much smaller intercepts for classes 1 and 2 relative
to class 0), the events Y = 1,2 are rare.

Table A5: Multinomial ¥: 3 classes, N = 10, 000, 5,000 repetitions.

Classc=1 Classc=2

True, |Bias| SD, RMSE AvgSD True, |Bias| SD, RMSE AvgSD
APy, —4.0,0.019 0.15,0.023 0.15 —4.0,0.030 0.15,0.024 0.15
A?B,. —1.0,0.017 0.28,0.078 0.28 —1.0,0.0M 0.28,0.077 0.28
Aﬁqc —0.5,0.004 0.23, 0.055 0.23 —0.5,0.006 0.23,0.054 0.23
AP 0.5,0.004 0.41, 0.166 0.4 0.5,0.007 0.41,0.168 0.4
AP, 0.5,0.003 0.16, 0.026 0.17 0.5, 0.005 0.17,0.027 0.17
Buwo 0.0, 0.001 0.07,0.004 0.07
BPue 0.5,0.000 0.09, 0.008 0.10 0.5, 0.001 0.09, 0.008 0.10

AvgSD is the average of the asymptotic SD estimates.
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Table A5 presents the simulation results, where each entry consists of true values (True), |Bias|, SD, RMSE,
and the average of the asymptotic SD estimates (AvgSD). Overall, biases are very small, and AvgSD’s are almost
the same as the (simulation) SD’s. The multinomial logit with RCS works well even for rare events Y = 1, 2.
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