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Abstract: This study proposes a two-step optimal best linear predictor (OBLP) under Phillips triangular coin-
tegrated system, deduced from a two-step optimal forecasting method, for non-stationary level variables coin-
tegrated with fundamental variables. In the first step, a cointegration equilibrium is estimated. The difference
between the cointegration equilibrium and the other predicted variables is optimally forecasted in the second
step, with conditional expectations estimated by the lagged fundamental differences and cointegration errors
and summed with the cointegration equilibrium. We show that the OBLP has the lowest mean squared fore-
casting error among linear forecasting methods, such as random walk, cointegration, and augmented error
correction models. In the second step, the cointegration error correction model is converted into a vector autore-
gression model consisting of the cointegration error and the fundamental differences of the variables and is
used to estimate conditional expectations. Simulation results comparing the other predictors with the OBLP and
forecast results for the US GDP and consumption applying the OBLP support the theoretical predictions of the
forecasting efficiency of the OBLP.

Keywords: optimal best linear prediction; Phillips triangular cointegrated system; cointegrated level variable;
two-step procedure
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1 Introduction

And God shall wipe away all tears from their eyes; and there shall be no more death, neither sorrow, nor crying, neither shall
there be any more pain: for the former things are passed away. REVELATION 21-1.

The problem of using cointegration information for forecasting has focused on the role of cointegration errors
or error correction terms in predicting differences in cointegrated variables. Classical examples in this area
include Engle and Yoo (1987), Christoffersen and Diebold (1998), and Elliott (2006). However, when the focus is
on predicting the level of a cointegrated variable, the long-run cointegration equilibrium becomes important,
which has received little emphasis.! An exception is Kim (2023), who addresses this issue in the triangular form
of Phillips (1991) for cointegration models.

In particular, Kim (2023) introduced the best linear predictor (BLP) with an asymptotic minimum mean
squared forecasting error (MSFE) among the linear predictors of variables in cointegrated systems. Kim (2023)

1 For many economic variables (such as exchange rates, interest rates), it is very important to predict not only the rate of change
but also the level itself.
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showed that if the autocorrelation coefficient of the cointegration error between the prediction time and pre-
dicted targeting time is greater than 1/2, the BLP is deduced from the random walk model. In other cases, the
BLP is deduced from the cointegration model. Under this scheme, Kim (2023) suggested a switching predictor
that automatically selects a random walk or cointegration model according to the size of the estimated autocor-
relation coefficient. He showed that the BLP has a weighted average form of the predictors using the random
walk and cointegration models and has the lowest MSFE among the linear form predictors using the variables
in cointegrated systems or their lagged variables. Here, there is a difference in Op(TZ) between the BLP and
the other linear-form predictors. Note that the BLPs may differ in 0,(1) depending on the weighting coefficient;
however, Kim (2023) did not suggest a weighting coefficient that minimizes MSFE.

Under these circumstances, to improve the forecasting efficiency of the BLP, we propose the optimal best
linear predictor (OBLP), which is deduced from a two-step optimal forecasting method for non-stationary level
variables cointegrated with the fundamental variables. To do this, the cointegration equilibrium is estimated
in the first step. The difference between the cointegration equilibrium and the other predicted variables is
optimally forecasted in the second step, with conditional expectations estimated by the lagged fundamental dif-
ferences and cointegration errors and summed with the cointegration equilibrium. We show that the OBLP has
the lowest MSFE among linear forecasting methods, such as random walk, cointegration, and augmented error
correction models. In the second step, the cointegration error correction model is converted into a vector autore-
gression (VAR) model consisting of the cointegration error and the difference in the fundamental variables and
is used to estimate conditional expectations.

Note that following Engle and Yoo (1987), Christoffersen and Diebold (1998), and others, Elliott (2006, p. 584,
Eq. 11) addressed the problem of optimal forecasting of co-integrated differenced variables in a bivariate VAR(1)
model. An OBLP can equivalently be deduced by adding Elliott’s (2006) predictor to the forecast baseline-level
variable; however, an OBLP has not yet been provided for the general VAR(q) model.

The remainder of this paper is organized as follows. Section 2 introduces the optimal BLP and Section 3
discusses the OBLP estimation. Section 4 provides the Monte Carlo simulation results, and Section 5 presents an
application to the prediction of United States’ GDP and consumption. Finally, Section 6 concludes the paper.

2 Derivation of the OBLP

First, we assume that the r X 1-vector y, and the k X 1-variable x, explaining it are jointly represented by a VAR
model; that is, we consider the # (= r + k)-dimensional and integrated of order one VAR(p) process of Y, given

by

Yo =M + 1LY,y +ILY, o +---+11Y, , + & Q)
or
p—1
AY, = Dy + OY,_; + ) DAY, +¢, )

i=1

where Y, = (xt’,yt’)', = LI, @ = O-1,®, = —z;’zmﬂj and ¢, is an # X 1 vector of an independently
and identically distributed (i.i.d henceforth) disturbance term with a finite variance X > 0, where I, denotes an
¢-dimensional identity matrix and AY; = Y, — Y;_;.

Further, we assume the cointegration of Model (1) (e.g., Johansen 1991) as follows:

Assumption 1. We assume ® = aff’, where « and f are # X r matrices of the full-column rank r where g’ =
(=y',1,) ofrankrand y is k X 1.

Note that Model (2) may be written as an error correction model (ECM) as

p—1
AY, = Dy + az + ) DAY, +¢, €)

i=1

under Assumption 1, where z, = #'Y,.
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Now, we transform Model (3) into a stationary VAR model of the I(0) variables Ax, and z;. To obtain this
stationary VAR representation, we first define a non-singular square matrix as follows:

1 0
N = k, k><r>'
' Ir

It should be noted that the lower triangular matrix N transforms the VAR variable Y, = (x,/ ,yt’)’ into the
variable w; of x; and cointegration error z,.

NXxY, = (x[’,zt’)/ = w,.

Following Kim (2012, 2018), we multiply the above matrix N on the left-hand side of Model (1) and modify
the VAR coefficients to obtain the following VAR model of the purely stationary variable w,, = (4x,/,z,/ )l:
ex1

Wy =Wo Y1l T Wolppt -+ W W4+ € @

where e, = N X g,, or a state space form:

Wy =%Wo +¥Wy s +e 5)
Vi Yo o Wy W,
W g Yo L. 0 0 €
Wyt 0 ‘ 0
h Wy = s Y, = , ¥ =|: . d =
where fpﬁi " i R oI D[Anee
W p¢— p+1 0 0 . I 0 0
4

Note that the columns of v, from the first to k-th are imposed as zero vectors/matrices, following Kim (2012,
Theorem 3.2); thus, Ax,,, does not appear in Equation (4).2

We define two selection matrices, M, ,=(I,,0,;,) and ]\_/Ia,b = (04xp» 1, )- Now, equation (4) can be regarded
as a Phillips (1991) triangular representation of a cointegrated system, as follows:

yi=6 +y'x+z (6)

<t ™ 1 px

and
Ax; = pu+u, (7)
fort=1,2,.., T, where y = My, 6 = My o, Uy = My (XL wiw s+ €;) and z, = M, (TP wiwa + &)
At time t, we aim to predict the variables y;,, for1<i<rand h € Z*, where Z* denotes a set of positive
integers, and y, = (Y3 Vor» s yn)/. Let (3, 7 ) be an OLS (ordinary least square) estimator of (6,y”).
Furthermore, we assume the following standard regularity conditions, as in Kim (2023):

Assumption 2. We assume:

@ T4z =0,

0 T2X_x = 0,(1);

© T/ Y X2 = 0,;

@  T32E L (Xepn = X)x = 0,(1);
@ T3y xx' = 0,

2 Campbell and Shiller (1987, Equation 5) used the system (4) without referring to how it is derived from the VAR model of (1) by
using the rank deficiency of matrix ® = af’ in Assumption 1, with the aforementioned zero restriction of the coefficient 7%
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® T_lthzlztht_’ pE(Zt+th);
© T u =0,

1/2(5 - 5)
T3/2(5? _ y)
M Ele|" and Ejwy,|* < oo.

i) =0,();

Remark 1. () Assumptions 2 (b)-(e) hold because x, has a drift term. Please refer to Hamilton (1994,
Proposition 17.3). (ii) See Hamilton (1994, 7.2.15), from which Assumption 2 (f) holds with a certain stationarity
assumption. [ |

To improve forecasting efficiency, we first find the optimal predictor for a variable y,,, that is considered
to be dependent in the presence of r cointegrating relationships, as in (6), and use the information set Q, =
(Yl’ AN Yt’)/. Then, we suggest the optimal (scalar) predictor for y;.,, which belongs to the original y,,,
that we want to predict. Since this method uses the system-wide cointegrated error terms simultaneously for
prediction, it may have a lower MSFE than finding the optimal predictor for y;,,, restrictively. This kind of
prediction efficiency improvement is possible if the cointegrated error term of the dependent variable to be
predicted is highly correlated with the error terms of the other dependent variables (i.e. y, except y;,).

Next, the MSFE of predictor b (Ff) is defined as®

T
MSFE' = T7Y (yon — F?)". ®)
t=1
We then consider the following class of linear predictors (LP) as a baseline for evaluating the optimality of
the predictors that we introduce:
FFP=6+0,/n+s, 9

where 0 is a r X 1, and 6, is a #p X r, vector/matrix of coefficients, respectively and, for instance, n, =
v/, v/, .. Yt_p+1')’ is a typical £ p x 11(1) variable selected/generated from a set {Y,_;};%, and s, isar x 1
1(0) variable selected/generated from a set {AY;_;, z;_; }l+:°5’

We define the best linear predictor (BLP) from Kim (2023, Eq. 2.5) as follows.*

PP =65 +y'x +s, (10)

where s; denotes an r X 1 0,(1) variable. For instance if s, = z, then FBLP is 3 random walk model predictor (an
RWP); if s, = 0, then FEP is a cointegration model predictor (a CIP); if s, = Ae,, then FEL? is one of the predictors
of Christoffersen and Diebold (1998, p. 13).% Elliott (2006, p. 584, Eq. 11) illustrates a predictor (interpreted as a
level predictor) in a bivariate VAR(1) model, as follows:

h
Fll=y, + (Z pi‘l)aZZ[ a1
i=1

h
=y'x + {1 + (Z pi‘1>a2}zt
i=1

which is a BLP where p, = fa’ and a = (o, az’)'.

3 For the convenience of the analysis, it is assumed that the sample sizes for the model coefficient and MSFE estimation are all equal
to T. Note that the predictor is time t dependent.

4 In Kim (2023, Eq. 2.5), this is given by s; = wz,, but since w is an arbitrary real number, there is no difference between the BLP
definitions in (10) and Kim (2023, Eq. 2.5) except for the vector generalization.

5 However, this cannot be obtained with finite data, as it requires infinite lagged variables to identify the moving average error
term g,.
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However, unrestricted VAR models are generally not based on the BLPs. This is because, for example, a
predictor using a VAR(1) model has the form x,'x; + 7,'x,_; and even if z; = y holds, the rest of the z,'x,_; is
not I(0) in general.

Note that the BLPs may differ in O,(1) depending on the form of the I(0) variable s;; however, Kim (2023) did
not suggest a weighting coefficient that minimizes the MSFE. Therefore, we now suggest the optimal BLP (OBLP)
of y, that minimizes the MSFE among the BLPs. For this purpose, we first exploit the following decomposition:

Proposition 1.
Yen =06 +7'x + Et(qt+h) + & (12)

where qup = 7' 0w X) + Zyp EQun) = Koy + KWy, and g, = ZlhjZl‘P et+1 with Ko, =
j= i=

h j—1
YY1 lZ‘P ]TO: Ky = Z yJ_]lP and

Jj=1 i=0
vy = (V' L )My p(pry if j=h
Y (}/,9 Orxr)Mf,f(p—l) OtherLUiSé

where E,(q,,,) denotes a conditional expectation of q,,, at a time't.

However, the conditional expectation E,(y,, ), which is the optimal predictor when y, is 1(0), is not defined

in general because there are no finite moments of y, when y, is I(1). Therefore, OBLP for y,, , is defined from (12)

as the long-run cointegration equilibrium of y, after adding the conditional expectation of q,, ,, which is I(0), as
follows:

FOPP = 6+ y' X, + Ko, + Ky Wy 13)

We now derive the difference in MSFE between the LP and OBLP as follows:

Theorem 1. Suppose that Assumptions1and 2 hold. Further suppose that Zlents[’ =0, (T3/ ?) and Zthlntst,h’ =
0,(T5/%). Then

MSFE — MSFEOPLP = (0, — y,,) ( Z n.n, ) — ¥a) + 0,(1)

o /

Op(Tz)

14
where y, =

(#p-K)xr

According to Theorem 1, the LP has a larger MSFE than the OBLP owing to a positive definite matrix of size
Op(TZ). Next, the difference in the MSFE between the BLP and OBLP is given as

Corollary 1. Suppose that Assumptions 1 and 2 hold and T\, [s; — E,(qesn)] = p0.5 Then

T

MSFEPYF — MSFEOPE = TV [s, = E,(qeyn)| [5 — E(qesn)] + 0,0,
t=1

where T‘lz:th1 [sc = Ec(qesn)] [sc — Et(qt+h)]/ > 0.

6 It may hold from the law of large numbers, for instance, in Hamilton (1994, pp. 193-5) where {[s, — E,(q,;»)] €.’} is a martingale
difference sequence E, ([s; — E;(qr1n)]€ca”) = 0.
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Next, the OBLP for y;.,, is given by, which has the minimum MSFE among the BLPs. To demonstrate this,
we first define two predictors of y;; .

F[OBLPi — mi,F:)BLP (14)

and
FEP =m/ (5 +7'x,) + ¢ 15)

where m; = (04)x1,1,05%1) and ¢, is an arbitrary 1(0) real variable.

For instance, FALP! is a predictor of y;., using the cointegration error z;’ in a VAR(1) model that is con-
formable with y;.,,. Note that this is not a predictor deduced from the OBLP of y,,;, as in (13), using all
cointegration error vectors z,.

Accordingly, the optimality of the predictor (14) for y;., , is given by

Theorem 2.
MSFEP" — MSFE®™' > 0,,(1)

for any c,.

3 Estimation of the OBLP

In this section, we introduce a consistent estimator of the OBLP and demonstrate that the estimated OBLP asymp-
totically has the same MSFE as the OBLP. To do so, we first rewrite the last three terms on the right-hand side of
Equation (12) as follows:

Qern = Kop + Ky Wae + €0 16)

because q,,, = E/(q;p) + £, from definition.
Then, we define the estimated OBLP as

FOBIP =5 4 9%, + Ry + Ky W 17)

where the coefficients in (16) are estimated using OLS as follows:

T o v’ !
A A N ~ !/ At
<K0th1h> = Z Qt+h<1 Wy ) Z

t=1 t=1 WAI WA[’WA[

!’
A !
whereZ, =y, — 6 — 7', Wy, = (Axt’,/z‘t ) ,

-1
/ T ' T /
~ 1 X y
~\ _ ¢ t
(o )=(Z], ) 2|2
X(k+D) =1 | Xe XeXi =1 [ XVt
(k+ DX (k1) (e+Dxr
W gt
N W g1
Wy =

W pr— p+1

7 These predictors correspond to cases where there are multiple cointegration vectors in the VAR model, but the predictions do not
reflect them, and only one cointegration vector is used to build the OBLP.
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Now note that
Lemma 1. Suppose Assumptions 1 and 2 hold. Then, /KOh — Kop— p0 and /Iilh =Ky~ 0.
We now show that the suggested OBLP estimator has the same MSFE as the OBLP in (15), as follows:

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then

MSFEOP_,  MSFEOLP

OBLP 1T 55T .\
where MSFEOPY? = T-1y < Veon — FtOBLP> < Voun — F:OBLP> '

Finally, the OBLP for y;., is given by
FI,OBLPi = mi, I:S + /y\,XI + ﬁoh + /thWA[ .

The OBLP estimated in this manner can also be shown to have the same predictive efficiency as Theorem 3
based on the consistency of the OLS estimates.

Corollary 2. Suppose that Assumptions 1 and 2 hold. Then

MSFEOPUP_,  MSFEOPLP!
p

RT D P —\/
where MSFEOBLPl — -1 ZtT=1 < Vieen — F:)BLPz) < Vieen — F?BLP!) )

In the example below, we show how the OBLP presented earlier is applied to the VAR(1) model.
Example 1. Under the VAR(1) of Y, without a constant-term model, the ECM is given by®
AY, = az,_, + ¢ (19
o P , Xt _ [ &x
where a = 2o =p'Y, = (-7.1) and g, = conformably.
a Ve Eyt
Then, Equation (19) may also be written in the VAR(1) form of w,,:
wy =Ywy_, +e (20)

Ax 0 o 5 e
where w,, = “)w= ! and e, = X =( ")
Z; 0 pa’ +1, Eyt — 7 €xt €yt

Note that the OBLP becomes

h-1 4
FPP = y'x + {<Z yau[fa’ +1,] H) +(re[pa’ +5)"" + [pa’ +1]") }Zf 0
i=1

8 Litterman (1986) proposed a Minnesota prior associated with a VAR(1) structure for Bayesian VAR prediction using a random walk
model.
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where

Et(qt+h) = Z VJ_j‘ijAt (22)

0 [ +1]"

h—1 ’ j-1
+ Z (}’/, Orxr) <0 “ [ﬂa +Ir] >LUAt

= 0 [pa +1])

h-1 '
) {y,al [ﬁa, +Ir] T [ﬁa/ +Ir]h + Z Yo [ﬂa/ +Ir]]_1}zt

=

|
0 [pd +1]

Note that if a; = 0, then (22) becomes

because

h
E(qrn) = (B’ +1.) 2, (23)
where fa’ = «,. In this case, we may get
FOPIP = y'x, + (o’ +1.)"z, 24)

from (13).

Note that if r =1 and |fa’+1| < 1, then the OBLP (24) approaches the RWP if h is small, while if h is large it
approaches the CIP because (fa’ + Ir)h is close to zero. Thus, the VAR(1) model under the restriction a; =0 can
be viewed as a generalized model that may approximate the RWP or the CIP depending on h. [ ]

4 Monte Carlo Simulation Results

We conducted a Monte Carlo experiment!” to verify the small-sample properties of the proposed predictors. The
basic simulation model used has the following triangular form:!

Ve =6+7"x + 2, (25)
2x1 2x1
X, = p+ X4+ U, (26)

9 This implies that x, is exogenous and z, does not Granger cause Ax,, ;.
10 GAUSS20 was used for the simulations, and the codes are available on request.
11 Equations (25)—(27) can be expressed in a state space form as follows (and this is exploited in the simulation):

y=06+ (VlsIz)(Xt,’Zt,)l

(5)=()+ (% )+ ()
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and
z,=Yz,_,+¢ V)]

fort=1,2,...,100 and (u, 5t)/ ~1IDN(0,1,), where y, = (yy,, th)/. The parameters are set as follows:

0.5 0.1 Aop 0.1 0.1 0.5
y' = P = ,A=050r0.7,p=01,...,04,6 = and y = or ,respec-
0.1 05 p A 0.1 0.1 0.5

tively. Here, p denotes the correlation of the different co-integration errors.

Then, y,,, is predicted at time ¢ using 100 samples, where h =1, 2, .. ., 20. The MSFEs are calculated for the
five predictors; RWP, CIP, OBLP, restricted OBLP using only the cointegration error of the predicted variable y,; (
OBLP1) and ECM predictor (ECMP).1? We also add a deterministic trend to the predictors to obtain

(i) RWP:(1,0) X (y, +hy'u)
(i) CIP:(1,0) X (6 +y'x, + hy'u)
(iii) ECMP: (0,0,1, O)’{Y[ +E[(Yyn — Yt)zt]E[z[zt’]_lzt} +(1,0) X hy'u

where Y, = (x/,y/)".

Subsequently, the MSFEs are computed as the mean of the samples from 10,000 repetitions of the aforemen-
tioned experiments.

The simulation results in Appendix A confirm the theoretical expectation; that is, when the prediction
period h is small, the OBLP has the best MSFE among the predictors in terms of prediction stability and effi-
ciency. In Appendix B, the ratio of the relative size of the MSFE of predictor b to that of the OBLP is calculated

as
MSFE? — MSFEOBLP

MSFE. EOBLP

and plotted it on a graph with the forecast horizon (1-20) on the x-axis.

From the calculations, we obtained the following results. First, the variation in the cointegration matrix y
does not significantly change the forecast results. Second, an increase in p leads to an increase in the forecasting
efficiency of OBLP compared with that of OBLP1, which seems to be because the increased forecasting efficiency
of OBLP uses additional cointegration errors from other equations in the forecast.

Third, the CIP shows a much lower forecast efficiency than the OBLP for short-term forecasts but slightly
better efficiency than the OBLP as the forecast horizon increases. However, as the error correction process slows
(i.e. as A increases), the decrease in the MSFE of the CIP relative to that of the OBLP is delayed as the forecast
period increases.

Finally, the RWP is inferior to the OBLP over the period, but converges to the OBLP as the forecast horizon
increases, whereas the ECMP is less efficient than the OBLP as the forecast horizon increases. This phenomenon
is further exacerbated as u, which represents the magnitude of the deterministic trend, increases.

12 From the ECMs, as in Elliott (2006), the following equation is derived by iterative substitution.

=

-1

Y- Y = a|: (ﬂ,a+12)]:| Z+Eppn

J

Il
o

where €, consists of the error terms after time t. Therefore, the ECMP is given as in (iii).

FEOM = (0,0,1, 0)’{ Y, + E[(Yoyp — Yt)zt]E[ztzt’]_lzt}.
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Table 1: Unit root test Results.

Included terms None Intercept Trend and intercept

ADF ADF ERS ADF ERS
GDP 1.000 0.000 5,675.509 0.0088 264.7067
Consumption 1.000 0.000 5,840.787 0.0441 265.2141
Net exports 0.7157 0.7219 22.51895 0.2347 7.019256
Interest rate term spread 0.5398 0.7992 6.203761 0.2180 3.012781
Government expenditure 1.0000 0.2782 1,026.363 0.0637 24.87423

1) P-value for the null hypothesis: The variable has a unit root, and the lag length is selected using the Schwarz criterion. 2) The critical
values for the 1% level are 1.99 (when an intercept is included in the test equation) and 3.96 (when the trend and intercept are included
in the test equation) according to Elliott et al. (1996, Table 1). Autoregressive spectral ordinary least squares (OLS) was used as an
estimation method.

5 Application to the United States GDP and Consumption Prediction

In this section, we conduct out-of-sample forecasts for US GDP and consumption using the predictors suggested
in Section 4. We compare the forecast performance with the MSFE calculated using h-period (1, 2,..., 20)-ahead
estimated forecast errors. The data used have a quarterly frequency that extends from Q3 1976 to Q3 2023.13
Therefore, the analysis of the out-of-sample predictive performance of the proposed model consists of fore-
casting US GDP and consumption for each quarter from Q1 2018 to Q3 2023 using data from Q3 1976 to Q4
2017.

The data source is the United States Federal Reserve Board at St. Louis FRED. The cointegration fundamen-
tals initially considered for US GDP and consumption are interest rate term spread, net exports, and government
expenditure. All variables, except interest rate term spread and net exports, are log-transformed.

Before proceeding, we conduct augmented Dickey—Fuller (ADF) and Elliott—Rothenberg—Stock (ERS) point
optimal tests to check the unit root of the variables considered. Table 1 presents the unit root test results. The
ADF test results show that the null hypothesis (i.e. that the variable has a unit root) is not rejected at the 1%
significance level when the test equation does not include a trend or intercept term. The results of the ERS test
show that the null hypothesis is not rejected at the 1 % significance level when the test equation includes a trend
or an intercept term.

Therefore, although this is somewhat restrictive for GDP and consumption in the added trend or intercept
term cases, we assume that all variables have unit roots and proceed with the following analysis:

We then conduct Johansen cointegration tests using a VAR model to check whether a cointegration vec-
tor exists in the VAR model. We set the lag length of the VAR model to 1, based on the most parsimonious
Schwarz information criterion. The Johansen test results, shown in Table 2, indicate that the trace and maximum
eigenvalue tests jointly indicate one cointegrating equation at the level of 0.05.

Next, we estimate the forecasting model presented in Section 4 and calculate the forecast errors, as shown
in Appendix C. In Figure 1, the ratio of the relative size of the MSFE of predictor b to the OBLP is calculated as

follows:
MSFEP — MSFEOBLP

MSF. EOBLP

and plotted it on a graph with the forecast horizon (1-20) on the x-axis. The prediction errors for GDP in Figure 1
show that OBLP1 outperforms the other predictors for most forecast horizons when evaluated based on its fore-
casting efficiency and stability. The CIP is the strongest in long-run forecasting, but it shows a very large absolute
value of forecast error in the short-term horizon.

13 This is the maximum period for which data are available. See the end of this section for a detailed description of these variables.
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Table 2: Cointegration rank test results

Trace

Hypothesized Eigenvalue Trace 0.05 Prob.?
No. of CE(s) Statistic Critical value

None? 0.554488 185.9750 60.06141 0.0000
At most 1 0.083672 34.77985 40.17493 0.1572
At most 2 0.056804 18.43968 24.27596 0.2279
At most 3 0.029847 7.503785 12.32090 0.2778
At most 4 0.009778 1.837474 4.129906 0.2062

Maximum eigenvalue

Hypothesized Eigenvalue Max-Eigen 0.05 Prob.
No. of CE(s) Statistic Critical value

None? 0.554488 151.1952 30.43961 0.0000
At most 1 0.083672 16.34017 2415921 0.3936
At most 2 0.056804 10.93589 17.79730 0.3917
At most 3 0.029847 5.666310 11.22480 0.3892
At most 4 0.009778 1.837474 4129906 0.2062

Max-eigenvalue test indicates one cointegrating equation at the 0.05 level. 2denotes rejection of the hypothesis at the 0.05 level.
bMacKinnon et al. (1999) p-values.

The forecasting and estimation results are generally consistent with the macroeconomic theory. First, OBLP1
has the best forecasting results when using the interest rate term spread, government expenditure, and net
exports as co-integrating explanatory variables for GDP (or consumption).”* For example, adding M1 and con-
sumption to the GDP forecast or excluding government expenditure leads to worse forecasting results." This is
likely because M1 has a low direct correlation with GDP, or it may be because consumption already has redun-
dant information about GDP forecasting that interest rate term spread, government expenditure and net exports
already have, and therefore does not contribute much to the forecast.

However, changing the interest rate term spreads from the 10-year treasury constant maturity minus the
2-year treasury constant maturity to the 10-year treasury constant maturity minus the federal fund rate (FFR)
seems to reduce the forecasting efficiency of the OBLP because the 2-year treasury constant maturity interest
rate reflects the investment securities market conditions more closely than the FFR.

We also find that the single cointegration vector OBLP1 yields better forecasting results than the OBLP, with
the two cointegration vectors of GDP and consumption as dependent variables. This reflects the lower correla-
tion between errors in the cointegration of GDP and consumption, suggesting that the error correction process
mechanisms for GDP and consumption are different. In addition, the forecasts of the CIP and OBLP class models
tend to converge as the forecast horizon h increases.

14 In economic theory, these variables represent exogenous monetary (interest rate term spread and M1) and fiscal (government
expenditure) policies and foreign shocks (net exports), respectively. In particular, see Estrella and Hardouvelis (1991), Estrella and
Mishkin (1996, 1998), and Kishor and Koenig (2010) on the predictability of economic downturns from the interest rate term spread.
15 These additional estimates are not reported in the text.
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Figure 1: MSFE ratio relative to OBLP. Note: The ratio of the rel-

ative size of the MSFE of a predictor b to the OBLP is calculated
MSFED —MsFEOBLP
a5 7 0B
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6 Conclusions

This study proposes the OBLP, which is deduced from a two-step optimal forecasting method for non-stationary-
level variables cointegrated with fundamental variables. For this, the cointegration equilibrium is estimated in
the first step. The difference between the cointegration equilibrium and other predicted variables is optimally
forecasted in the second step, with conditional expectations estimated by the lagged fundamental differences
and cointegration errors, and summed with the cointegration equilibrium. We show that the OBLP has the
lowest MSFE among the linear forecasting methods of random walk, cointegration, and augmented error cor-
rection models. In the second step, the cointegration error correction model is converted into a VAR model
consisting of the cointegration error and the difference in the fundamental variables and is used to estimate
conditional expectations. In the simulation results, we compare the other predictors with the OBLP, and our
forecast results for the US GDP and consumption applying the OBLP support the theoretical predictions of the
forecasting efficiency of the OBLP.

Finally, it would be interesting to apply the predictions using the OBLP to other macroeconomic variables,
such as interest rates, stock prices, and exchange rates, in an empirical analysis.

Proof of Theorems
Proposition 1: Note that
Yerh =8+ 7' Xc + Qg (28)
from (6) where we may write
Qivn = 7’(Xt+h - Xt) +Z4in (29)

h
= 7’/2 A+ Zeyn

j=1
h—1
=7 MXppn + Zen + 7,2 AXyyj
=
h—1
= (}’I’Ir)wAHh + (7’/7 Orxr)z Wty
=1
h—1
= (yler)Mf,f(p—l) WAt+h + (7//’ Orxr)Mf,f(p—l)Z WAt+j
=1

h
= Z Y1jWaerj = Kon + KWy + €
=

where
Wpryj = Mf,f(p—l) Wty
and
-1 ) j .
—1
Waer; = | D, W | Wo + W Wy + ) W leyy,
i=0 i=1

from a repetitive substitution in (5). So, the claimed result holds from (28) and (29). [ ]
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Theorem 1: Note that
Yern = ' = (Ve — FPF) + (FPP = FEF) (30)

where
FOPLP — FIP = 5 — 0 + (v, — 60,) e + E(@esn) — S 31)

and y’x, = y,'n, from definitions (9) and (29).
Therefore, note that

T
MSFEY = TN (yeyn = FP) (e — FVP)’
=1
T T
_ T—1Z Veen — )’t+ _ FOBLP) + T—1Z FOBLP FLP) ( FOBLP _ FLP)
t=1
T T
+ T—1Z (th _ F:)BLP) (F:)BLP _ F{LP)’ + T—1Z (FtOBLP _ F[LP) (J’z+h _ F:)BLP)’
t=1 t=1
= MSFE®®"* 4+ 0,,(T?) (32)
because, from (31),
T
T—1Z ( F?BLP _ FILP) ( FIOBLP _ FtLP)’
t=1
=(6-0)(6- 9)/ Yn—6y) T‘lz nn (v, —6,) + T‘lz [E (Gesn) — st][ (@esn) — s]'
— ——
0,® H/—/ ~ ~ J
0,(T%) 0,
T T
— !
—0)TY 0/ (1 — 0,) + (ra— 0,) T (6 —
. t_‘i 7 . ‘,t_l 7
0,( 0,
T T
— ! — !’
- )T 12 [Et(qt+h) - st] +T 12 [Et(‘h+h) - St] (5 - 9)
=1 =1
0:?1) O:TI)
12 nt (qQeen) — St] + T_lz e(qeen) St] n (Yn = 0) (33)
- 7 . ~~ 7
OP(Tl/Z) Op(Tl/Z)
and
T T . ,
T 12 Vepn — FOPLP) (FOPLP _ FLP) = T—lz 5th[9 5+ (0, —vy) ny+s; —Et(qt+h)]
=1 =1

~
0,(1"%)

from Assumption 2 and y,,, — FP®* = ¢, using (12). Thus, the claimed result from Equation (32) holds. W
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Corollary 1: Note that

T
— ’
MSFE™™ — MSFE?P*" = T 12 [St (G ][st t(qt+h)]
=1
+ T 125th qt+h ] + T_lz E(qen ]Eth ;
|- ~ > (- ~ ~
0,1 0,(1)
from assumption because
T
BLP _ -1 OBLP | pOBLP _ pBLP OBLP | pOBLP _ pBLP)’
MSFE™ =T Z(—th_Ft +F —F )(yt+h_Ft +F —F )
t=1
and
FIOBLP - FfLP = Et((Ir+h) =S
from (12). Thus, the claimed results hold. [ |

Theorem 2: Note that
m; (MSFEP"? — MSFE®®")m; > 0,,(1) (4

from Corollary 1and T'Y " [s, — E;(qesn)] [Sc = E¢(qesn)] = 0. Now (34) implies that

MSFEPY" — MSFE®P™"' > 0,,(1) (35)
where ;
m{ MSFE?"'m; = T_lz ieen =M (8 +v"x) = m{'s| [Yiegn —m/ (6 +7'x,) = mi,st]’
t=1
= MSFEP™”
and
T
m; MSFE®*"*m; = T_lz [Yit+h -m{F ? BLP] [yit+h - m{F IO BLP]/
— MSFEOBLPi
because m;’s, = ¢, while both s, and c, are all arbitrary. [ ]
Lemma 1: Before proceeding, note that
Gen = Kon + Ky W + €01+ Qeion, = Qe (36)

from (16) where G, = 7’ (Xeon — X,) + Zy4p and

qen = Qeen = (7 = 7),(Xt+h —X)+6=06+(r _?)’th
=6—5+(r=7)x (37)

Then, the claimed result holds as

t=1

T T
<ﬁ0h’ﬁ1h)=(KOh’th)Z<MZI><1 WAt,) Z A A
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-1

T T A Ii
~ 1 Wy
+ Z Et’h <1 WA( ) Z A~ A~ ~ !
t=1 t=1 WAt WAtWAt
T T ~ ! -1
A ~ [/ 1 WAt
+ Z (Qt+h - qt+h)<1 W g ) Z ~ ~ At
t=1 t=1 WA[ WA[WAI
[from (18) and (36)]
= (KOh’th)
i ow, [y ow, )
_ At _ At
+ (Ko K| T 12 ~ T 12 A N At —lypag
=1 | Wy Wy Wy =1 | Wy WauWy
o ~ 7
0,0
_ -1
. A li
T h j . , T 1 WAt
-1 —i A~ -1
+|T ZZVL;Z"P] et+i<1 W 4 > T Z ~ N
t=1 j=1 =1 =1 Wy, WyWy
~ ~ < || < ~ v
0,0 0,

L P

s-5 - |5 °
NV 0 T,

DE GRUYTER

-1

t=1|X;, X
Op(l) Op(l) \ ~ ! ! AtJ « ~
0,() 0,
[from (37) and definition in (12)]
= (Ko Kip) +0,(1)
from Assumption 2 because
T Wy N EPTE R |
B At _ A
<T12l N /])leA N A[ Al ~e Lepn
=1 [ Wae WyWy =1 Wy WyWy
using the following facts:
T
T_lz <WAt WAt)
t=1
’ ’ !
oz( _A> 5_3+( _A>x
lkxl yery rx1 yery kot
S| [etr-2 -5+ -9y
—_ 2 t—
Ty - ,0,

/

~

[wxy—n(a—a

#(r=7)%pu) |

(38)
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from wy, = (4x/,z,) and 2, —z, = 6 — 5+ (y —7) x, using Assumption 2 (b) - ();

T
A~ A~ !
T_lz <WAz - WAt>WAt (39)
t=1

/

|0 (2= 2,)|

!/
T JARZN _ !’
[kal Nz —2ey) ] ) Al S At PP
(Ax[ Zes Ay ey o Mg 2o pi ) = 0,(D),
=1 : 1x¢p

’
PN ’
[kal > (Zt—p+l - Zt—p+1) ]

¢ pXx1
because .
!
T |0,(Z, -2 ' ax, 2!
[0 [ox05]
SR
=T ~ R x,z+—+y—yx>=o(1)
t=1 5_5+(V_7),Xt t t t !
from
(r=7) 12Ax +(r-7) T‘lleAxt =0,(1)
NM~—— = N~—— =l
0,(T1) =" 0,(17%/2) ~———~—"
0, 0,(1'7)
and

(5 5>T‘1Zzt ( )(5 5)

0,0
0,
( )T 1th (y=7)T 1thz[
AK-J t=1
« P J/ 0 (T_g/z)%,—J
0,1 0 (T1/2)

T
—?)'T‘lzxt(%g) (r=7) 12)% y=7) =0,
= —— ——

t= t=1
~ ~ - o,(1" 3/Z)\—ﬁx--—/o (172/7)
o,® 0,(T™)
using Assumption 2;'6
T
Ty et Wy')= 40 (40)
=1

from followmg facts (i) and (id);

@ 12 et+1< (WAt - WA!),>_) p0:

using (38) and Assumption 2(c) where W¥; = 0 for all i, and from a law of large numbers where ¢, is an i.i.d process
with a finite variance ~ > 0, and

16 The same result applies to other time difference terms in a similar way.
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T
(i) T‘lzlem-(l Wy' )= ,0
t=

from the law of large numbers in White (2001, Exercise 3.77) because { €y (1 W,/ ) } is amartingale difference

sequence from
E, [et+i<1 WAt,)] =0 andE[eH,-(l WAt,)] =0,

where &, is an i.i.d process with a finite variance X > 0.
1/2 1/2
2 4 4
ElecWa! | < (Elecal') " (EIWa/[') " < o0
from E |et|4 and E|w At|4 < 00! under assumption using Cauchy Schwarz inequality.

Theorem 3: Note that

_ pomip

_ OBLP OBLP OBLP
YVe+n P = Yen — F; +F —F,

— OBLP OBLP
=é&p+ Ft - Ft

where FOBEP = 6 + y'x, + Ko, + Ky, Wy, from (12).
Further, note that

————— ey PN /\, s P A\
FPPP — FOPMP = 6 — 6 + Koy — Ko + (¥ = 7) Xt+K1h(WAt_ WAt) + (th_th)WAt

~ ~ 0 ~ \ A
~\/
=6—6+Ky =Ko+ (v =7) Xt+K1h<Z ’z\> + (th _th>WAt
t T 4t
~ Fa ~\/
=6—-6+Ky, —Kp+ (r —7) X
Py /\, Pl P
+ th,2<5 - 5) + Ko (y =7) % + (th - K1h>WAt
~ o ~A \ A
=A+ (L +Kpy)(r =7) x + <K1h _th)WAt

from following definition;

O _ Pl /\/
Kin I =K1h,2(5—5>+K1h,z(J’—J/) X

t %t

A

for the third equality using z, — z, = (5 - 5) + (y —7)'x, where 4 = (I, + Ky, (6 - 3) + Koy, — Koy

From (43), we may write

T

— —\/
OBLP __ OBLP -1 OBLP OBLP OBLP OBLP
MSFECPIF = MSFEOPLP + 71y, ((POPLP — POBIF ) (pOPLF — pOBIP )
t=1
T —\/ T ——
+ T—1Z Eon ( FtOBLP _ F[OBLP) + T—1Z ( F[OBLP _ F;)BLP) 6t,h,'
t=1 t=1

Now the claimed result holds, as
MSFEOPP — MSFEOPP = o (1)

because

17 In this study, absolute values and inequalities are meant to hold for each element of the corresponding matrices.

41

(42)

(43)

(44)

(45)

(46)
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T — —\/
T—lZ ( F[OBLP _ F[OBLP) ( FtOBLP _ F?BLP)

t=1

= A4 + (L + Kypp) (v = 7 12szt y=7)(L +K1h2)

t=1 N, e’
0,0 0,(T72) N—— 10 (T7%72)
P 0,(1%) p
P

T
A A A / A _
+ <K1h - th) TN Wy Wy (Km - th) (I +Ku) (r =7)'T 12’( A
\ J t=1 I\ e’ —
0, —~ 0,(1) 0,(T7%) = o0
12 Op(l) p (0] (T)

T T
+ A T‘lg{xt’(y—?)(Ir+K1h,2),+(th—K1h>T‘1ZWAt a

e t=1
2 VT 0,(T7) 0,() N 20
0,(N ’ 0,

A ’ A~ ! ~ \/ ~ T A~ ! ~ \/
+ A T_lz Wy (th‘th> +(Ir+K1h,2)(}/_}/),T_lthWAt <K1h_K1h)

=1 N ,
0,() N oD 0 (T—S/Z)h,—/ 0.
Op(l) 4 (Tl/Z) p
T
— N A !/
+ T Wax! (r =7) (I + Kpp) = 0,(1)
t=1 ——
\—""\f—""/o (T 3/2)
0,(T?)
from (39), (44) and Lemma 1; and
L ORT T 4 ’ A A
T (FO = FOPP e,y = T (A + (I + Kuna) (7 = 7) X + (Kin = Rin ) W )
t=1 t=1
T
= A TN e,/ +(L+Ky,)(r=7)T1Y xe
N , ; th ( 1h2 Z t th
op(l) \ J 0 (T 3/2)\_ e’
OI,(l) 0 (T1/2)

T
+ (th - th) Ty Wt = 0,
N J t=1
o () N————
0,

from (39), (40), and (41), Assumption 2(c), and Lemma 1.

Corollary 2: Note that
m; MSFE?®"*m;— ,m/ MSFE?*"*m,

from Theorem 3. So, the claimed result holds.
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Appendix A

Simulation Results of MSFEs

DE GRUYTER

A=105p=01,pu=01

A=05p=02pu=01

h RWP cIp OBLP OBLP1 ECMP RWP cIp OBLP OBLP1 ECMP
1 1.594 1713 1358 1359 1363 1.635 1.848 1.348 1391 1351
2 2.524 2.078 1.988 1.981 2.002 2.56 2184 1.994 2.022 2.005
3 3129 2392 2.384 2.376 2.409 3.221 2.518 2452 2.469 2.473
4 3.635 2.696 2726 2712 2764 3.706 2.839 2.84 2.829 2.875
5 3.915 2.926 2.979 2.955 3.026 4.08 3.147 3.186 3.167 3236
6 431 3.244 331 3.276 3.375 4.502 3.494 3.548 3523 3.614
7 463 3513 3.564 3.533 3.638 4915 3.815 3.868 3.85 3.935
8 5.07 3.882 3.928 3.903 4.004 5.203 4108 4163 4148 4246
9 5.341 4124 4174 4.5 4258 5.542 4.407 4.464 4.451 4.561
10 5.627 4.43 4.492 4.463 4.579 5.819 4.678 4734 470 4.843
1 5.994 4779 4.819 4.805 4.933 6.189 5.041 5.107 5.093 5.224
12 6.291 5.122 5.168 5.15 5.286 6.459 5.304 5368 5.351 5.506
13 6.636 5.44 5.486 5.465 5.611 6.829 5.665 5.737 5.721 5.898
14 6.954 5.751 5.787 5.772 5.92 717 5.995 6.07 6.044 6.235
15 7.246 6.037 6.08 6.065 6.234 7.44 6.304 6.368 6.345 6.551
16 7.63 6.476 6.515 6.503 6.69 7.974 6.81 6.875 6.85 7.058
17 8.03 6.859 6.901 6.893 7.116 8.246 7.108 7.162 7141 7.359
18 8313 7.16 7.208 7.197 7.444 8.561 7.389 7.451 7.432 7.64
19 8.625 7.531 7.575 7.561 7.811 8.877 7.697 7.757 7.731 7.981
20 8.901 7.835 7.876 7.861 8.152 9.228 8.035 8.091 8.062 8.33
A=05,p=03, u=0.1 A=05,p=04, u=0.1
h RWP CIP OBLP OBLP1 ECMP RWP CIP OBLP OBLP1 ECMP
1 1.651 2173 1342 1471 1348 1.704 3472 1357 1.622 136
2 2.526 2519 2.013 2151 2.023 2518 3.673 2154 2.429 215
3 3212 2.95 2.64 2732 2.659 322 4136 2.923 3.156 2.923
4 3.766 3.265 3105 3.156 3138 3.967 4.634 3.7 3.884 3.714
5 4301 3.626 3573 3.587 3.629 4.626 5.08 4.4 4535 4416
6 4762 3.962 3.967 3.966 4.039 5.156 5.404 4.955 5.025 4.969
7 5312 436 4.404 4386 4.484 5.751 5.803 5.527 5.564 5.561
8 5.778 4719 4796 4769 4.893 6.399 6.254 6.125 6.128 6.174
9 6.189 5.023 5.101 5.078 5.214 6.984 6.642 6.635 6.608 6.714
10 6.518 5.321 5.418 5.388 5.535 7.465 6.947 7.018 6.981 7.088
1 6.842 5.622 5.724 5.688 5.862 8.014 7.375 7.508 7.46 7.612
12 7.319 6.06 6.159 6.129 6.3 8.578 7.91 8.093 8.044 8.205
13 7.724 6.409 6.51 6.489 6.65 8.969 8.295 8.545 8.461 8.657
14 8.043 6.747 6.849 6.831 7.006 9.378 8.647 8.92 8.833 9.056
15 8.374 7112 7.218 7.193 7.381 9.928 9.1 9.402 9.317 9.55
16 8.764 7.414 7.52 7.491 7.689 10.274 9.397 9.699 9.616 9.9
17 9.206 7.878 8.005 7.976 8.188 10.854 9.904 10.236 10139 10.435
18 9.693 8.346 8.471 8.446 8.664 11.295 10.311 10.637 10.545 10.869
19 10.054 8.69 8.809 8.779 9.016 11.813 10.775 11.109 11.016 11.378
20 10.542 9.157 9.27 9.241 9.52 12.39 11.261 11.582 11.493 11.904
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A=05,p=01,u=05 A=05,p=02u=05
h RWP cIp OBLP OBLP1 ECMP RWP cIp OBLP OBLP1 ECMP
1 1,643 1727 1.381 1.385 1.387 1,61 1.847 1.328 1384 1.329
2 2.606 2.101 2.02 2.016 2.036 2.478 2.205 1.975 2.026 1.987
3 3.084 2.341 2353 2333 2376 3.191 2.598 2.522 2.55 2.554
4 3.549 2.601 2.635 2622 2.67 3.554 2.84 2.827 2.837 2.875
5 3.965 2.924 2.957 2.941 3.006 4.035 3.154 3477 3173 3.24
6 4244 3.226 3.265 3.248 3324 4452 3.499 3.55 3.537 3.63
7 4.565 3.498 3.548 3.525 3.608 4.824 3.826 3.896 3.871 3.987
8 4.936 3.818 3.869 3.846 3.937 5.155 4.072 4145 4111 4279
9 5.305 419 4239 4221 4318 5.566 4.449 4527 4.496 4704
10 5.576 4509 4558 454 4.646 5.944 4799 4.863 4.842 5.074
1 5.938 4.84 4.899 4.875 4.982 6.171 5.003 5.068 5.044 5.351
12 6.247 5175 523 5.208 5328 6.403 5.281 5363 5337 5.688
13 6.691 5.567 5.612 5.598 5723 6.826 5.705 5.776 5753 6.154
14 7.095 5.955 6.007 5.981 6.132 7.243 6.074 6.152 6.122 6.662
15 7.409 6.242 6.277 6.261 6.435 7.662 6.479 6.557 6.53 7.178
16 7.661 6.539 6.575 6.562 6.735 7.991 6.791 6.869 6.842 7.593
17 8.03 6.847 6.887 6.878 7.051 8.273 7.086 7.157 7.131 7.947
18 8.437 7.24 7.274 727 7.448 8.671 7.495 7.566 7.541 8.509
19 8.846 7.668 7.726 7.709 7.925 8.945 7.775 7.848 7.822 8.963
20 9.203 8.048 8.111 8.089 8.36 9.375 8.251 8.325 8.293 9.621
2=05,p=03, =05 1=05,p=04, u=05
h RWP cIp OBLP OBLP1 ECMP RWP cIp OBLP OBLP1 ECMP
1 1.653 2196 135 1.488 1.356 1711 3.202 1.368 1.635 1373
2 2.564 2.603 2.086 2219 2108 2.56 3.684 2156 2458 2.165
3 3.277 3.019 2707 2.806 2728 3.266 4243 2.973 3.226 2.991
4 377 3.367 3.198 3.246 3.238 3.947 4,619 3.684 3.872 373
5 4.296 3.653 3.604 3.614 3.674 4.625 5.077 4.4m 4537 4.485
6 4749 3.954 3.973 3.964 4,058 5.17 5.575 5.102 5.185 5184
7 5.229 4378 4.435 4.4 4545 5.77 6.013 5722 5.756 5.858
8 5.645 4745 4.839 4799 4.972 6.355 6.433 6.298 6307 6.51
9 6.046 5.085 5214 5163 5374 6.925 6.889 6.913 6.874 7174
10 6.383 5.37 551 5.466 5736 7.331 7.245 7.366 7.306 7.707
11 6.744 5.715 5.868 5.822 6.147 7.887 7.724 7.941 7.861 8.374
12 7.166 6.028 6.175 6.127 6.543 8.388 8.205 8.503 8.412 9.066
13 7.494 6.338 6.479 6.434 6.941 8.91 8.622 8.981 8.874 9.72
14 7.945 6.734 6.878 6.832 7.445 9.471 9.07 9.466 9.345 10.337
15 8.264 7.058 7.187 7.144 7.926 10.086 9.623 10.041 9.92 11.037
16 8.625 7.414 7.538 7.499 8.365 10.429 9.947 10.376 10.261 11.525
17 8.908 7.694 7.8 7.768 8.722 10.887 10.371 10.818 10.701 12222
18 9.273 8.047 8.137 8.125 9.218 11392 10.845 11.294 11.182 12.832
19 9.595 8.405 8.503 8.478 9.756 1712 11165 11.622 11.507 13.362
20 10.057 8.876 8.993 8.957 10.469 12.091 11.557 12.029 11.917 13.986
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A=07,p=0.1, u=0.1 A=07,p=02,u=0.1
h RWP cIp OBLP OBLP1 ECMP RWP CIP OBLP OBLP1 ECMP
1 1.426 2.396 1.31 1.318 1314 1.461 3.336 1.354 1.442 1.358
2 2.575 2.827 2.237 2.25 2.257 2.545 3.853 231 2.493 2.315
3 3.493 3.265 2.952 2.964 2.989 3.425 4.296 3.145 3.329 3.165
4 4.212 37 3.569 3.557 3.618 4.186 4.776 3.904 4.071 3.931
5 4.77 4.015 3.99 3.972 4.054 4.905 5.229 4.586 4.735 4.624
6 5.285 4.363 4.409 4.387 4.482 5.561 5.658 5.2 5.325 5.242
7 5.773 4.719 4.796 4.773 4.879 6.093 6.054 5.762 5.85 5.814
8 6.224 5.018 5.13 5.095 5.234 6.67 6.452 6.333 6.363 6.412
9 6.663 5.397 5.541 5.494 5.656 7.223 6.872 6.864 6.864 6.962
10 7.005 5.734 5.896 5.843 6.038 7.646 7.159 7.238 7.215 7.365
1 7.393 6.064 6.233 6.178 6.385 8.151 7.566 7.735 7.681 7.872
12 7.809 6.427 6.595 6.541 6.777 8.589 7.966 8.215 8.131 8.391
13 8.247 6.829 6.992 6.936 7.196 9.101 8.416 8.707 8.611 8.9
14 8.602 7133 7.299 7.241 7.515 9.668 8.867 9.197 9.096 9.402
15 8.959 7.495 7.651 7.594 7.893 10.254 9.345 9.673 9.583 9.885
16 9.354 7.926 8.106 8.044 8.373 10.639 9.635 9.976 9.878 10.231
17 9.677 8.271 8.451 8.388 8.747 11.14 10.055 10.419 10.31 10.726
18 10.117 8.684 8.869 8.797 9.182 11.586 10.466 10.859 10.737 11.196
19 10.399 8.943 9.112 9.05 9.467 12.076 10.956 11.365 11.241 1.747
20 10.793 9.334 9.473 9.429 9.854 12.528 11.366 11.786 11.658 12.168
A=07,p=01, u=05 A=07,p=02,u=05
h RWP CIP OBLP OBLP1 ECMP RWP CIP OBLP OBLP1 ECMP
1 1.467 2.525 1371 1.385 1.377 1.419 2.435 1.325 1.334 1.331
2 2.592 2.965 2.33 2.336 2.348 2.507 2.906 2.272 2.285 2.285
3 3.463 3.359 3.029 3.027 3.072 3.351 3.303 2.981 2.976 3.004
4 4.135 3.756 3.587 3.582 3.657 4.049 3.678 3.543 3.529 3.579
5 4.687 4.067 4.023 4.007 4.117 4.766 4.149 413 4.1Mm 4.194
6 5.303 4.476 4.509 4.481 4.635 5.215 4.481 4.539 4.509 4.648
7 5.816 4.82 4.897 4.87 5.093 5.668 4.813 4.928 4.89 5.074
8 6.305 5.206 5.322 5.284 5.574 6.05 5.144 5.27 5.233 5.479
9 6.755 5.583 5721 5.686 6.029 6.585 5.533 5.686 5.637 5.967
10 71 5.869 6.031 5.98 6.395 7.06 5.965 6.131 6.078 6.503
1" 7.418 6.175 6.361 6.303 6.785 7.346 6.287 6.464 6.404 6.9
12 7.82 6.549 6.738 6.682 7.259 7.708 6.652 6.817 6.764 7.346
13 8.047 6.783 6.972 6.925 7.581 8.119 6.951 7.103 7.056 7.728
14 8.338 7.051 7.256 7.196 8.001 8.446 7.267 7.417 7.369 8.167
15 8.839 7.457 7.652 7.598 8.56 8.764 7.557 7.705 7.664 8.604
16 9.309 7.92 8.1M 8.059 9.184 9.124 791 8.087 8.035 9.129
17 9.715 8.319 8.505 8.449 9.764 9.496 8.261 8.439 8.383 9.653
18 10.118 8.761 8.95 8.893 10.448 9.892 8.659 8.829 8.78 10.226
19 10.434 9.086 9.259 9.207 10.968 10.192 8.92 9.102 9.042 10.731
20 10.713 9.386 9.556 9.496 11.556 10.519 9.244 9.435 9.364 11.307
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Appendix B
Graphs of MSFE Ratio Comparison
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Appendix C

Comparison of Prediction Errors of the Predictors for the US GDP and Consumption

GDP
h RWP cp OBLP OBLP1 ECMP
1 3.26E-05 0.002542909 5.08E-05 8.62E-06 4.21E-05
2 0.000212488 0.001727403 0.000297154 9.37E-05 0.000238805
3 0.000772134 0.00080382 0.00091498 0.000442591 0.000869382
4 0.001777196 0.000195502 0.00206539 0.001095312 0.001979646
5 0.002673287 1.97E-05 0.002900983 0.001630236 0.00279066
6 0.001825035 0.000180058 0.001757161 0.000829912 0.001920786
7 0.001893291 0.009930316 0.002031432 0.003550588 0.001862645
8 0.001600361 0.000260322 0.001333017 0.000450299 0.001426997
9 0.003279124 1.26E-06 0.00266211 0.001287562 0.002565353
10 0.006899988 0.000725072 0.005630794 0.00348158 0.005258846
1 0.012821841 0.003259789 0.010435198 0.007528494 0.009704139
12 0.018498792 0.006379417 0.015333165 0.0114428 0.01397476
13 0.02892438 0.012980655 0.024204309 0.019219619 0.022716846
14 0.03427973 0.016643283 0.027874189 0.022960305 0.028990529
15 0.04223897 0.022315043 0.033952655 0.028682749 0.03781501
16 0.049728285 0.027842055 0.040176917 0.034099237 0.044824833
17 0.057020857 0.033361531 0.045941975 0.03940116 0.053326852
18 0.064524805 0.03915583 0.051032039 0.044872106 0.065428491
19 0.069314251 0.042905731 0.053188094 0.047978423 0.074835721
20 0.08025364 0.051597906 0.060331916 0.056535873 0.092365352
Consumption

h RWP cp OBLP OBLP1 ECMP
1 4.77E-05 0.00398025 3.76E-05 1.54E-05 5.90E-05
2 0.000107305 0.003556216 9.51E-05 2.61E-05 0.000126229
3 0.000557568 0.0021511 0.000462535 0.000266604 0.00064064
4 0.001307121 0.001145057 0.001084896 0.000707384 0.001481522
5 0.002157744 0.000554193 0.00171602 0.00118166 0.002263322
6 0.00109426 0.001362586 0.0006129 0.000331722 0.001168679
7 0.003764306 0.017251972 0.005047532 0.006157309 0.003721043
8 0.001018033 0.001450559 0.000419959 0.000136812 0.000880767
9 0.002544972 0.000382011 0.001412778 0.000748579 0.001921366
10 0.006929691 0.000175614 0.004658435 0.0032792 0.005284781
1 0.016977752 0.003636799 0.012544745 0.010286453 0.013357517
12 0.022811909 0.006568016 0.017395848 0.014238673 0.017753095
13 0.031429434 0.011511286 0.02403677 0.020307374 0.024942795
14 0.038337336 0.01582725 0.028578247 0.025032869 0.0327311M1
15 0.047577724 0.021942604 0.035141204 0.031422496 0.042874999
16 0.054502229 0.026720578 0.040448571 0.0360104 0.049362836
17 0.060781599 0.031168638 0.044794872 0.040078619 0.056965715
18 0.070767806 0.038427513 0.051584102 0.047050077 0.071714052
19 0.075168454 0.041687772 0.053291281 0.049389318 0.080913991
20 0.083066152 0.047619605 0.057283969 0.054908134 0.095380875
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Data Description

GDP: Gross Domestic Product, Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate.

Consumption: Personal Consumption Expenditures, Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate.

Net exports: Net Exports of Goods and Services, Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate.

M1: M1 for the United States, National Currency, Quarterly, Seasonally Adjusted.

Term Spread: 10-Year Treasury Constant Maturity Minus 2-Year Treasury Constant (or Federal Fund Rate). Maturity (%),

Quarterly, Not Seasonally Adjusted.
Government Expenditure:  Federal Government: Current Expenditures, Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate.
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