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Abstract: This study proposes a two-step optimal best linear predictor (OBLP) under Phillips triangular coin-

tegrated system, deduced from a two-step optimal forecasting method, for non-stationary level variables coin-

tegrated with fundamental variables. In the first step, a cointegration equilibrium is estimated. The difference

between the cointegration equilibrium and the other predicted variables is optimally forecasted in the second

step, with conditional expectations estimated by the lagged fundamental differences and cointegration errors

and summed with the cointegration equilibrium. We show that the OBLP has the lowest mean squared fore-

casting error among linear forecasting methods, such as random walk, cointegration, and augmented error

correctionmodels. In the second step, the cointegration error correctionmodel is converted into a vector autore-

gression model consisting of the cointegration error and the fundamental differences of the variables and is

used to estimate conditional expectations. Simulation results comparing the other predictors with the OBLP and

forecast results for the US GDP and consumption applying the OBLP support the theoretical predictions of the

forecasting efficiency of the OBLP.

Keywords: optimal best linear prediction; Phillips triangular cointegrated system; cointegrated level variable;

two-step procedure

JEL Classification: C3

1 Introduction

And God shall wipe away all tears from their eyes; and there shall be no more death, neither sorrow, nor crying, neither shall

there be any more pain: for the former things are passed away. REVELATION 21-1.

The problem of using cointegration information for forecasting has focused on the role of cointegration errors

or error correction terms in predicting differences in cointegrated variables. Classical examples in this area

include Engle and Yoo (1987), Christoffersen and Diebold (1998), and Elliott (2006). However, when the focus is

on predicting the level of a cointegrated variable, the long-run cointegration equilibrium becomes important,

which has received little emphasis.1 An exception is Kim (2023), who addresses this issue in the triangular form

of Phillips (1991) for cointegration models.

In particular, Kim (2023) introduced the best linear predictor (BLP) with an asymptotic minimum mean

squared forecasting error (MSFE) among the linear predictors of variables in cointegrated systems. Kim (2023)

1 For many economic variables (such as exchange rates, interest rates), it is very important to predict not only the rate of change

but also the level itself.

I thank God for knowing everything and leading me to the Navotas Charity Foundation (http://navotas.or.kr/) and confess that I have

received all grace through it. However, all remaining errors belong to the author.

*Corresponding author: Yun-Yeong Kim, Department of International Trade, Dankook University, 126, Jukjeondong, Yongin-si,

Gyeonggi-do 448-701, Korea, E-mail: yunyeongkim@dankook.ac.kr

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International

License.

https://doi.org/10.1515/snde-2024-0107
http://navotas.or.kr/
mailto:yunyeongkim@dankook.ac.kr


2 — Y.-Y. Kim: Two-Step Optimal Prediction

showed that if the autocorrelation coefficient of the cointegration error between the prediction time and pre-

dicted targeting time is greater than 1∕2, the BLP is deduced from the random walk model. In other cases, the

BLP is deduced from the cointegration model. Under this scheme, Kim (2023) suggested a switching predictor

that automatically selects a randomwalk or cointegration model according to the size of the estimated autocor-

relation coefficient. He showed that the BLP has a weighted average form of the predictors using the random

walk and cointegration models and has the lowest MSFE among the linear form predictors using the variables

in cointegrated systems or their lagged variables. Here, there is a difference in Op(T
2) between the BLP and

the other linear-form predictors. Note that the BLPs may differ in Op(1) depending on the weighting coefficient;

however, Kim (2023) did not suggest a weighting coefficient that minimizes MSFE.

Under these circumstances, to improve the forecasting efficiency of the BLP, we propose the optimal best

linear predictor (OBLP), which is deduced from a two-step optimal forecasting method for non-stationary level

variables cointegrated with the fundamental variables. To do this, the cointegration equilibrium is estimated

in the first step. The difference between the cointegration equilibrium and the other predicted variables is

optimally forecasted in the second step, with conditional expectations estimated by the lagged fundamental dif-

ferences and cointegration errors and summed with the cointegration equilibrium. We show that the OBLP has

the lowest MSFE among linear forecasting methods, such as random walk, cointegration, and augmented error

correctionmodels. In the second step, the cointegration error correctionmodel is converted into a vector autore-

gression (VAR) model consisting of the cointegration error and the difference in the fundamental variables and

is used to estimate conditional expectations.

Note that following Engle and Yoo (1987), Christoffersen and Diebold (1998), and others, Elliott (2006, p. 584,

Eq. 11) addressed the problem of optimal forecasting of co-integrated differenced variables in a bivariate VAR(1)

model. An OBLP can equivalently be deduced by adding Elliott’s (2006) predictor to the forecast baseline-level

variable; however, an OBLP has not yet been provided for the general VAR(q) model.

The remainder of this paper is organized as follows. Section 2 introduces the optimal BLP and Section 3

discusses the OBLP estimation. Section 4 provides the Monte Carlo simulation results, and Section 5 presents an

application to the prediction of United States’ GDP and consumption. Finally, Section 6 concludes the paper.

2 Derivation of the OBLP

First, we assume that the r × 1-vector yt and the k × 1-variable xt explaining it are jointly represented by a VAR

model; that is, we consider the 𝓁 (≡ r + k)-dimensional and integrated of order one VAR(p) process of Yt given

by

Yt = Π0 +Π1Yt−1 +Π2Yt−2 + · · · + Π pYt− p + 𝜀t (1)

or

𝛥Yt = Φ0 +ΦYt−1 +
p−1∑
i=1

Φi𝛥Yt−i + 𝜀t (2)

where Yt ≡
(
xt

′, yt
′)′,Π = ∑ p

i=1Πi,Φ = Π− I𝓁 ,Φi = −∑ p

j=i+1Π j and 𝜀t is an 𝓁 × 1 vector of an independently

and identically distributed (i.i.d henceforth) disturbance term with a finite variance Σ> 0, where I𝓁 denotes an

𝓁-dimensional identity matrix and 𝛥Yt ≡ Yt − Yt−1.

Further, we assume the cointegration of Model (1) (e.g., Johansen 1991) as follows:

Assumption 1. We assume Φ = 𝛼𝛽′, where 𝛼 and 𝛽 are 𝓁 × r matrices of the full-column rank r where 𝛽′ ≡(
−𝛾 ′, Ir

)
of rank r and 𝛾 is k × r.

Note that Model (2) may be written as an error correction model (ECM) as

𝛥Yt = Φ0 + 𝛼zt−1 +
p−1∑
i=1

Φi𝛥Yt−i + 𝜀t (3)

under Assumption 1, where zt = 𝛽′Yt.
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Now, we transform Model (3) into a stationary VAR model of the I(0) variables Δxt and zt. To obtain this

stationary VAR representation, we first define a non-singular square matrix as follows:

N ≡

(
Ik 0k×r

−𝛾 ′ Ir

)
.

It should be noted that the lower triangular matrix N transforms the VAR variable Yt =
(
xt

′, yt
′)′ into the

variable wt of xt and cointegration error zt.

N × Yt =
(
xt

′, zt
′)′

≡ 𝑤t.

Following Kim (2012, 2018), we multiply the above matrix N on the left-hand side of Model (1) and modify

the VAR coefficients to obtain the following VAR model of the purely stationary variable𝑤𝛥t
𝓁×1

=
(
𝛥xt

′, zt
′)′:

𝑤𝛥t = 𝜓0 + 𝜓1𝑤𝛥t−1 + 𝜓2𝑤𝛥t−2 + · · · + 𝜓 p𝑤𝛥t− p + et (4)

where et = N × 𝜀t, or a state space form:

W𝛥t = Ψ0 +ΨW𝛥t−1 + et (5)

whereW𝛥t
𝓁 p×1

=

⎛⎜⎜⎜⎜⎜⎝

𝑤𝛥t

𝑤𝛥t−1
...

𝑤𝛥t− p+1

⎞⎟⎟⎟⎟⎟⎠
,Ψ0 =

⎛⎜⎜⎜⎜⎜⎝

𝜓0

0

...

0

⎞⎟⎟⎟⎟⎟⎠
, Ψ
𝓁 p×𝓁 p

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜓1 𝜓2 · · · 𝜓 p−1 𝜓 p

I𝓁 · · · 0 0

... I𝓁
...

⋱

0 I𝓁 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and et =

⎛⎜⎜⎜⎜⎜⎝

et

0

...

0

⎞⎟⎟⎟⎟⎟⎠
.

Note that the columns of𝜓p from the first to k-th are imposed as zero vectors/matrices, following Kim (2012,

Theorem 3.2); thus,Δxt-p does not appear in Equation (4).2

We define two selection matrices, Ma,b≡(Ia,0a×b) and Ma,b ≡
(
0a×b, Ia

)
. Now, equation (4) can be regarded

as a Phillips (1991) triangular representation of a cointegrated system, as follows:

yt
r×1

= 𝛿
r×1

+ 𝛾 ′xt
r×1

+ zt
r×1

(6)

and

𝛥xt = 𝜇 + ut (7)

for t= 1, 2,. . . , T , where 𝜇 =Mk,r𝜓0, 𝛿 = Mr,k𝜓0, ut = Mk,r

(∑ p

i=1𝜓i𝑤𝛥t−i + et
)
and zt = Mr,k

(∑ p

i=1𝜓i𝑤𝛥t−i + et
)
.

At time t, we aim to predict the variables yit+h for 1 ≤ i ≤ r and h ∈ Z+, where Z+ denotes a set of positive

integers, and yt ≡
(
y1t, y2t, ..., yrt

)′
. Let

(
𝛿̂, 𝛾̂ ′

)
be an OLS (ordinary least square) estimator of (𝛿,𝛾 ′).

Furthermore, we assume the following standard regularity conditions, as in Kim (2023):

Assumption 2. We assume:

(a) T−1
∑T

t=1zt = Op(1);

(b) T−2
∑T

t=1xt = Op(1);

(c) T−3∕2
∑T

t=1xtzt+h = Op(1);

(d) T−3∕2
∑T

t=1
(
xt+h − xt

)
xt

′ = Op(1);

(e) T−3
∑T

t=1xtxt
′ = Op(1);

2 Campbell and Shiller (1987, Equation 5) used the system (4) without referring to how it is derived from the VAR model of (1) by

using the rank deficiency of matrixΦ= 𝛼𝛽 ′
in Assumption 1, with the aforementioned zero restriction of the coefficient 𝜓p.
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(f) T−1
∑T

t=1zt+hzt→ pE
(
zt+hzt

)
;

(g) T−1
∑T

t=1ut = op(1);

(h)

⎡⎢⎢⎣
T1∕2

(
𝛿̂ − 𝛿

)
T3∕2

(
𝛾̂ − 𝛾

)⎤⎥⎥⎦ = Op(1);

(i) E||𝜀t||4 and E||𝑤𝛥t
||4 <∞.

Remark 1. (i) Assumptions 2 (b)–(e) hold because xt has a drift term. Please refer to Hamilton (1994,

Proposition 17.3). (ii) See Hamilton (1994, 7.2.15), from which Assumption 2 (f) holds with a certain stationarity

assumption. ■
To improve forecasting efficiency, we first find the optimal predictor for a variable yt+h that is considered

to be dependent in the presence of r cointegrating relationships, as in (6), and use the information set Ωt ≡(
Y1

′, Y2
′, ..., Yt

′)′. Then, we suggest the optimal (scalar) predictor for yit+h, which belongs to the original yt+h
that we want to predict. Since this method uses the system-wide cointegrated error terms simultaneously for

prediction, it may have a lower MSFE than finding the optimal predictor for yit+h restrictively. This kind of

prediction efficiency improvement is possible if the cointegrated error term of the dependent variable to be

predicted is highly correlated with the error terms of the other dependent variables (i.e. yt except yit).

Next, the MSFE of predictor b (Fb
t
) is defined as3

MSFEb ≡ T−1
T∑
t=1

(
yt+h − Fb

t

)2
. (8)

We then consider the following class of linear predictors (LP) as a baseline for evaluating the optimality of

the predictors that we introduce:

FLP
t

≡ 𝜃 + 𝜃n′nt + st, (9)

where 𝜃 is a r × 1, and 𝜃n is a 𝓁 p × r, vector/matrix of coefficients, respectively and, for instance, nt =(
Yt

′, Yt−1
′, ..., Yt− p+1

′)′ is a typical 𝓁 p × 1 I(1) variable selected/generated from a set {Yt−i}+∞i=0 , and st is a r × 1

I(0) variable selected/generated from a set {𝛥Yt−i, zt−i}+∞i=0 .
We define the best linear predictor (BLP) from Kim (2023, Eq. 2.5) as follows.4

FBLP
t

= 𝛿 + 𝛾 ′xt + st (10)

where st denotes an r × 1 Op(1) variable. For instance if st = zt, then F
BLP
t

is a random walk model predictor (an

RWP); if st = 0, then FBLP
t

is a cointegration model predictor (a CIP); if st = 𝜆𝜀t, then FBLPt
is one of the predictors

of Christoffersen and Diebold (1998, p. 13).5 Elliott (2006, p. 584, Eq. 11) illustrates a predictor (interpreted as a

level predictor) in a bivariate VAR(1) model, as follows:

FEL
t

= yt +
(

h∑
i=1
𝜌i−1
c

)
𝛼2zt (11)

= 𝛾 ′xt +
{
1+

(
h∑
i=1
𝜌i−1
c

)
𝛼2

}
zt

which is a BLP where 𝜌c = 𝛽𝛼′ and 𝛼 =
(
𝛼1

′, 𝛼2
′)′.

3 For the convenience of the analysis, it is assumed that the sample sizes for themodel coefficient andMSFE estimation are all equal

to T . Note that the predictor is time t dependent.

4 In Kim (2023, Eq. 2.5), this is given by st = wzt , but since w is an arbitrary real number, there is no difference between the BLP

definitions in (10) and Kim (2023, Eq. 2.5) except for the vector generalization.

5 However, this cannot be obtained with finite data, as it requires infinite lagged variables to identify the moving average error

term 𝜀t .
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However, unrestricted VAR models are generally not based on the BLPs. This is because, for example, a

predictor using a VAR(1) model has the form 𝜋1
′xt + 𝜋2′xt−1 and even if 𝜋1 = 𝛾 holds, the rest of the 𝜋2′xt−1 is

not I(0) in general.

Note that the BLPs may differ in Op(1) depending on the form of the I(0) variable st; however, Kim (2023) did

not suggest a weighting coefficient that minimizes the MSFE. Therefore, we now suggest the optimal BLP (OBLP)

of yt that minimizes the MSFE among the BLPs. For this purpose, we first exploit the following decomposition:

Proposition 1.

yt+h = 𝛿 + 𝛾 ′xt + Et
(
qt+h

)
+ 𝜀t,h (12)

where qt+h ≡ 𝛾 ′(xt+h-xt) + zt+h, Et(qt+h) = K0h + K1hWΔt and 𝜀t,h ≡
h∑
j=1
𝛾⊥ j

j∑
i=1

Ψ j−i
et+i with K0h ≡

h∑
j=1
𝛾⊥ j

[
j−1∑
i=0

Ψ j

]
Ψ0, K1h ≡

h∑
j=1
𝛾⊥ jΨ j

and

𝛾⊥ j =
{ (

𝛾 ′, Ir
)
M𝓁,𝓁( p−1) i f j = h(

𝛾 ′, 0r×r
)
M𝓁,𝓁( p−1) other𝑤ise

;

where Et
(
qt+h

)
denotes a conditional expectation of qt+h at a time t.

However, the conditional expectation Et(yt+h), which is the optimal predictor when yt is I(0), is not defined

in general because there are no finite moments of yt when yt is I(1). Therefore, OBLP for yt+h is defined from (12)

as the long-run cointegration equilibrium of yt after adding the conditional expectation of qt+h, which is I(0), as

follows:

FOBLP
t

= 𝛿 + 𝛾 ′xt + K0h + K1hW𝛥t. (13)

We now derive the difference in MSFE between the LP and OBLP as follows:

Theorem 1. Suppose that Assumptions 1 and 2hold. Further suppose that
∑T

t=1ntst
′ = Op

(
T3∕2

)
and

∑T

t=1nt𝜀t,h
′ =

Op

(
T3∕2

)
. Then

MSFELP −MSFEOBLP =
(
𝜃n − 𝛾n

)′(
T−1

T∑
t=1

ntnt
′

)(
𝜃n − 𝛾n

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(T2)

+ Op(T)

where 𝛾n =
⎛⎜⎜⎝

𝛾

0
(𝓁 p−k)×r

⎞⎟⎟⎠.
According to Theorem 1, the LP has a larger MSFE than the OBLP owing to a positive definite matrix of size

Op(T
2). Next, the difference in the MSFE between the BLP and OBLP is given as

Corollary 1. Suppose that Assumptions 1 and 2 hold and T−1
∑T

t=1𝜀t,h
[
st − Et

(
qt+h

)]′
→ p0.

6 Then

MSFEBLP −MSFEOBLP = T−1
T∑
t=1

[
st − Et

(
qt+h

)][
st − Et

(
qt+h

)]′ + op(1),

where T−1
∑T

t=1
[
st − Et

(
qt+h

)][
st − Et

(
qt+h

)]′
≥ 0.

6 It may hold from the law of large numbers, for instance, in Hamilton (1994, pp. 193–5) where
{[
st − Et

(
qt+h

)]
𝜀t,h

′} is a martingale
difference sequence Et

([
st − Et

(
qt+h

)]
𝜀t,h

′) = 0.



6 — Y.-Y. Kim: Two-Step Optimal Prediction

Next, the OBLP for yit+h is given by, which has the minimum MSFE among the BLPs. To demonstrate this,

we first define two predictors of yit+h.

FOBLPi
t

= mi
′FOBLP

t
(14)

and

FBLPi
t

= mi
′(𝛿 + 𝛾 ′xt)+ ct (15)

wheremi = (0(i-1)×1,1,0(r-i)×1) and ct is an arbitrary I(0) real variable.

For instance, FBLPi
t

is a predictor of yit+h using the cointegration error zit
7 in a VAR(1) model that is con-

formable with yit+h. Note that this is not a predictor deduced from the OBLP of yt+h, as in (13), using all

cointegration error vectors zt.

Accordingly, the optimality of the predictor (14) for yit+h is given by

Theorem 2.

MSFEBLPi −MSFEOBLPi ≥ op(1)

for any ct.

3 Estimation of the OBLP

In this section,we introduce a consistent estimator of theOBLP and demonstrate that the estimatedOBLP asymp-

totically has the same MSFE as the OBLP. To do so, we first rewrite the last three terms on the right-hand side of

Equation (12) as follows:

qt+h = K0h + K1hW𝛥t + 𝜀t,h (16)

because qt+h = Et(qt+h) + 𝜀t,h from definition.

Then, we define the estimated OBLP as

FÔBLP
t

= 𝛿̂ + 𝛾̂ ′xt + K̂0h + K̂1hŴ𝛥t (17)

where the coefficients in (16) are estimated using OLS as follows:

(
K̂0h, K̂1h

)
≡

T∑
t=1

q̂t+h

(
1 Ŵ𝛥t

′)⎛⎜⎜⎝
T∑
t=1

⎡⎢⎢⎣
1 Ŵ𝛥t

′

Ŵ𝛥t Ŵ𝛥tŴ𝛥t

′

⎤⎥⎥⎦
⎞⎟⎟⎠
−1

(18)

where ẑt ≡ yt − 𝛿̂ − 𝛾̂ ′xt, 𝑤̂𝛥t =
(
𝛥xt

′, ẑt
′)′

,

(
𝛿̂, 𝛾̂ ′
r×(k+1)

)′
≡

(
T∑
t=1

[
1 xt

′

xt xtxt
′

])−1

(k+1)×(k+1)

T∑
t=1

[
yt
′

xt yt
′

]
(k+1)×r

,

Ŵ𝛥t =

⎛⎜⎜⎜⎜⎜⎝

𝑤̂𝛥t

𝑤̂𝛥t−1
...

𝑤̂𝛥t− p+1

⎞⎟⎟⎟⎟⎟⎠
.

7 These predictors correspond to cases where there are multiple cointegration vectors in the VARmodel, but the predictions do not

reflect them, and only one cointegration vector is used to build the OBLP.
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Now note that

Lemma 1. Suppose Assumptions 1 and 2 hold. Then, K̂0h − K0h→ p0 and K̂1h − K1h→ p0.

We now show that the suggested OBLP estimator has the same MSFE as the OBLP in (15), as follows:

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then

MSFEÔBLP→ pMSFE
OBLP

where MSFEÔBLP = T−1
∑T

t=1

(
yt+h − FÔBLP

t

)(
yt+h − FÔBLP

t

)′
.

Finally, the OBLP for yit+h is given by

FÔBLPi
t

= mi
′
[
𝛿̂ + 𝛾̂ ′xt + K̂0h + K̂1hŴ𝛥t

]
.

The OBLP estimated in this manner can also be shown to have the same predictive efficiency as Theorem 3

based on the consistency of the OLS estimates.

Corollary 2. Suppose that Assumptions 1 and 2 hold. Then

MSFEÔBLPi→ pMSFE
OBLPi

where MSFEÔBLPi = T−1
∑T

t=1

(
yit+h − FÔBLPi

t

)(
yit+h − FÔBLPi

t

)′
.

In the example below, we show how the OBLP presented earlier is applied to the VAR(1) model.

Example 1. Under the VAR(1) of Yt without a constant-term model, the ECM is given by8

𝛥Yt = 𝛼zt−1 + 𝜀t (19)

where 𝛼 =
(
𝛼1

𝛼2

)
, zt = 𝛽′Yt ≡

(
−𝛾 ′, Ir

)(xt
yt

)
and 𝜀t ≡

(
𝜀xt

𝜀yt

)
conformably.

Then, Equation (19) may also be written in the VAR(1) form of wΔt:

𝑤𝛥t = Ψ𝑤𝛥t−1 + et (20)

where𝑤𝛥t =
(
𝛥xt

zt

)
,Ψ =

(
0 𝛼1

0 𝛽𝛼′ + Ir

)
and et =

(
𝜀xt

𝜀yt − 𝛾 ′𝜀xt

)
≡

(
e1t

e2t

)
.

Note that the OBLP becomes

FOBLP
t

= 𝛾 ′xt +
{(

h−1∑
i=1
𝛾𝛼1
[
𝛽𝛼′ + Ir

]i−1)+
(
𝛾𝛼1
[
𝛽𝛼′ + Ir

]h−1 + [𝛽𝛼′ + Ir
]h)}

zt (21)

8 Litterman (1986) proposed aMinnesota prior associated with a VAR(1) structure for Bayesian VAR prediction using a randomwalk

model.
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where

Et
(
qt+h

)
=

h∑
j=1
𝛾⊥ jΨ j

𝑤𝛥t (22)

=
h∑
j=1
𝛾⊥ j

(
0 𝛼1

[
𝛽𝛼′ + Ir

] j−1
0

[
𝛽𝛼′ + Ir

] j
)
𝑤𝛥t

=
(
𝛾 ′, Ir

)(0 𝛼1
[
𝛽𝛼′ + Ir

]h−1
0

[
𝛽𝛼′ + Ir

]h
)
𝑤𝛥t

+
h−1∑
j=1

(
𝛾 ′, 0r×r

)(0 𝛼1
[
𝛽𝛼′ + Ir

] j−1
0

[
𝛽𝛼′ + Ir

] j
)
𝑤𝛥t

=
{
𝛾 ′𝛼1

[
𝛽𝛼′ + Ir

]h−1 + [𝛽𝛼′ + Ir
]h + h−1∑

j=1
𝛾 ′𝛼1

[
𝛽𝛼′ + Ir

] j−1}
zt

because

Ψi =
(
0 𝛼1

[
𝛽𝛼′ + Ir

]i−1
0

[
𝛽𝛼′ + Ir

]i
)
.

Note that if 𝛼1 = 0,9 then (22) becomes

Et
(
qt+h

)
=
(
𝛽𝛼′ + Ir

)h
zt, (23)

where 𝛽𝛼′ = 𝛼2. In this case, we may get

FOBLP
t

= 𝛾 ′xt +
(
𝛽𝛼′ + Ir

)h
zt (24)

from (13).

Note that if r = 1 and |𝛽𝛼′+1|< 1, then the OBLP (24) approaches the RWP if h is small, while if h is large it

approaches the CIP because
(
𝛽𝛼′ + Ir

)h
is close to zero. Thus, the VAR(1) model under the restriction 𝛼1 = 0 can

be viewed as a generalized model that may approximate the RWP or the CIP depending on h. ■

4 Monte Carlo Simulation Results

We conducted aMonte Carlo experiment10 to verify the small-sample properties of the proposed predictors. The

basic simulation model used has the following triangular form:11

yt
2×1

= 𝛿 + 𝛾 ′ xt
2×1

+ zt, (25)

xt = 𝜇 + xt−1 + ut, (26)

9 This implies that xt is exogenous and zt does not Granger causeΔxt+i.
10 GAUSS20 was used for the simulations, and the codes are available on request.

11 Equations (25)–(27) can be expressed in a state space form as follows (and this is exploited in the simulation):

yt = 𝛿 +
(
𝛾 ′, I2

)(
xt

′, zt
′)′(

xt

zt

)
=
(
𝜇

0

)
+
(
02×2 0

0 Ψ

)(
xt−1
zt−1

)
+
(
ut

𝜀t

)
.
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and

zt = Ψzt−1 + 𝜀t (27)

for t = 1, 2, . . ., 100 and
(
ut, 𝜀t

)′ ∼ IIDN
(
0, I4

)
, where yt =

(
y1t, y2t

)′
. The parameters are set as follows:

𝛾 ′ =
(
0.5 0.1

0.1 0.5

)
,Ψ =

(
𝜆 𝜌

𝜌 𝜆

)
, 𝜆= 0.5 or 0.7, 𝜌= 0.1,. . . , 0.4, 𝛿 =

(
0.1

0.1

)
and𝜇 =

(
0.1

0.1

)
or

(
0.5

0.5

)
, respec-

tively. Here, 𝜌 denotes the correlation of the different co-integration errors.

Then, y1t+h is predicted at time t using 100 samples, where h= 1, 2, . . ., 20. The MSFEs are calculated for the

five predictors; RWP, CIP, OBLP, restricted OBLP using only the cointegration error of the predicted variable y1t (

OBLP1) and ECM predictor (ECMP).12 We also add a deterministic trend to the predictors to obtain

(i) RWP: (1, 0)
′ ×
(
yt + h𝛾 ′𝜇

)
(ii) CIP: (1, 0)

′ ×
(
𝛿 + 𝛾 ′xt + h𝛾 ′𝜇

)
(iii) ECMP: (0, 0, 1, 0)

′
{
Yt + E

[(
Yt+h − Yt

)
zt
]
E
[
ztzt

′]−1zt}+ (1, 0)
′ × h𝛾 ′𝜇

where Yt =
(
xt

′, yt
′)′.

Subsequently, theMSFEs are computed as themean of the samples from 10,000 repetitions of the aforemen-

tioned experiments.

The simulation results in Appendix A confirm the theoretical expectation; that is, when the prediction

period h is small, the OBLP has the best MSFE among the predictors in terms of prediction stability and effi-

ciency. In Appendix B, the ratio of the relative size of the MSFE of predictor b to that of the OBLP is calculated

as
MSFEb −MSFEOBLP

MSFEOBLP

and plotted it on a graph with the forecast horizon (1–20) on the x-axis.

From the calculations, we obtained the following results. First, the variation in the cointegration matrix 𝛾

does not significantly change the forecast results. Second, an increase in 𝜌 leads to an increase in the forecasting

efficiency of OBLP compared with that of OBLP1, which seems to be because the increased forecasting efficiency

of OBLP uses additional cointegration errors from other equations in the forecast.

Third, the CIP shows a much lower forecast efficiency than the OBLP for short-term forecasts but slightly

better efficiency than the OBLP as the forecast horizon increases. However, as the error correction process slows

(i.e. as 𝜆 increases), the decrease in the MSFE of the CIP relative to that of the OBLP is delayed as the forecast

period increases.

Finally, the RWP is inferior to the OBLP over the period, but converges to the OBLP as the forecast horizon

increases, whereas the ECMP is less efficient than the OBLP as the forecast horizon increases. This phenomenon

is further exacerbated as 𝜇, which represents the magnitude of the deterministic trend, increases.

12 From the ECMs, as in Elliott (2006), the following equation is derived by iterative substitution.

Yt+h − Yt = 𝛼
[
h−1∑
j=0

(
𝛽′𝛼 + I2

) j]
zt + 𝜀t+h

where 𝜀t+h consists of the error terms after time t. Therefore, the ECMP is given as in (iii).

FECM
t

= (0, 0, 1, 0)
′
{
Yt + E

[(
Yt+h − Yt

)
zt
]
E
[
ztzt

′]−1zt}.
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Table 1: Unit root test Results.

Included terms None Intercept Trend and intercept

ADF ADF ERS ADF ERS

GDP 1.000 0.000 5,675.509 0.0088 264.7067

Consumption 1.000 0.000 5,840.787 0.0441 265.2141

Net exports 0.7157 0.7219 22.51895 0.2347 7.019256

Interest rate term spread 0.5398 0.7992 6.203761 0.2180 3.012781

Government expenditure 1.0000 0.2782 1,026.363 0.0637 24.87423

1) P-value for the null hypothesis: The variable has a unit root, and the lag length is selected using the Schwarz criterion. 2) The critical

values for the 1 % level are 1.99 (when an intercept is included in the test equation) and 3.96 (when the trend and intercept are included

in the test equation) according to Elliott et al. (1996, Table 1). Autoregressive spectral ordinary least squares (OLS) was used as an

estimation method.

5 Application to the United States GDP and Consumption Prediction

In this section, we conduct out-of-sample forecasts for US GDP and consumption using the predictors suggested

in Section 4. We compare the forecast performance with the MSFE calculated using h-period (1, 2,. . . , 20)-ahead

estimated forecast errors. The data used have a quarterly frequency that extends from Q3 1976 to Q3 2023.13

Therefore, the analysis of the out-of-sample predictive performance of the proposed model consists of fore-

casting US GDP and consumption for each quarter from Q1 2018 to Q3 2023 using data from Q3 1976 to Q4

2017.

The data source is the United States Federal Reserve Board at St. Louis FRED. The cointegration fundamen-

tals initially considered for US GDP and consumption are interest rate term spread, net exports, and government

expenditure. All variables, except interest rate term spread and net exports, are log-transformed.

Before proceeding, we conduct augmented Dickey–Fuller (ADF) and Elliott–Rothenberg–Stock (ERS) point

optimal tests to check the unit root of the variables considered. Table 1 presents the unit root test results. The

ADF test results show that the null hypothesis (i.e. that the variable has a unit root) is not rejected at the 1 %

significance level when the test equation does not include a trend or intercept term. The results of the ERS test

show that the null hypothesis is not rejected at the 1 % significance level when the test equation includes a trend

or an intercept term.

Therefore, although this is somewhat restrictive for GDP and consumption in the added trend or intercept

term cases, we assume that all variables have unit roots and proceed with the following analysis:

We then conduct Johansen cointegration tests using a VAR model to check whether a cointegration vec-

tor exists in the VAR model. We set the lag length of the VAR model to 1, based on the most parsimonious

Schwarz information criterion. The Johansen test results, shown in Table 2, indicate that the trace andmaximum

eigenvalue tests jointly indicate one cointegrating equation at the level of 0.05.

Next, we estimate the forecasting model presented in Section 4 and calculate the forecast errors, as shown

in Appendix C. In Figure 1, the ratio of the relative size of the MSFE of predictor b to the OBLP is calculated as

follows:
MSFEb −MSFEOBLP

MSFEOBLP

and plotted it on a graphwith the forecast horizon (1–20) on the x-axis. The prediction errors for GDP in Figure 1

show that OBLP1 outperforms the other predictors for most forecast horizons when evaluated based on its fore-

casting efficiency and stability. The CIP is the strongest in long-run forecasting, but it shows a very large absolute

value of forecast error in the short-term horizon.

13 This is the maximum period for which data are available. See the end of this section for a detailed description of these variables.
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Table 2: Cointegration rank test results

Trace

Hypothesized Eigenvalue Trace 0.05 Prob.b

No. of CE(s) Statistic Critical value

Nonea 0.554488 185.9750 60.06141 0.0000

At most 1 0.083672 34.77985 40.17493 0.1572

At most 2 0.056804 18.43968 24.27596 0.2279

At most 3 0.029847 7.503785 12.32090 0.2778

At most 4 0.009778 1.837474 4.129906 0.2062

Maximum eigenvalue

Hypothesized Eigenvalue Max-Eigen . Prob.b

No. of CE(s) Statistic Critical value

Nonea 0.554488 151.1952 30.43961 0.0000

At most 1 0.083672 16.34017 24.15921 0.3936

At most 2 0.056804 10.93589 17.79730 0.3917

At most 3 0.029847 5.666310 11.22480 0.3892

At most 4 0.009778 1.837474 4.129906 0.2062

Max-eigenvalue test indicates one cointegrating equation at the 0.05 level. adenotes rejection of the hypothesis at the 0.05 level.
bMacKinnon et al. (1999) p-values.

The forecasting and estimation results are generally consistentwith themacroeconomic theory. First, OBLP1

has the best forecasting results when using the interest rate term spread, government expenditure, and net

exports as co-integrating explanatory variables for GDP (or consumption).14 For example, adding M1 and con-

sumption to the GDP forecast or excluding government expenditure leads to worse forecasting results.15 This is

likely because M1 has a low direct correlation with GDP, or it may be because consumption already has redun-

dant information about GDP forecasting that interest rate term spread, government expenditure and net exports

already have, and therefore does not contribute much to the forecast.

However, changing the interest rate term spreads from the 10-year treasury constant maturity minus the

2-year treasury constant maturity to the 10-year treasury constant maturity minus the federal fund rate (FFR)

seems to reduce the forecasting efficiency of the OBLP because the 2-year treasury constant maturity interest

rate reflects the investment securities market conditions more closely than the FFR.

We also find that the single cointegration vector OBLP1 yields better forecasting results than the OBLP, with

the two cointegration vectors of GDP and consumption as dependent variables. This reflects the lower correla-

tion between errors in the cointegration of GDP and consumption, suggesting that the error correction process

mechanisms for GDP and consumption are different. In addition, the forecasts of the CIP and OBLP class models

tend to converge as the forecast horizon h increases.

14 In economic theory, these variables represent exogenous monetary (interest rate term spread and M1) and fiscal (government

expenditure) policies and foreign shocks (net exports), respectively. In particular, see Estrella and Hardouvelis (1991), Estrella and

Mishkin (1996, 1998), and Kishor and Koenig (2010) on the predictability of economic downturns from the interest rate term spread.

15 These additional estimates are not reported in the text.
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Figure 1: MSFE ratio relative to OBLP. Note: The ratio of the rel-

ative size of the MSFE of a predictor b to the OBLP is calculated

as
MSFEb−MSFEOBLP

MSFEOBLP
.
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6 Conclusions

This study proposes the OBLP, which is deduced from a two-step optimal forecasting method for non-stationary-

level variables cointegrated with fundamental variables. For this, the cointegration equilibrium is estimated in

the first step. The difference between the cointegration equilibrium and other predicted variables is optimally

forecasted in the second step, with conditional expectations estimated by the lagged fundamental differences

and cointegration errors, and summed with the cointegration equilibrium. We show that the OBLP has the

lowest MSFE among the linear forecasting methods of random walk, cointegration, and augmented error cor-

rection models. In the second step, the cointegration error correction model is converted into a VAR model

consisting of the cointegration error and the difference in the fundamental variables and is used to estimate

conditional expectations. In the simulation results, we compare the other predictors with the OBLP, and our

forecast results for the US GDP and consumption applying the OBLP support the theoretical predictions of the

forecasting efficiency of the OBLP.

Finally, it would be interesting to apply the predictions using the OBLP to other macroeconomic variables,

such as interest rates, stock prices, and exchange rates, in an empirical analysis.

Proof of Theorems

Proposition 1: Note that

yt+h = 𝛿 + 𝛾 ′xt + qt+h, (28)

from (6) where we may write

qt+h = 𝛾 ′
(
xt+h − xt

)
+ zt+h (29)

= 𝛾 ′
h∑
j=1
𝛥xt+i + zt+h

= 𝛾 ′𝛥xt+h + zt+h + 𝛾 ′
h−1∑
j=1
𝛥xt+ j

=
(
𝛾 ′, Ir

)
𝑤𝛥t+h +

(
𝛾 ′, 0r×r

)h−1∑
j=1
𝑤𝛥t+ j

=
(
𝛾 ′, Ir

)
M𝓁,𝓁( p−1)W𝛥t+h +

(
𝛾 ′, 0r×r

)
M𝓁,𝓁( p−1)

h−1∑
j=1

W𝛥t+ j

=
h∑
j=1
𝛾⊥ jW𝛥t+ j = K0h + K1hW𝛥t + 𝜀t,h

where

𝑤𝛥t+ j = M𝓁,𝓁( p−1)W𝛥t+ j

and

W𝛥t+ j =
[

j−1∑
i=0

Ψ j

]
Ψ0 +Ψ j

W𝛥t +
j∑

i=1
Ψ j−i

et+i

from a repetitive substitution in (5). So, the claimed result holds from (28) and (29). ■
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Theorem 1: Note that

yt+h − FLP
t

=
(
yt+h − FOBLP

t

)
+
(
FOBLP
t

− FLP
t

)
(30)

where

FOBLP
t

− FLP
t

= 𝛿 − 𝜃 +
(
𝛾n − 𝜃n

)′
nt + Et

(
qt+h

)
− st, (31)

and 𝛾 ′xt ≡ 𝛾n
′nt from definitions (9) and (29).

Therefore, note that

MSFELP ≡ T−1
T∑
t=1

(
yt+h − FLP

t

)(
yt+h − FLP

t

)′
= T−1

T∑
t=1

(
yt+h − FOBLP

t

)(
yt+h − FOBLP

t

)′ + T−1
T∑
t=1

(
FOBLP
t

− FLP
t

)(
FOBLP
t

− FLP
t

)′
+ T−1

T∑
t=1

(
yt+h − FOBLP

t

)(
FOBLP
t

− FLP
t

)′ + T−1
T∑
t=1

(
FOBLP
t

− FLP
t

)(
yt+h − FOBLP

t

)′
= MSFEOBLP + Op

(
T2
)

(32)

because, from (31),

T−1
T∑
t=1

(
FOBLP
t

− FLP
t

)(
FOBLP
t

− FLP
t

)′
=
(
𝛿 − 𝜃

)(
𝛿 − 𝜃

)′
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

O p(1)

+
(
𝛾n − 𝜃n

)′
T−1

T∑
t=1

ntnt
′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
O p(T2)

(
𝛾n − 𝜃n

)
+ T−1

T∑
t=1

[
Et
(
qt+h

)
− st

][
Et
(
qt+h

)
− st

]′
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(1)

+
(
𝛿 − 𝜃

)
T−1

T∑
t=1

nt
′(𝛾n − 𝜃n)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
O p(T)

+
(
𝛾n − 𝜃n

)′
T−1

T∑
t=1

nt
(
𝛿 − 𝜃

)′
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(T)

+
(
𝛿 − 𝜃

)
T−1

T∑
t=1

[
Et
(
qt+h

)
− st

]′
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(1)

+ T−1
T∑
t=1

[
Et
(
qt+h

)
− st

](
𝛿 − 𝜃

)′
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(1)

+
(
𝛾n − 𝜃n

)′
T−1

T∑
t=1

nt
[
Et
(
qt+h

)
− st

]′
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(T1∕2)

+ T−1
T∑
t=1

[
Et
(
qt+h

)
− st

]
nt

′(𝛾n − 𝜃n)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(T1∕2)

(33)

and

T−1
T∑
t=1

(
yt+h − FOBLP

t

)(
FOBLP
t

− FLP
t

)′ = T−1
T∑
t=1
𝜀t,h

[
𝜃 − 𝛿 +

(
𝜃n − 𝛾n

)′
nt + st − Et

(
qt+h

)]′
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(T1∕2)

from Assumption 2 and yt+h − FOBLP
t

= 𝜀t,h using (12). Thus, the claimed result from Equation (32) holds. ■
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Corollary 1: Note that

MSFEBLP −MSFEOBLP = T−1
T∑
t=1

[
st − Et

(
qt+h

)][
st − Et

(
qt+h

)]′
+ T−1

T∑
t=1
𝜀t,h
[
st − Et

(
qt+h

)]′
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

o p(1)

+ T−1
T∑
t=1

[
st − Et

(
qt+h

)]
𝜀t,h

′

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
o p(1)

,

from assumption because

MSFEBLP ≡ T−1
T∑
t=1

(
yt+h − FOBLP

t
+ FOBLP

t
− FBLP

t

)(
yt+h − FOBLP

t
+ FOBLP

t
− FBLP

t

)′
and

FOBLP
t

− FBLP
t

= Et
(
qt+h

)
− st

from (12). Thus, the claimed results hold. ■

Theorem 2: Note that

mi
′(MSFEBLP −MSFEOBLP

)
mi ≥ op(1) (34)

from Corollary 1 and T−1
∑T

t=1
[
st − Et

(
qt+h

)][
st − Et

(
qt+h

)]′
≥ 0. Now (34) implies that

MSFEBLPi −MSFEOBLPi ≥ op(1) (35)

where

mi
′MSFEBLPmi = T−1

T∑
t=1

[
yit+h −mi

′(𝛿 + 𝛾 ′xt)−mi
′st
][
yit+h −mi

′(𝛿 + 𝛾 ′xt)−mi
′st
]′

= MSFEBLPi

and

mi
′MSFEOBLPmi = T−1

T∑
t=1

[
yit+h −mi

′FOBLP
t

][
yit+h −mi

′FOBLP
t

]′
= MSFEOBLPi

becausemi
′st = ct while both st and ct are all arbitrary. ■

Lemma 1: Before proceeding, note that

q̂t+h = K0h + K1hW𝛥t + 𝜀t,h + q̂t+h − qt+h (36)

from (16) where q̂t+h ≡ 𝛾̂
′(xt+h − xt

)
+ ẑt+h and

q̂t+h − qt+h =
(
𝛾̂ − 𝛾

)′(
xt+h − xt

)
+ 𝛿 − 𝛿̂ +

(
𝛾 − 𝛾̂

)′
xt+h

= 𝛿 − 𝛿̂ +
(
𝛾 − 𝛾̂

)′
xt. (37)

Then, the claimed result holds as

(
K̂0h, K̂1h

)
=
(
K0h,K1h

) T∑
t=1

(
1

W𝛥t

)(
1 Ŵ𝛥t

′)⎛⎜⎜⎝
T∑
t=1

⎡⎢⎢⎣
1 Ŵ𝛥t

′

Ŵ𝛥t Ŵ𝛥tŴ𝛥t

′

⎤⎥⎥⎦
⎞⎟⎟⎠
−1
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+
T∑
t=1
𝜀t,h

(
1 Ŵ𝛥t

′)⎛⎜⎜⎝
T∑
t=1

⎡⎢⎢⎣
1 Ŵ𝛥t

′

Ŵ𝛥t Ŵ𝛥tŴ𝛥t

′

⎤⎥⎥⎦
⎞⎟⎟⎠
−1

+
T∑
t=1

(
q̂t+h − qt+h

)(
1 Ŵ𝛥t

′)⎛⎜⎜⎝
T∑
t=1

⎡⎢⎢⎣
1 Ŵ𝛥t

′

Ŵ𝛥t Ŵ𝛥tŴ𝛥t

′

⎤⎥⎥⎦
⎞⎟⎟⎠
−1

[from (18) and (36)]

=
(
K0h,K1h

)

+
(
K0h,K1h

)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
T−1

T∑
t=1

⎡⎢⎢⎣
1 Ŵ𝛥t

′

W𝛥t W𝛥tŴ𝛥t

′

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(1)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝T−1

T∑
t=1

⎡⎢⎢⎣
1 Ŵ𝛥t

′

Ŵ𝛥t Ŵ𝛥tŴ𝛥t

′

⎤⎥⎥⎦
⎞⎟⎟⎠
−1

− I𝓁 p+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+

⎡⎢⎢⎢⎢⎢⎢⎣
T−1

T∑
t=1

h∑
j=1
𝛾⊥ j

j∑
i=1

Ψ j−i
et+i

(
1 Ŵ𝛥t

′)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

o p(1)

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝
T−1

T∑
t=1

⎡⎢⎢⎣
1 Ŵ𝛥t

′

Ŵ𝛥t Ŵ𝛥tŴ𝛥t

′

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(1)

⎞⎟⎟⎟⎟⎟⎟⎠

−1

+

⎛⎜⎜⎜⎜⎝
𝛿 − 𝛿̂
⏟⏟⏟

o p(1)

, T
(
𝛾 − 𝛾̂

)′
⏟⏞⏞⏟⏞⏞⏟

o p(1)

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
[
T−1 0

0 T−2Ik

]
T∑
t=1

⎡⎢⎢⎣
1 Ŵ𝛥t

′

xt xtŴ𝛥t

′

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(1)

⎞⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎜⎝
T−1

T∑
t=1

⎡⎢⎢⎣
1 Ŵ𝛥t

′

Ŵ𝛥t Ŵ𝛥tŴ𝛥t

′

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

O p(1)

⎞⎟⎟⎟⎟⎟⎟⎠

−1

[from (37) and definition in (12)]

=
(
K0h,K1h

)
+ op(1)

from Assumption 2 because(
T−1

T∑
t=1

[
1 W𝛥t

′

W𝛥t W𝛥tŴ𝛥t

′

])⎛⎜⎜⎝T−1
T∑
t=1

⎡⎢⎢⎣
1 Ŵ𝛥t

′

Ŵ𝛥t Ŵ𝛥tŴ𝛥t

′

⎤⎥⎥⎦
⎞⎟⎟⎠
−1

→ p I𝓁 p+1

using the following facts:

T−1
T∑
t=1

(
Ŵ𝛥t −W𝛥t

)
(38)

= T−1
T∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
0
k×1

′,

(
𝛾 − 𝛾̂
k×r

)′(
𝛿 − 𝛿̂
r×1

+
(
𝛾 − 𝛾̂
k×r

)′
xt
k×1

)′]′
[
0′,
(
𝛾 − 𝛾̂

)′(
𝛿 − 𝛿̂ +

(
𝛾 − 𝛾̂

)′
xt−1

)′]′
...[

0′,
(
𝛾 − 𝛾̂

)′(
𝛿 − 𝛿̂ +

(
𝛾 − 𝛾̂

)′
xt− p+1

)′]′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ p0,
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from𝑤𝛥t =
(
𝛥xt

′, zt
′)′ and ẑt − zt = 𝛿 − 𝛿̂ +

(
𝛾 − 𝛾̂

)′
xt using Assumption 2 (b) - (i);

T−1
T∑
t=1

(
Ŵ𝛥t −W𝛥t

)
Ŵ𝛥t

′
(39)

= T−1
T∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
0k×1

′,
(̂
zt − zt

)′]′[
0k×1

′,
(̂
zt−1 − zt−1

)′]′
...[

0k×1
′,
(̂
zt− p+1 − zt− p+1

)′]′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝓁 p×1

(
𝛥xt

′, ẑt
′
, 𝛥xt−1

′, ẑt−1
′
, · · · 𝛥xt− p+1

′, ẑt− p+1
′
)

1×𝓁 p

= op(1),

because

T−1
T∑
t=1

[
0′,
(̂
zt − zt

)′]′[
𝛥xt

′, ẑt
′]

= T−1
T∑
t=1

(
0

𝛿 − 𝛿̂ +
(
𝛾 − 𝛾̂

)′
xt

)(
𝛥xt

′,
[
zt + 𝛿 − 𝛿̂ +

(
𝛾 − 𝛾̂

)′
xt

]′)
= op(1)

from (
𝛾 − 𝛾̂

)
⏟⏟⏟

O p(T−3∕2)

T−1
T∑
t=1
𝛥xt

′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
O p(1)

+
(
𝛾 − 𝛾̂

)′
⏟⏟⏟

O p(T−3∕2)

T−1
T∑
t=1

xt𝛥xt
′

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

O p(T1∕2)

= op(1)

and (
𝛿 − 𝛿̂

)
T−1

T∑
t=1

zt
′

⏟⏞⏟⏞⏟
O p(1)

+
(
𝛿 − 𝛿̂

)(
𝛿 − 𝛿̂

)′
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

o p(1)

+
(
𝛿 − 𝛿̂

)
T−1

T∑
t=1

xt
′(𝛾 − 𝛾̂)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
o p(1)

+
(
𝛾 − 𝛾̂

)′
⏟⏟⏟

O p(T−3∕2)

T−1
T∑
t=1

xtzt
′

⏟⏞⏞⏞⏟⏞⏞⏞⏟

O p(T1∕2)

+
(
𝛾 − 𝛾̂

)′
T−1

T∑
t=1

xt

(
𝛿 − 𝛿̂

)′
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

o p(1)

+
(
𝛾 − 𝛾̂

)′
⏟⏟⏟

O p(T−3∕2)

T−1
T∑
t=1

xtxt
′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
O p(T−2)

(
𝛾 − 𝛾̂

)
⏟⏟⏟

O p(T−3∕2)

= op(1)

using Assumption 2;16

T−1
T∑
t=1

et+i

(
1 Ŵ𝛥t

′)
→ p0 (40)

from following facts (i) and (ii);

(i) T−1
T∑
t=1

et+i

(
1
(
W𝛥t − Ŵ𝛥t

)′)
→ p0,

using (38) and Assumption 2(c) whereΨi = 0 for all i, and from a law of large numberswhere 𝜀t is an i.i.d process

with a finite variance Σ > 0, and

16 The same result applies to other time difference terms in a similar way.
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(ii) T−1
T∑
t=1

et+i

(
1 W𝛥t

′
)
→ p0

from the lawof large numbers inWhite (2001, Exercise 3.77) because
{
et+i

(
1 W𝛥t

′
)}

is amartingale difference

sequence from

Et

[
et+i

(
1 W𝛥t

′
)]

= 0 and E
[
et+i

(
1 W𝛥t

′
)]

= 0, (41)

where 𝜀t is an i.i.d process with a finite variance Σ > 0.

E||et+iW𝛥t
′||2 < (E||et+i||4)1∕2(E||W𝛥t

′||4)1∕2 <∞ (42)

from E||𝜀t||4 and E||𝑤𝛥t
||4 <∞17 under assumption using Cauchy Schwarz inequality. ■

Theorem 3: Note that

yt+h − FÔBLP
t

= yt+h − FOBLP
t

+ FOBLP
t

− FÔBLP
t

= 𝜀t,h + FOBLP
t

− FÔBLP
t

(43)

where FOBLP
t

= 𝛿 + 𝛾 ′xt + K0h + K1hW𝛥t from (12).

Further, note that

FOBLP
t

− FÔBLP
t

= 𝛿 − 𝛿̂ + K0h − K̂0h +
(
𝛾 − 𝛾̂

)′
xt + K1h

(
W𝛥t − Ŵ𝛥t

)
+
(
K1h − K̂1h

)
Ŵ𝛥t

= 𝛿 − 𝛿̂ + K0h − K̂0h +
(
𝛾 − 𝛾̂

)′
xt + K1h

(
0

zt − ẑt

)
+
(
K1h − K̂1h

)
Ŵ𝛥t

= 𝛿 − 𝛿̂ + K0h − K̂0h +
(
𝛾 − 𝛾̂

)′
xt

+ K1h,2

(
𝛿 − 𝛿̂

)
+ K1h,2

(
𝛾 − 𝛾̂

)′
xt +

(
K1h − K̂1h

)
Ŵ𝛥t

= Â+
(
Ir + K1h,2

)(
𝛾 − 𝛾̂

)′
xt +

(
K1h − K̂1h

)
Ŵ𝛥t (44)

from following definition;

K1h

(
0

zt − ẑt

)
≡ K1h,2

(
𝛿 − 𝛿̂

)
+ K1h,2

(
𝛾 − 𝛾̂

)′
xt

for the third equality using zt − ẑt =
(
𝛿 − 𝛿̂

)
+
(
𝛾 − 𝛾̂

)′
xt, where Â ≡

(
Ir + K1h,2

)(
𝛿 − 𝛿̂

)
+ K0h − K̂0h.

From (43), we may write

MSFEOBLP = MSFEOBLP + T−1
T∑
t=1

(
FOBLP
t

− FÔBLP
t

)(
FOBLP
t

− FÔBLP
t

)′
+ T−1

T∑
t=1
𝜀t,h

(
FOBLP
t

− FÔBLP
t

)′
+ T−1

T∑
t=1

(
FOBLP
t

− FÔBLP
t

)
𝜀t,h

′. (45)

Now the claimed result holds, as

MSFEÔBLP −MSFEOBLP = op(1) (46)

because

17 In this study, absolute values and inequalities are meant to hold for each element of the corresponding matrices.
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T−1
T∑
t=1

(
FOBLP
t

− FÔBLP
t

)(
FOBLP
t

− FÔBLP
t

)′

= ÂÂ′
⏟⏟⏟

o p(1)

+
(
Ir + K1h,2

)(
𝛾 − 𝛾̂

)′
⏟⏟⏟

O p(T−3∕2)

⎛⎜⎜⎜⎜⎜⎜⎝
T−1

T∑
t=1

xtxt
′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
O p(T2)

⎞⎟⎟⎟⎟⎟⎟⎠
(
𝛾 − 𝛾̂

)
⏟⏟⏟

O p(T−3∕2)

(
Ir + K1h,2

)′

+
(
K1h − K̂1h

)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

o p(1)

⎛⎜⎜⎜⎜⎜⎜⎝
T−1

T∑
t=1

Ŵ𝛥tŴ𝛥t

′

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
O p(1)

⎞⎟⎟⎟⎟⎟⎟⎠
(
K1h − K̂1h

)′
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

o p(1)

+
(
Ir + K1h,2

)(
𝛾 − 𝛾̂

)′
⏟⏟⏟

O p(T−3∕2)

T−1
T∑
t=1

xt

⏟⏞⏟⏞⏟
O p(T)

Â′
⏟⏟⏟

o p(1)

+ Â
⏟⏟⏟

o p(1)

T−1
T∑
t=1

xt
′

⏟⏞⏟⏞⏟
O p(T)

(
𝛾 − 𝛾̂

)
⏟⏟⏟

O p(T−3∕2)

(
Ir + K1h,2

)′ + (K1h − K̂1h

)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

o p(1)

T−1
T∑
t=1

Ŵ𝛥t

⏟⏞⏞⏞⏟⏞⏞⏞⏟
O p(1)

Â′
⏟⏟⏟

o p(1)

+ Â
⏟⏟⏟

o p(1)

T−1
T∑
t=1

Ŵ𝛥t

′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
O p(1)

(
K1h − K̂1h

)′
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

o p(1)

+
(
Ir + K1h,2

)(
𝛾 − 𝛾̂

)′
⏟⏟⏟

O p(T−3∕2)

T−1
T∑
t=1

xtŴ𝛥t

′

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

O p(T1∕2)

(
K1h − K̂1h

)′
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

o p(1)

+ T−1
T∑
t=1

Ŵ𝛥txt
′

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

O p(T1∕2)

(
𝛾 − 𝛾̂

)
⏟⏟⏟

O p(T−3∕2)

(
Ir + K1h,2

)′ = op(1)

from (39), (44) and Lemma 1; and

T−1
T∑
t=1

(
FOBLP
t

− FÔBLP
t

)
𝜀t,h

′ = T−1
T∑
t=1

(
Â+

(
Ir + K1h,2

)(
𝛾 − 𝛾̂

)′
xt +

(
K1h − K̂1h

)
Ŵ𝛥t

)
𝜀t,h

′

= Â
⏟⏟⏟

o p(1)

T−1
T∑
t=1
𝜀t,h

′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
O p(1)

+
(
Ir + K1h,2

)(
𝛾 − 𝛾̂

)′
⏟⏟⏟

O p(T−3∕2)

T−1
T∑
t=1

xt𝜀t,h
′

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

O p(T1∕2)

+
(
K1h − K̂1h

)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

o p(1)

T−1
T∑
t=1

Ŵ𝛥t𝜀t,h
′

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
O p(1)

= op(1)

from (39), (40), and (41), Assumption 2(c), and Lemma 1. ■

Corollary 2: Note that

mi
′MSFEÔBLP

t
mi→ pmi

′MSFEOBLP
t

mi

from Theorem 3. So, the claimed result holds. ■
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Appendix A

Simulation Results of MSFEs

𝝀 = 0.5, 𝝆 = 0.1, 𝝁 = 0.1 𝝀 = 0.5, 𝝆 = 0.2, 𝝁 = 0.1

h RWP CIP OBLP OBLP1 ECMP RWP CIP OBLP OBLP1 ECMP

1 1.594 1.713 1.358 1.359 1.363 1.635 1.848 1.348 1.391 1.351

2 2.524 2.078 1.988 1.981 2.002 2.56 2.184 1.994 2.022 2.005

3 3.129 2.392 2.384 2.376 2.409 3.221 2.518 2.452 2.469 2.473

4 3.635 2.696 2.726 2.712 2.764 3.706 2.839 2.84 2.829 2.875

5 3.915 2.926 2.979 2.955 3.026 4.08 3.147 3.186 3.167 3.236

6 4.311 3.244 3.311 3.276 3.375 4.502 3.494 3.548 3.523 3.614

7 4.63 3.513 3.564 3.533 3.638 4.915 3.815 3.868 3.85 3.935

8 5.07 3.882 3.928 3.903 4.004 5.203 4.108 4.163 4.148 4.246

9 5.341 4.124 4.174 4.15 4.258 5.542 4.407 4.464 4.451 4.561

10 5.627 4.43 4.492 4.463 4.579 5.819 4.678 4.734 4.721 4.843

11 5.994 4.779 4.819 4.805 4.933 6.189 5.041 5.107 5.093 5.224

12 6.291 5.122 5.168 5.15 5.286 6.459 5.304 5.368 5.351 5.506

13 6.636 5.44 5.486 5.465 5.611 6.829 5.665 5.737 5.721 5.898

14 6.954 5.751 5.787 5.772 5.92 7.17 5.995 6.07 6.044 6.235

15 7.246 6.037 6.08 6.065 6.234 7.44 6.304 6.368 6.345 6.551

16 7.63 6.476 6.515 6.503 6.69 7.974 6.81 6.875 6.85 7.058

17 8.03 6.859 6.901 6.893 7.116 8.246 7.108 7.162 7.141 7.359

18 8.313 7.16 7.208 7.197 7.444 8.561 7.389 7.451 7.432 7.64

19 8.625 7.531 7.575 7.561 7.811 8.877 7.697 7.757 7.731 7.981

20 8.901 7.835 7.876 7.861 8.152 9.228 8.035 8.091 8.062 8.33

𝝀= ., 𝝆= ., 𝝁= . 𝝀= ., 𝝆= ., 𝝁= .

h RWP CIP OBLP OBLP ECMP RWP CIP OBLP OBLP ECMP

1 1.651 2.173 1.342 1.471 1.348 1.704 3.172 1.357 1.622 1.36

2 2.526 2.519 2.013 2.151 2.023 2.518 3.673 2.154 2.429 2.15

3 3.212 2.95 2.64 2.732 2.659 3.22 4.136 2.923 3.156 2.923

4 3.766 3.265 3.105 3.156 3.138 3.967 4.634 3.71 3.884 3.714

5 4.301 3.626 3.573 3.587 3.629 4.626 5.08 4.41 4.535 4.416

6 4.762 3.962 3.967 3.966 4.039 5.156 5.404 4.955 5.025 4.969

7 5.312 4.36 4.404 4.386 4.484 5.751 5.803 5.527 5.564 5.561

8 5.778 4.719 4.796 4.769 4.893 6.399 6.254 6.125 6.128 6.174

9 6.189 5.023 5.101 5.078 5.214 6.984 6.642 6.635 6.608 6.714

10 6.518 5.321 5.418 5.388 5.535 7.465 6.947 7.018 6.981 7.088

11 6.842 5.622 5.724 5.688 5.862 8.014 7.375 7.508 7.46 7.612

12 7.319 6.06 6.159 6.129 6.3 8.578 7.91 8.093 8.044 8.205

13 7.724 6.409 6.51 6.489 6.65 8.969 8.295 8.545 8.461 8.657

14 8.043 6.747 6.849 6.831 7.006 9.378 8.647 8.92 8.833 9.056

15 8.374 7.112 7.218 7.193 7.381 9.928 9.11 9.402 9.317 9.55

16 8.764 7.414 7.52 7.491 7.689 10.274 9.397 9.699 9.616 9.9

17 9.206 7.878 8.005 7.976 8.188 10.854 9.904 10.236 10.139 10.435

18 9.693 8.346 8.471 8.446 8.664 11.295 10.311 10.637 10.545 10.869

19 10.054 8.69 8.809 8.779 9.016 11.813 10.775 11.109 11.016 11.378

20 10.542 9.157 9.27 9.241 9.52 12.396 11.261 11.582 11.493 11.904
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𝝀= ., 𝝆= ., 𝝁= . 𝝀= ., 𝝆= ., 𝝁= .

h RWP CIP OBLP OBLP ECMP RWP CIP OBLP OBLP ECMP

1 1.643 1.727 1.381 1.385 1.387 1.61 1.847 1.328 1.384 1.329

2 2.606 2.101 2.02 2.016 2.036 2.478 2.205 1.975 2.026 1.987

3 3.084 2.341 2.353 2.333 2.376 3.191 2.598 2.522 2.55 2.554

4 3.549 2.601 2.635 2.622 2.67 3.554 2.84 2.827 2.837 2.875

5 3.965 2.924 2.957 2.941 3.006 4.035 3.154 3.177 3.173 3.24

6 4.244 3.226 3.265 3.248 3.324 4.452 3.499 3.55 3.537 3.63

7 4.565 3.498 3.548 3.525 3.608 4.824 3.826 3.896 3.871 3.987

8 4.936 3.818 3.869 3.846 3.937 5.155 4.072 4.145 4.111 4.279

9 5.305 4.19 4.239 4.221 4.318 5.566 4.449 4.527 4.496 4.704

10 5.576 4.509 4.558 4.54 4.646 5.944 4.799 4.863 4.842 5.074

11 5.938 4.84 4.899 4.875 4.982 6.171 5.003 5.068 5.044 5.351

12 6.247 5.175 5.23 5.208 5.328 6.403 5.281 5.363 5.337 5.688

13 6.691 5.567 5.612 5.598 5.723 6.826 5.705 5.776 5.753 6.154

14 7.095 5.955 6.007 5.981 6.132 7.243 6.074 6.152 6.122 6.662

15 7.409 6.242 6.277 6.261 6.435 7.662 6.479 6.557 6.53 7.178

16 7.661 6.539 6.575 6.562 6.735 7.991 6.791 6.869 6.842 7.593

17 8.03 6.847 6.887 6.878 7.051 8.273 7.086 7.157 7.131 7.947

18 8.437 7.24 7.274 7.27 7.448 8.671 7.495 7.566 7.541 8.509

19 8.846 7.668 7.726 7.709 7.925 8.945 7.775 7.848 7.822 8.963

20 9.203 8.048 8.111 8.089 8.36 9.375 8.251 8.325 8.293 9.621

𝝀= ., 𝝆= ., 𝝁= . 𝝀= ., 𝝆= ., 𝝁= .

h RWP CIP OBLP OBLP ECMP RWP CIP OBLP OBLP ECMP

1 1.653 2.196 1.35 1.488 1.356 1.711 3.202 1.368 1.635 1.373

2 2.564 2.603 2.086 2.219 2.108 2.56 3.684 2.156 2.458 2.165

3 3.277 3.019 2.707 2.806 2.728 3.266 4.243 2.973 3.226 2.991

4 3.77 3.367 3.198 3.246 3.238 3.947 4.619 3.684 3.872 3.73

5 4.296 3.653 3.604 3.614 3.674 4.625 5.077 4.411 4.537 4.485

6 4.749 3.954 3.973 3.964 4.058 5.17 5.575 5.102 5.185 5.184

7 5.229 4.378 4.435 4.41 4.545 5.77 6.013 5.722 5.756 5.858

8 5.645 4.745 4.839 4.799 4.972 6.355 6.433 6.298 6.307 6.511

9 6.046 5.085 5.214 5.163 5.374 6.925 6.889 6.913 6.874 7.174

10 6.383 5.37 5.511 5.466 5.736 7.331 7.245 7.366 7.306 7.707

11 6.744 5.715 5.868 5.822 6.147 7.887 7.724 7.941 7.861 8.374

12 7.166 6.028 6.175 6.127 6.543 8.388 8.205 8.503 8.412 9.066

13 7.494 6.338 6.479 6.434 6.941 8.91 8.622 8.981 8.874 9.72

14 7.945 6.734 6.878 6.832 7.445 9.471 9.07 9.466 9.345 10.337

15 8.264 7.058 7.187 7.144 7.926 10.086 9.623 10.041 9.92 11.037

16 8.625 7.414 7.538 7.499 8.365 10.429 9.947 10.376 10.261 11.525

17 8.908 7.694 7.8 7.768 8.722 10.887 10.371 10.818 10.701 12.222

18 9.273 8.047 8.137 8.125 9.218 11.392 10.845 11.294 11.182 12.832

19 9.595 8.405 8.503 8.478 9.756 11.712 11.165 11.622 11.507 13.362

20 10.057 8.876 8.993 8.957 10.469 12.091 11.557 12.029 11.917 13.986
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𝝀= ., 𝝆= ., 𝝁= . 𝝀= ., 𝝆= ., 𝝁= .

h RWP CIP OBLP OBLP ECMP RWP CIP OBLP OBLP ECMP

1 1.426 2.396 1.31 1.318 1.314 1.461 3.336 1.354 1.442 1.358

2 2.575 2.827 2.237 2.25 2.257 2.545 3.853 2.311 2.493 2.315

3 3.493 3.265 2.952 2.964 2.989 3.425 4.296 3.145 3.329 3.165

4 4.212 3.7 3.569 3.557 3.618 4.186 4.776 3.904 4.071 3.931

5 4.77 4.015 3.99 3.972 4.054 4.905 5.229 4.586 4.735 4.624

6 5.285 4.363 4.409 4.387 4.482 5.561 5.658 5.2 5.325 5.242

7 5.773 4.719 4.796 4.773 4.879 6.093 6.054 5.762 5.85 5.814

8 6.224 5.018 5.13 5.095 5.234 6.67 6.452 6.333 6.363 6.412

9 6.663 5.397 5.541 5.494 5.656 7.223 6.872 6.864 6.864 6.962

10 7.005 5.734 5.896 5.843 6.038 7.646 7.159 7.238 7.215 7.365

11 7.393 6.064 6.233 6.178 6.385 8.151 7.566 7.735 7.681 7.872

12 7.809 6.427 6.595 6.541 6.777 8.589 7.966 8.215 8.131 8.391

13 8.247 6.829 6.992 6.936 7.196 9.101 8.416 8.707 8.611 8.9

14 8.602 7.133 7.299 7.241 7.515 9.668 8.867 9.197 9.096 9.402

15 8.959 7.495 7.651 7.594 7.893 10.254 9.345 9.673 9.583 9.885

16 9.354 7.926 8.106 8.044 8.373 10.639 9.635 9.976 9.878 10.231

17 9.677 8.271 8.451 8.388 8.747 11.14 10.055 10.419 10.31 10.726

18 10.117 8.684 8.869 8.797 9.182 11.586 10.466 10.859 10.737 11.196

19 10.399 8.943 9.112 9.05 9.467 12.076 10.956 11.365 11.241 11.747

20 10.793 9.334 9.473 9.429 9.854 12.528 11.366 11.786 11.658 12.168

𝝀= ., 𝝆= ., 𝝁= . 𝝀= ., 𝝆= ., 𝝁= .

h RWP CIP OBLP OBLP ECMP RWP CIP OBLP OBLP ECMP

1 1.467 2.525 1.371 1.385 1.377 1.419 2.435 1.325 1.334 1.331

2 2.592 2.965 2.33 2.336 2.348 2.507 2.906 2.272 2.285 2.285

3 3.463 3.359 3.029 3.027 3.072 3.351 3.303 2.981 2.976 3.004

4 4.135 3.756 3.587 3.582 3.657 4.049 3.678 3.543 3.529 3.579

5 4.687 4.067 4.023 4.007 4.117 4.766 4.149 4.13 4.111 4.194

6 5.303 4.476 4.509 4.481 4.635 5.215 4.481 4.539 4.509 4.648

7 5.816 4.82 4.897 4.87 5.093 5.668 4.813 4.928 4.89 5.074

8 6.305 5.206 5.322 5.284 5.574 6.05 5.144 5.27 5.233 5.479

9 6.755 5.583 5.721 5.686 6.029 6.585 5.533 5.686 5.637 5.967

10 7.1 5.869 6.031 5.98 6.395 7.06 5.965 6.131 6.078 6.503

11 7.418 6.175 6.361 6.303 6.785 7.346 6.287 6.464 6.404 6.9

12 7.82 6.549 6.738 6.682 7.259 7.708 6.652 6.817 6.764 7.346

13 8.047 6.783 6.972 6.925 7.581 8.119 6.951 7.103 7.056 7.728

14 8.338 7.051 7.256 7.196 8.001 8.446 7.267 7.417 7.369 8.167

15 8.839 7.457 7.652 7.598 8.56 8.764 7.557 7.705 7.664 8.604

16 9.309 7.92 8.111 8.059 9.184 9.124 7.91 8.087 8.035 9.129

17 9.715 8.319 8.505 8.449 9.764 9.496 8.261 8.439 8.383 9.653

18 10.118 8.761 8.95 8.893 10.448 9.892 8.659 8.829 8.78 10.226

19 10.434 9.086 9.259 9.207 10.968 10.192 8.92 9.102 9.042 10.731

20 10.713 9.386 9.556 9.496 11.556 10.519 9.244 9.435 9.364 11.307
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Appendix B

Graphs of MSFE Ratio Comparison
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Appendix C

Comparison of Prediction Errors of the Predictors for the US GDP and Consumption

GDP

h RWP CIP OBLP OBLP1 ECMP

1 3.26E-05 0.002542909 5.08E-05 8.62E-06 4.21E-05

2 0.000212488 0.001727403 0.000297154 9.37E-05 0.000238805

3 0.000772134 0.00080382 0.00091498 0.000442591 0.000869382

4 0.001777196 0.000195502 0.00206539 0.001095312 0.001979646

5 0.002673287 1.97E-05 0.002900983 0.001630236 0.00279066

6 0.001825035 0.000180058 0.001757161 0.000829912 0.001920786

7 0.001893291 0.009930316 0.002031432 0.003550588 0.001862645

8 0.001600361 0.000260322 0.001333017 0.000450299 0.001426997

9 0.003279124 1.26E-06 0.00266211 0.001287562 0.002565353

10 0.006899988 0.000725072 0.005630794 0.00348158 0.005258846

11 0.012821841 0.003259789 0.010435198 0.007528494 0.009704139

12 0.018498792 0.006379417 0.015333165 0.0114428 0.01397476

13 0.02892438 0.012980655 0.024204309 0.019219619 0.022716846

14 0.03427973 0.016643283 0.027874189 0.022960305 0.028990529

15 0.04223897 0.022315043 0.033952655 0.028682749 0.03781501

16 0.049728285 0.027842055 0.040176917 0.034099237 0.044824833

17 0.057020857 0.033361531 0.045941975 0.03940116 0.053326852

18 0.064524805 0.03915583 0.051032039 0.044872106 0.065428491

19 0.069314251 0.042905731 0.053188094 0.047978423 0.074835721

20 0.08025364 0.051597906 0.060331916 0.056535873 0.092365352

Consumption

h RWP CIP OBLP OBLP ECMP

1 4.77E-05 0.00398025 3.76E-05 1.54E-05 5.90E-05

2 0.000107305 0.003556216 9.51E-05 2.61E-05 0.000126229

3 0.000557568 0.0021511 0.000462535 0.000266604 0.00064064

4 0.001307121 0.001145057 0.001084896 0.000707384 0.001481522

5 0.002157744 0.000554193 0.00171602 0.00118166 0.002263322

6 0.00109426 0.001362586 0.0006129 0.000331722 0.001168679

7 0.003764306 0.017251972 0.005047532 0.006157309 0.003721043

8 0.001018033 0.001450559 0.000419959 0.000136812 0.000880767

9 0.002544972 0.000382011 0.001412778 0.000748579 0.001921366

10 0.006929691 0.000175614 0.004658435 0.0032792 0.005284781

11 0.016977752 0.003636799 0.012544745 0.010286453 0.013357517

12 0.022811909 0.006568016 0.017395848 0.014238673 0.017753095

13 0.031429434 0.011511286 0.02403677 0.020307374 0.024942795

14 0.038337336 0.01582725 0.028578247 0.025032869 0.032731111

15 0.047577724 0.021942604 0.035141204 0.031422496 0.042874999

16 0.054502229 0.026720578 0.040448571 0.0360104 0.049362836

17 0.060781599 0.031168638 0.044794872 0.040078619 0.056965715

18 0.070767806 0.038427513 0.051584102 0.047050077 0.071714052

19 0.075168454 0.041687772 0.053291281 0.049389318 0.080913991

20 0.083066152 0.047619605 0.057283969 0.054908134 0.095380875
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Data Description

GDP: Gross Domestic Product, Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate.

Consumption: Personal Consumption Expenditures, Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate.

Net exports: Net Exports of Goods and Services, Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate.

M1: M1 for the United States, National Currency, Quarterly, Seasonally Adjusted.

Term Spread: 10-Year Treasury Constant Maturity Minus 2-Year Treasury Constant (or Federal Fund Rate). Maturity (%),

Quarterly, Not Seasonally Adjusted.

Government Expenditure: Federal Government: Current Expenditures, Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate.
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