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A Transformation from the VSTAR to the VSTARX

To transform a VSTAR into a VSTARX it is necessary to determine a transformation ma-
trix that can be applied to the original VSTAR to separate the vector of policy instruments
from the other variables. To determine this transformation matrix, the initial step is to
partition the VSTAR. In particular, partitioning equation (1) to separate the economy from
the policy instruments gives:

[
xt+1

ut+1

]
= [1− gM (s′uyt)]


[1− lM (s′xyt)]

[
λx1

λu1

]
+

[
Λx1 (L)
Λu1 (L)

]
yt

+lM (s′xyt)

{[
λx2

λu2

]
+

[
Λx2 (L)
Λu2 (L)

]
yt

}
+ (A.1)

gM (s′uyt)


[1− lM (s′xyt)]

[
λx3

λu3

]
+

[
Λx3 (L)
Λu3 (L)

]
yt

+lM (s′xyt)

{[
λx4

λu4

]
+

[
Λx4 (L)
Λu4 (L)

]
yt

}
+

[
vxt+1

vut+1

]
,

where Λxj (L) =
[

Λxxj (L) Λxuj (L)
]
, Λuj (L) =

[
Λuxj (L) Λuuj (L)

]
, j = 1, ..., 4.

The covariance matrix (2) is partitioned conformably as:

Ωt =

[
Ωxxt Ωxut

Ωuxt Ωuut

]
= [1− gV (s′uyt)]


[1− lV (s′xyt)]

[
Ωxx1 Ωxu1

Ωux1 Ωuu1

]
+lV (s′xyt)

[
Ωxx2 Ωxu2

Ωux2 Ωuu2

]
+ (A.2)

gV (s′uyt)


[1− lV (s′xyt)]

[
Ωxx3 Ωxu3

Ωux3 Ωuu3

]
+lV (s′xyt)

[
Ωxx4 Ωxu4

Ωux4 Ωuu4

]
 .
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The VSTAR residuals in (A.1) can be written as[
vxt
vut

]
=

[
I G12t

G21t I

] [
εxt
εut

]
where

[
ε′xt ε′ut

]′
is a vector of uncorrelated error terms, with εxt ∼ i.i.d. (0, σ2

x) and
εut ∼ i.i.d. (0, σ2

u). Thus vxt = εxt + G12tεut and vut = G21tεxt + εut.

A.1 Assumption A1

Set G12t = 0, so that vxt = εxt. Under this restriction (A.2) becomes

Ωt =

[
Ωxxt 0
Ωuxt Ωuut

]
= [1− gV (s′uyt)]


[1− lV (s′xyt)]

[
Ωxx1 0
Ωux1 Ωuu1

]
+lV (s′xyt)

[
Ωxx2 0
Ωux2 Ωuu2

]
+

gV (s′uyt)


[1− lV (s′xyt)]

[
Ωxx3 0
Ωux3 Ωuu3

]
+lV (s′xyt)

[
Ωxx4 0
Ωux4 Ωuu4

]
 .

Thus

Ωxxt = ε2xt = [1− gV (s′uyt)] {[1− lV (s′xyt)] Ωxx1 + lV (s′xyt) Ωxx2}+

gV (s′uyt) {[1− lV (s′xyt)] Ωxx3 + lV (s′xyt) Ωxx4}
Ωuxt = G21tε

2
xt = [1− gV (s′uyt)] {[1− lV (s′xyt)] Ωux1 + lV (s′xyt) Ωux2}+

gV (s′uyt) {[1− lV (s′xyt)] Ωux3 + lV (s′xyt) Ωux4}

which implies Ωuxt = G21tΩxxt and

G21t = ΩuxtΩ
−1
xxt

=

{
[1− gV (s′uyt)] {[1− lV (s′xyt)] Ωux1 + lV (s′xyt) Ωux2}+

gV (s′uyt) {[1− lV (s′xyt)] Ωux3 + lV (s′xyt) Ωux4}

}
×{

[1− gV (s′uyt)] {[1− lV (s′xyt)] Ωxx1 + lV (s′xyt) Ωxx2}+
gV (s′uyt) {[1− lV (s′xyt)] Ωxx3 + lV (s′xyt) Ωxx4}

}−1

.

Thus the transformation matrix

H−1
t =

[
I 0

−G21t I

]
can then be used to map the VSTAR into a VSTARX. To this end, pre-multiply both sides
of (A.1) by H−1

t to obtain:
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[
I 0

−G21t I

] [
xt+1

ut+1

]
=

[1− gM (s′uyt)]


[1− lM (s′xyt)]

{[
I 0

−G21t I

] [
λx1

λu1

]
+

[
I 0

−G21t I

] [
Λx1 (L)
Λu1 (L)

]
yt

}
+lM (s′xyt)

{[
I 0

−G21t I

] [
λx2

λu2

]
+

[
I 0

−G21t I

] [
Λx2 (L)
Λu2 (L)

]
yt

}
+

gM (s′uyt)


[1− lM (s′xyt)]

{[
I 0

−G21t I

] [
λx3

λu3

]
+

[
I 0

−G21t I

] [
Λx3 (L)
Λu3 (L)

]
yt

}
+lM (s′xyt)

{[
I 0

−G21t I

] [
λx4

λu4

]
+

[
I 0

−G21t I

] [
Λx4 (L)
Λu4 (L)

]
yt

}
+

[
I 0

−G21t I

] [
vxt+1

vut+1

]
.

This is solved as[
xt+1

ut+1 −G12txt+1

]
=

[1− gM (s′uyt)]


[1− lM (s′xyt)]

{[
λx1

λu1 −G12tλx1

]
+

[
Λx1 (L)

Λu1 (L)−G12tΛx1 (L)

]
yt

}
+

+lM (s′xyt)

{[
λx2

λu2 −G12tλx2

]
+

[
Λx2 (L)

Λu2 (L)−G12tΛx2 (L)

]
yt

}


+gM (s′uyt)


[1− lM (s′xyt)]

{[
λx3

λu3 −G12tλx3

]
+

[
Λx3 (L)

Λu3 (L)−G12tΛx3 (L)

]
yt

}
+

+lM (s′xyt)

{[
λx4

λu4 −G12tλx4

]
+

[
Λx4 (L)

Λu4 (L)−G12tΛx4 (L)

]
yt

}
+

[
vxt+1

vut+1 −G12tvxt+1

]
.
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After moving the term G12txt+1 on the right side and multiplying through, the equations
for the economy vector can be written in state-space form as a VSTARX:[

xt+1

ut+1

]
=

[1− gM (s′uyt)]



[1− lM (s′xyt)]


[
λx1

0

]
+

[
Λxx1 (L) Λxu1 (L)−Λxu11

0 0

] [
xt
ut

]
+

[
Λxu11

0

]
ut

+

lM (s′xyt)


[
λx2

0

]
+

[
Λxx2 (L) Λxu2 (L)−Λxu21

0 0

] [
xt
ut

]
+

[
Λxu21

0

]
ut





+ gM (s′uyt)



[1− lM (s′xyt)]


[
λx3

0

]
+

[
Λxx3 (L) Λxu3 (L)−Λxu31

0 0

] [
xt
ut

]
+

[
Λxu31

0

]
ut

+

lM (s′xyt)


[
λx4

0

]
+

[
Λxx4 (L) Λxu4 (L)−Λxu41

0 0

] [
xt
ut

]
+

[
Λxu41

0

]
ut




+

[
vxt+1

0

]
.

In the above, Λxuj (L) =
∑q

k=1 ΛxujkL
k, j = 1, ..., 4. Thus the term Λxuj1 is the matrix of

coefficients pertinent to ut in each state. This state-space representation for the economy
is equivalently written as in (4)-(5). Note that setting in the above all transition functions
equal to zero yields a dynamic system equivalent to the structural representation obtained
by applying A1 to the VAR model, as described in Section 2.2.

A.2 Assumption A2

Set G21t = 0, which implies vut = εut. Under this restriction (A.1) becomes

Ωt =

[
Ωxxt Ωxut

0 Ωuut

]
= [1− gV (s′uyt)]


[1− lV (s′xyt)]

[
Ωxx1 Ωxu1

0 Ωuu1

]
+lV (s′xyt)

[
Ωxx2 Ωxu2

0 Ωuu2

]
+

gV (s′uyt)


[1− lV (s′xyt)]

[
Ωxx3 Ωxu3

0 Ωuu3

]
+lV (s′xyt)

[
Ωxx4 Ωxu4

0 Ωuu4

]
 .
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It follows that:

Ωxut = G12tε
2
ut = [1− gV (s′uyt)] {[1− lV (s′xyt)] Ωxu1 + lV (s′xyt) Ωxu2}+

gV (s′uyt) {[1− lV (s′xyt)] Ωxu3 + lV (s′xyt) Ωxu4} ,
Ωuut = ε2ut = [1− gV (s′uyt)] {[1− lV (s′xyt)] Ωuu1 + lV (s′xyt) Ωuu2}+

gV (s′uyt) {[1− lV (s′xyt)] Ωuu3 + lV (s′xyt) Ωuu4} ,

which yields: Ωxut = G12tΩuut. Thus G12t = ΩxutΩ
−1
uut with

Ωxut = [1− gV (s′uyt)] {[1− lV (s′xyt)] Ωxu1 + lV (s′xyt) Ωxu2}+

gV (s′uyt) {[1− lV (s′xyt)] Ωxu3 + lV (s′xyt) Ωxu4}
Ωuut = [1− gV (s′uyt)] {[1− lV (s′xyt)] Ωuu1 + lV (s′xyt) Ωuu2}+

gV (s′uyt) {[1− lV (s′xyt)] Ωuu3 + lV (s′xyt) Ωuu4} .

The solution for G12t can be used to construct the transformation matrix

H−1
t =

[
I −G12t

0 I

]
,

which can then be used to map the VSTAR into a VSTARX. To this end, pre-multiply
both sides of (A.1) by H−1

t to obtain:[
I −G12t

0 I

] [
xt+1

ut+1

]
=

[1− gM (s′uyt)]


[1− lM (s′xyt)]

{[
I −G12t

0 I

] [
λx1

λu1

]
+

[
I −G12t

0 I

] [
Λx1 (L)
Λu1 (L)

]
yt

}
+lM (s′xyt)

{[
I −G12t

0 I

] [
λx2

λu2

]
+

[
I −G12t

0 I

] [
Λx2 (L)
Λu2 (L)

]
yt

}


+gM (s′uyt)


[1− lM (s′xyt)]

{[
I −G12t

0 I

] [
λx3

λu3

]
+

[
I −G12t

0 I

] [
Λx3 (L)
Λu3 (L)

]
yt

}
+lM (s′xyt)

{[
I −G12t

0 I

] [
λx4

λu4

]
+

[
I −G12t

0 I

] [
Λx4 (L)
Λu4 (L)

]
yt

}
+

[
I −G12t

0 I

] [
vxt+1

vut+1

]
.
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This is solved as[
xt+1 −G12tut+1

ut+1

]
=

[1− gM (s′uyt)]


[1− lM (s′xyt)]

{[
λx1 −G12tλu1

λu1

]
+

[
Λx1 (L)−G12tΛu1 (L)

Λu1 (L)

]
yt

}
+

lM (s′xyt)

{[
λx2 −G12tλu2

λu2

]
+

[
Λx2 (L)−G12tΛu2 (L)

Λu2 (L)

]
yt

}


+gM (s′uyt)


[1− lM (s′xyt)]

{[
λx3 −G12tλu3

λu3

]
+

[
Λx3 (L)−G12tΛu3 (L)

Λu3 (L)

]
yt

}
+

lM (s′xyt)

[
λx4 −G12tλu4

λu4

]
+

[
Λx4 (L)−G12tΛu4 (L)

Λu4 (L)

]
yt

+

[
vxt+1 −G12tvut+1

vut+1

]
.

The equations for the economy vector can be written in state-space form as a VSTARX:[
xt+1

ut+1

]
=

[1− gM (s′uyt)]


[1− lM (s′xyt)]

{[
λx1 −G12tλu1

0

]
+

[
Λx1 (L)−G12tΛu1 (L)

0

]
yt

}
+

lM (s′xyt)

{[
λx2 −G12tλu2

0

]
+

[
Λx2 (L)−G12tΛu2 (L)

0

]
yt

}


+gM (s′uyt)


[1− lM (s′xyt)]

{[
λx3 −G12tλu3

0

]
+

[
Λx3 (L)−G12tΛu3 (L)

0

]
yt

}
+

lM (s′xyt)

[
λx4 −G12tλu4

0

]
+

[
Λx4 (L)−G12tΛu4 (L)

0

]
yt

+

+

[
G12t

I

]
ut+1 +

[
vxt+1 −G12tvut+1

0

]
,

which is equivalently formulated as in (6)-(7). Note that setting in the above all transition
functions equal to zero yields a dynamic system equivalent to the structural representation
obtained by applying A2 to the VAR model, as described in Section 2.2.

B Solution of the NLQR problem

In any period t ≥ 0, the value function for the NLQR can be formulated as a time-varying
coefficients function: V (yt) = y′tPtyt + 2y′pt + pt. After forming the Bellman equation,
replacing the guessed value function on the right side and using the system (9) to form
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expectations, the NLQR objective becomes:

V (yt) = min
ut+1


(yt − y)′Q (yt − y) +

β

[
c (yt) + A (yt) yt

+B (yt) ut+1

]′
Pt

[
c (yt) + A (yt) yt

+B (yt) ut+1

]
+

βEte
′
t+1Ptet+1

2β [c (yt) + A (yt) yt + B (yt) ut+1]′ pt + βpt

 .

Multiplying through gives

V (yt) = min
ut+1


y′tQyt + y′Qy − 2y′Qyt+

βc (yt)
′Ptc (yt) + βy′tA (yt)

′PtA (yt) yt+
βu′t+1B (yt)

′PtB (yt) ut+1 + 2βy′tA (yt)
′Ptc (yt) +

2βu′t+1B (yt)
′Ptc (yt) + 2βu′t+1B (yt)

′PtA (yt) yt+
βtr (ΣPt) + 2βc (yt)

′ pt + 2βx′tA (yt)
′ pt+

2βu′t+1B (yt)
′ pt + βpt

 .

Differentiation of the above w.r.t. ut+1 gives

B (yt)
′PtB (yt) ut+1 + B (yt)

′Ptc (yt) + B (yt)
′PtA (yt) yt + B (yt)

′ pt= 0,

which yields the solution

ut+1 = −
[
B (yt)

′PtB (yt)
]−1 {

B (yt)
′ [Ptc (yt) + pt] + B (yt)

′PtA (yt) yt
}
.

The above is then rewritten in terms of the feedback rule (10) using:

kt = −
[
B (yt)

′PtB (yt)
]−1

B (yt)
′ [Ptc (yt) + pt] , (B.1)

Kt = −
[
B (yt)

′PtB (yt)
]−1

B (yt)
′PtA (yt) . (B.2)

Replacing the above solution into the Bellman equation and multiplying through yields:

y′tPtyt + 2y′tpt + pt

= 
y′tQyt + y′Qy − 2y′Qyt + βc (yt)

′Ptc (yt) + βy′tA (yt)
′PtA (yt) yt

+βk′tB (yt)
′PtB (yt) kt + βy′tK

′
tB (yt)

′PtB (yt) Ktyt+
2βy′tK

′
tB (yt)

′PtB (yt) kt + 2βy′tA (yt)
′Ptc (yt) + 2βk′tB (yt)

′Ptc (yt)
+2βy′tK

′
tB (yt)

′Ptc (yt) +2βk′tB (yt)
′PtA (yt) yt+

2βy′tK
′
tB (yt)

′PtA (yt) yt + βtr [ΣPt] + 2βc (yt)
′ pt+

2βy′tA (yt)
′ pt + 2βk′tB (yt)

′ pt + 2βy′tK
′
tB (yt)

′ pt + βpt

 .

Equating the quadratic terms gives:

Pt = Q + βA (yt)
′PtA (yt) + βK′tB (yt)

′PtB (yt) Kt +

2βK′tB (yt)
′PtA (yt) .
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Using (B.2), it follows that βK′tB (yt)
′PtB (yt) Kt = −βK′tB (yt)

′PtA (yt) and the above
simplifies as:

Pt = Q + βA (yt)
′PtA (yt)− (B.3)

βA (yt)
′PtB (yt)

[
B (yt)

′PtB (yt)
]−1

B (yt)
′PtA (yt) .

Equating the linear terms gives:

pt = −Qy + βK′tB (yt)
′PtB (yt) kt + βA (yt)

′Ptc (yt) + βK′tB (yt)
′Ptc (yt) +

βA (yt)
′PtB (yt) kt + βA (yt)

′ pt + βK′tB (yt)
′ pt.

Using βK′tB (yt)
′PtB (yt) kt=− βK′tB (yt)

′ [Ptc (yt) +pt] the above becomes

pt = −Qy − βK′tB (yt)
′ [Ptc (yt) +p] + βA (yt)

′Ptc (yt) + βK′tB (yt)
′Ptc (yt) +

βA (yt)
′PtB (yt) kt + βA (yt)

′ pt + βK′tB (yt)
′ pt,

= −Qy + βA (yt)
′Ptc (yt) +βA (yt)

′PtB (yt) kt + βA (yt)
′ pt.

Using (B.1) to replace kt gives

pt = −Qy + βA (yt)
′Ptc (yt)−βA (yt)

′PtB (yt)
[
B (yt)

′PtB (yt)
]−1

B (yt)
′ [Ptc (yt) + pt]

+βA (yt)
′ pt,

= −Qy + βA (yt)
′Ptc (yt)−βA (yt)

′PtB (yt)
[
B (yt)

′PtB (yt)
]−1

B (yt)
′Ptc (yt)

−βA (yt)
′PtB (yt)

[
B (yt)

′PtB (yt)
]−1

B (yt)
′ pt + βA (yt)

′ pt.

Using (B.2) yields:

pt=−Qy + βA (yt)
′Ptc (yt) +βK′tB (yt)

′Ptc (yt) + βKtB (yt)
′ pt + βA (yt)

′ pt,

which simplifies as

pt
[
I− βK′tB (yt)

′ − βA (yt)
′]=−Qy + βA (yt)

′Ptc (yt) +βKtB (yt)
′Ptc (yt) ,

that is solved as

pt =
{
I− β

[
K′tB (yt)

′ −A (yt)
′]}−1

{
β
[
A (yt)

′+K′tB (yt)
′]

×Ptc (yt)−Qy

}
. (B.4)

Finally, combining the constant terms gives:

pt = y′Qy + βc (yt)
′Ptc (yt) + βk′tB (yt)

′PtB (yt) kt + 2βk′tB (yt)
′Ptc (yt) +

βtr [Σt+1Pt] + 2βc (yt)
′ pt + 2βk′tB (yt)

′ pt + βpt,

so that

pt (1− β) = y′Qy + βc (yt)
′Ptc (yt) + βk′tB (yt)

′PtB (yt) kt +

2βk′tB (yt)
′Ptc (yt) + βtr [Σt+1Pt] + 2βc (yt)

′ pt + 2βk′tB (yt)
′ pt.
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Using βk′tB (yt)
′PtB (yt) kt = −βk′tB (yt)

′ [Ptc (yt) +pt] gives:

pt (1− β) = y′Qy + βc (yt)
′Ptc (yt)−βk′tB (yt)

′ [Ptc (yt) +pt] +

2βk′tB (yt)
′ [Ptc (yt) + pt] + βtr [Σt+1Pt] + 2βc (yt)

′ pt,

which simplifies as

pt (1− β) = y′Qy + βc (yt)
′Ptc (yt) + βk′tB (yt)

′ [Ptc (yt) + pt] +

βtr [Σt+1Pt] + 2βc (yt)
′ pt

and can then be rewritten as:

pt = (1− β)−1

{
y′Qy + βc (yt)

′Ptc (yt) + βk′tB (yt)
′

[Ptc (yt) + pt] + βtr [Σt+1Pt] + 2βc (yt)
′ pt

}
. (B.5)

The optimal feedback rule (10) is a linear function of the state vector with time-varying
coefficients, since the Kalman gain Kt in (B.2) and the intercept term kt in (B.1) are
both determined by SDC matrices. The feedback rule (10) is derived with the following
algorithm in any given t ≥ 0. First solve the Riccati equation (RE) in (B.3) to obtain
Pt. Since the coefficients of A (yt) and B (yt) are predetermined, the RE in (B.3) can be
solved, for example, iterating until convergence on Pt. This solution is a function of yt
and for this reason the RE has to be solved conditional on the value of the state vector
yt. Second, calculate Kt from equation (B.2). Third, compute pt from (B.4). Fourth, use
the calculated values for Pt and pt to compute kt from (B.1). The optimal feedback policy
can then be calculated from equation (10). This gives a time-varying sequence of ut+1 for
t ≥ 0. Finally, compute the sequence of pt from (B.5) for t ≥ 0.

The algorithm described above illustrates the simplicity and computational advantages
of the SDC method. In any period t ≥ 0, given yt, the objects c (yt), A (yt) and B (yt) can
be regarded as fixed and the feedback rule coefficients in that period can be computed upon
iteration of (B.3), which is effectively a standard algebraic Riccati equation. It is worth
observing that in a LQR problem where the constraint of the regulator is a system with fixed
coefficients (i.e. c (yt) = c, A (yt) = A and B (yt) = B), the value function parameters
P, p, and p can be computed offline before the policy rule in (10) is implemented, since
(B.3)-(B.5) depend only on the parameters of the objective function and the time-invariant
coefficients c, A and B. In contrast, the derivation of the SDC solution described above
can only be computed online, since the parameters of the constraint in (9) depend on the
state vector, which in turn changes over time due to the implementation of the feedback
rule (10). The online solution works as follows. In period t = 0, equations (B.1)-(B.5)
are solved given y0 and (10) is used to compute u1. For t > 0, two options are available,
depending on whether the state vector is updated with simulated or observed yt’s. The
first consists of replacing the optimal ut into (9) to update the state and compute yt+1,
which can then be used for the next stage of optimization to derive ut+1, and so on. The
second option, which is only feasible for in-sample counterfactual simulation, consists of
updating in every period the state vector using its observed value. Clearly, deviations
between the observed and the optimal paths of ut are smaller when the updating is based
on the observed yt’s. Constraints on some of the policy instruments included in ut, like for
example the nonnegativity of the federal funds rate in Section 5, are implemented in the
online solution directly upon computation of the policy vector ut in each t ≥ 0.
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C Stability

The VSTAR model under the optimal feedback rule in (12) describes a closed-loop system
with time-varying parameters, since the feedback rule coefficients, kt and Kt, and the
coefficients of the regulator constraint, c (yt), A (yt) and B (yt), are time varying. This
system is asymptotically stable if Q is positive semidefinite and the pair {A (yt) ,B (yt)}
is stabilizable for all yt over t ≥ 0 (sufficient conditions). Stabilizability requires that
yt converges to a fixed point at t → ∞, given any starting value y0. For any t ≥ 0,
assume the eigenvalues of Λ∗t (L) to be distinct and consider the time-varying eigenvalue
decomposition Λ∗t (L) = DtRtD

−1
t , where each column of Dt is an eigenvector of Λ∗t (L) and

Rt is a diagonal matrix of eigenvalues of Λ∗t (L). Ignoring the intercept and considering only
its deterministic part, the closed-loop system (12) can be written as yt+1 = DtRtD

−1
t yt

in any t ≥ 0. The solution to this difference equation in any given period t ≥ 0 can be
calculated using backward substitution, which yields yj = DtR

j
tD
−1
t y0.1 This is stable in

any given period t ≥ 0 and for any initial condition y0 if and only if in that period the
eigenvalues in the matrix A (yt)+B (yt) Kt, i.e. the diagonal elements of Rt, are all strictly
less than unity in absolute value.

In general, as long as the matrix Q is positive semidefinite it is always possible for the
control solution to stabilize the pair {A (yt) ,B (yt)}. Even if the open-loop system (i.e.
the VSTAR) is highly unstable in a given period t ≥ 0, for example dysplaying one or
more explosive roots, then the closed-loop system is still stable. Convergence may show
poor dynamics in the sense that the control may display an erratic initial path and large
swings, thereby requiring the system longer time to settle. If the instruments vector is
subject to constraints, these may be binding in some t ≥ 0 therefore further deteriorating
the performance of the control solution. Lewis, Vrabie and Syrmos (2012) suggest that
asymptotic stability can be insured more efficiently by employing in any period in which the
pair {A (yt) ,B (yt)} is highly unstable another stabilizable pair,

{
A (yt) ,B (yt)

}
, whose

roots are more stable than the original {A (yt) ,B (yt)}. To construct the stabilizable
pair

{
A (yt) ,B (yt)

}
, one can use the time-invariant pair {A,B} obtained from the time-

invariant version of (1)-(2), i.e. the VAR. If this pair is stabilizable than it can be used as
replacement for {A (yt) ,B (yt)} in any period t ≥ 0 when this is either highly unstable or
not stabilizable at all.

Arguably, the choice of the stabilizable pair
{
A (yt) ,B (yt)

}
is not unique and the

time-invariant pair {A,B} is not necessarely the most efficient. For example, the control
algorithm could be executed one-period ahead only over a given time horizon, say t ∈ (0, T )
and several stable {A (yt) ,B (yt)} pairs could be identified. Each of these, or some linear
combination of them, could be used as stabilizable pair. The preferred pair may be chosen as
that yielding less volatility. However, the time-invariant pair {A,B} has three advantages
compared to these alternatives. First, it can be computed offline before knowing the state
of the economy and before computing the optimal control rule, as it only requires knowledge
of the time invariant matrices A and B. Second, it is faster to implement as it does not
require any preliminary assessment of the many possible stable pairs. Third, the stabilizing

1This result is derived in any period t ≥ 0 keeping Rt and Dt fixed and compounding over the upper
script j, starting from a given y0.
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pair {A,B} exists as long as a stable VAR can be inferred from the VSTAR, while there
is not guarantee that a stable {A (yt) ,B (yt)} pair can be identified over t ∈ (0, T ).

Given the above, stability of the VSTAR under control in the numerical analysis is
monitored as follows. First, the numerical algorithm implementing the SDRE solution in
(10)-(B.4) is applied. If the resulting loss is lower that that obtained from the simulation of
the VSTAR, then the closed-loop solution is kept. Otherwise, the solution is recomputed
using the stabilizing pair {A,B} from the VAR in any period t ≥ 0 in which the VSTAR
under control in (2) is unstable. If this still delivers an higher loss, then the the solution is
recomputed using the stabilizing pair {A,B} from the VAR in any period t ≥ 0 in which
the open-loop pair {A (yt) ,B (yt)} is unstable.

D Data

Credit risk

• Data sources:

– Moody’s, Moody’s Seasoned Baa Corporate Bond Yield [BAA], retrieved from
FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/BAA, January 27, 2019.

– Board of Governors of the Federal Reserve System (US), 10-Year Treasury Con-
stant Maturity Rate [DGS10], retrieved from FRED, Federal Reserve Bank of
St. Louis;

https://fred.stlouisfed.org/series/DGS10, January 27, 2019.

• The credit risk indicator, s, is calculated as the difference between BAA and DGS10.

Inflation

• Data source:

– U.S. Bureau of Economic Analysis, Personal Consumption Expenditures: Chain-
type Price Index, [PCEPI], retrieved from FRED, Federal Reserve Bank of St.
Louis;

https://fred.stlouisfed.org/series/PCEPI, January 27, 2019.

• The inflation rate p is the percent change from year ago of PCEPI, monthly, seasonally
adjusted annual rate.

Industrial Production

• Data source:
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– Board of Governors of the Federal Reserve System (US), Industrial Production
Index [INDPRO], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/INDPRO, January 29, 2019.

• The growth rate of industrial production ip is the percent change from year ago of
INDPRO, monthly, seasonally adjusted.

Unemployment gap

• Data sources:

– U.S. Bureau of Labor Statistics, Unemployment Rate [UNRATE], retrieved from
FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/UNRATE, January 27, 2019.

– U.S. Congressional Budget Office, Natural Rate of Unemployment (Short-Term)
[NROUST], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/NROUST, January 27, 2019.

• The series UNRATE is in percent, monthly, seasonally adjusted. NROUST is in
percent, quarterly, not seasonally adjusted. NROUST is converted in a monthly
series using the MATLAB function interp1. The unemployment gap ug is calculated
as the difference between UNRATE and the monthly NROUST.

Federal funds rate

• Data source:

– Board of Governors of the Federal Reserve System (US), Effective Federal Funds
Rate [FEDFUNDS], retrieved from FRED, Federal Reserve Bank of St. Louis;

– https://fred.stlouisfed.org/series/FEDFUNDS, January 27, 2019.

• The federal funds rate R is the monthly FEDFUNDS.

Fed’s Balance Sheet

• Data sources (Total Assets held by the Fed and Total U.S. government securities
securities held by the Fed. All data refer to the end of month, are in millions of
dollars and not seasonally adjusted):

– From January 2003 to January 2019, Board of Governors of the Federal Reserve
System (US), Assets: Total Assets: Total Assets (Less Eliminations From Con-
solidation): Wednesday Level [WALCL], retrieved from FRED, Federal Reserve
Bank of St. Louis;

https://fred.stlouisfed.org/series/WALCL, January 27, 2019.
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– From June 1996 to December 2002, manually copied from the Consolidated
Statement of Condition of All Federal Reserve Banks in the Fed releases of
Factors Affecting Reserve Balances - H.4.1;

https://www.federalreserve.gov/releases/h41/;

– From May 1975 to January 1978, using data downloaded from:

https://fraser.stlouisfed.org/title/83.

• Data sources (monthly series of nominal GDP):

– (i) Quarterly data on nominal GDP taken from U.S. Bureau of Economic Anal-
ysis, Gross Domestic Product [GDP], retrieved from FRED, Federal Reserve
Bank of St. Louis;

https://fred.stlouisfed.org/series/GDP, January 27, 2019.

This is monthly interporlated between 1979 and 1992 using the MATLAB func-
tion interp1 ;

– (ii) Monthly data nominal GDP between January 1992 and October 2018 using
US Monthly GDP (MGDP) Index from Macroeconomic Advisers by IHS Markit,
downloaded from:

https://ihsmarkit.com/products/us-monthly-gdp-index.html.

• All assets time series are scaled by nominal GDP. TS is the Total U.S. government
securities held by the Fed in percent of GDP. PS is the difference between Total
Assets held by the Fed in percent of GDP and TS.

E Estimation

The VSTAR in equations (1), (2) and (13) is estimated by adapting the methodology
of Auerbach and Gorodnichenko (2012). This works as follows. Consider a draw of
the parameters Π2. Conditional on this, it is possible to compute the covariance ma-
trix in (2) and construct the auxiliary vectors d1t = [1 − gM(s′uyt)][1 − lM(s′xyt)], d2t =
[1 − gM(s′uyt)]lM(s′xyt), d3t = gM(s′uyt)[1 − lM(s′xyt)], d4t = gM(s′uyt)lM(s′xyt). Then the
conditional mean of the VSTAR in equation (1) can be written as yt+1 = Π′1Yt + vt+1

where Yt = [d1t,d1tyt,d2t,d2tyt,d3t,d3tyt,d4t,d4tyt]
′. As a result, the estimation prob-

lem reduces to finding the vector Π1 that maximizes
∑T

t=p∗+1
1
2
(vt − Π1yt)

′Σ−1
t (vt −

Π1yt). This can be determined analytically via generalized least squares using vec(Π′1) =
(
∑T

t=p∗+1 Σ−1
t ⊗ y′tyt)

−1vec(
∑T

t=p∗+1(y′tvtΣ
−1
t ). Once Π1 is obtained, the VSTAR log-

likelihood can be evaluated from (14). This procedure can be iterated until convergence
using standard iterative numerical algorithms.

The algorithm described above is repeated using from one to twelve lags to establish
the optimal lag length. The results from this estimation are presented in table E.1. In
the table, the first column indicates the number of lags included in the estimated VSTAR;
the second the model log-likelihood; the next three columns include the standard AIC,
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Table E.1: Statistical fit of the VSTAR under alternative lag lengths.

No. of lags lnLT (Π) AIC HIC SIC AIC* HIC* SIC*
1 0.89 -0.31 0.89 2.73 1.46 2.66 4.50
2 1.26 -0.17 1.73 4.66 2.34 4.25 7.18
3 2.32 -1.38 1.25 5.30 3.24 5.88 9.93
4 1.02 2.14 5.52 10.72 4.18 7.57 12.76
5 3.26 -1.36 2.79 9.15 5.14 9.29 15.65
6 1.41 3.34 8.27 15.83 6.15 11.08 18.64
7 0.64 5.91 11.66 20.45 7.18 12.92 21.71
8 -0.54 9.32 15.89 25.94 8.25 14.82 24.87
9 -0.94 11.23 18.65 29.99 9.36 16.78 28.12
10 0.69 9.11 17.40 30.06 10.49 18.79 31.45
11 0.56 10.55 19.74 33.76 11.67 20.87 34.88
12 0.92 11.05 21.18 36.58 12.89 23.02 38.42

HIC and SIC; the remaining columns report the normalized criteria obtained by scaling
the AIC, HIC and SIC by the number of observations according to Lütkepohl and Krätzig
(2004). In particular, the formulae used to compute the standard information criteria are
AIC = −2 lnLT (Π)+2k/T , HIC = −2 lnLT (Π)+2 ln(ln(T ))k/T and SIC = −2 lnLT (Π)+
ln(T )k/T , where k denotes the number of parameters and T is the number of observations.
These scale the parameters penalty (second term on the right side of each formula) by
the number of available observations. The normalised criteria are computed by scaling the
whole right side in each formula by the number of available observations. The best model
fit for each criterion in a given column of Table E.1 is highlighted in bold. According to
these results, it is not possible to increase the VSTAR log-likelihood once the model is
estimated with six or more lags. The AIC favour a lag length of three. The HIC and SIC,
which typically favour more parsimonious specifications, suggest one lag. All normalised
criteria in the last three columns favour one lag.

As discussed in the main paper, in the applied macroeconomic literature, there is no
agreement on how to specify the mean and the variance of a VSTAR to model nonlinearity
in the macroeconomy and in the policy instruments. To validate the proposed VSTAR
specification, five alternative specifications are further estimated, each being nested in
the unrestricted VSTAR: (i) VSTARC, which constraints the transition parameters in the
logistic and gamma functions for the mean and variance to be the same, i.e. γlM = γlV
and γgM = γgV ; (ii) VSTARV, which allows for nonlinearity only in the covariance matrix
but keeps a constant mean; (iii) VSTARM, which allows for nonlinearty in the mean but
has contant covariance matrix; (iv) VSTARP, which restricts each equation for the QE
instruments to follow an AR(1) when the federal funds rate is not at the ZLB, and the
equation for the the federal funds rate to follow an AR(1) during the ZLB period; (v)
VAR. The VSTARC imposes restrictions on the transition variables similar to those used
by Auerbach and Gorodnichenko (2012) and Galvão and Owyang (2018). The VSTARP
restricts the dynamics so that QE is exogenous when conventional monetary policy is
active, and viceversa, as assumed by Hurn et al. (2022), Sims and Wu (2020) and Sims
et al. (2023a). The VSTARM and VSTARV confine nonlinearity to the mean and the
covariance matrix of the VSTAR, respectively. The VAR is the linear benchmark.
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Table E.2: Statistical fit of the VSTAR and five alternative restricted specifications.

lnLT (Π) NoP AIC HIC SIC
VSTAR 0.886 340 -0.306 0.888 2.727
VSTARC 0.751 338 -0.046 1.141 2.970
VSTARP 0.630 304 0.051 1.119 2.763
VSTARV 0.113 170 0.506 1.103 2.023
VSTARM -18.695 226 38.364 39.158 40.381
VAR -19.402 56 39.046 39.243 39.546
Notes: lnLT (Π) is the model log-lkelihood; NoP indicates the number of parameters;
AIC, HIC and SIC are standard information criteria.
Source: Author’s calculations. See main text for more details.

Table E.2 ranks each estimated model in terms of its log-likelihood, reported in the
second column. The other columns report the number of parameters (NoP) and standard
information criteria. Overall, the results in Table E.2 validate the use of the specified
VSTAR, as this provides the best fit of the data along most criteria. All five restricted
specifications are rejected against the unrestricted VSTAR according to a likelihood ratio
test with 95 percent confidence. The VSTAR is also the preferred specification under
the AIC and the HIC, while it ranks below the VSTARV according to the SIC. Perhaps
unsurprisingly given the data dynamics observed in the main paper, the VAR provides the
worst fit according to any diagnostic considered in Table E.2. Each model is estimated
with full information maximum likelihood (FIML) using standard iterative algorithms.2

F Impulse Response Functions

F.1 Algorithm

The algorithm for computing the IRF with sign restrictions includes the following steps:

1. Compute NQ matrices of random elements, each having the same size of the covari-
ance matrix Ωt in equation (2). ComputeNQ orthogonal matrices Qnq, nq = 1, ..., NQ

each obtained from the QR decomposition of one of these random matrices.

2. Set the sequence of lagged data up to t− 1 to define the history Γt−1 at date t.

3. Generate a baseline sequence of structural shocks at date t for each variable in yt
over the time horizon h = 0, ..., H. Then generate a sequence of perturbed shocks,
which is equal to the baseline except for the shock of interest that is set equal to the
value in the baseline plus a pre-specified increase, δ, denoting the magnitude of this
shock.

2The VSTAR is first estimated using as starting values the coefficients 0.1. The VSTAR coefficients are
re-estimated after normalizing the transition variables ugt and Rt to have zero mean and unit variance,
but this does not lead to significant differences in the parameter estimates. The log-likelihood function is
maximized using the quasi-Newtown method, the default option in MATLAB fminunc.
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4. Given Γt−1 and the baseline sequence of shocks in step 3, generate NQ new paths
of realizations of yt+h, h = 0, ..., H, by recursively updating the VSTAR model (1)-
(2) conditional on Γt−1, after pre-multiplying the Cholesky decomposition of the
covariance matrix (2) by the orthogonal matrices Qnq, nq = 1, ..., NQ.

5. Given Γt−1 and the perturbated sequence of shocks in step 3, generate NQ new
paths of realizations of yt+h, h = 0, ..., H, by recursively updating the VSTAR model
(1)-(2) conditional on Γt−1, after pre-multiplying the Cholesky decomposition of the
covariance matrix (2) by the orthogonal matrices Qnq, nq = 1, ..., NQ.

6. Subtract each path for yt+h in step 4 from the corresponding path for yt+h in step 5,
h = 0, ..., H. This gives NQ estimates of the IRFs conditional on Γt−1.

7. Set aside the IRFs in step 6 that satisfy the required sign restrictions.

8. Since the IRFs in step 7 depends on the particular random draw for the structural
shocks in 3, repeat steps 3 to 7 NR times and compute the median of the resulting
IRF estimates. By the law of large numbers, this median converges to the conditional
IRFs of yt+h at horizon h = 0, 1, ..., H, to a given shock conditional on Γt−1.

9. The unconditional IRFs of yt+h at horizon h = 0, 1, ..., H, can be computed by condi-
tioning on the average of the subset of all histories of interest. Alternatively, uncon-
ditional IRFs of yt+h at horizon h = 0, 1, ..., H, can also be computed by repeating
steps 2-8 over many histories Γt−1, each of which is randomly drawn with replace-
ment from the original data, and then averaging the values of the resulting conditional
IRFs. This second procedure is however more time consuming and computationally
intensive than the first.

The IRFs calculated in the paper are based on H = 24, NQ = NQ = 1000 and δ = 1.
To simulate the effect of a (negative) credit shock the first element in each sequence of the
perturbed shocks in step 3 is set equal to the baseline plus δ. Effectively, this is equivalent
to consider increase in the credit spread as a result of a credit shock. Confidence bands are
computed using two standard deviations of the median IRF in step 8. The calculation of
the IRF under the optimal policy uses the same algorithm described above except that the
NQ new paths of realizations of yt+h, h = 0, ..., H, are obtained by recursively updating
the VSTAR model in (12) rather than the VSTAR in (1)-(2). The averages of the histories
used to compute the unconditional IRFs reported in Table F.1.

F.2 Robustness results

For robustness, Figure F.1 shows how the responses of the policy instruments change
once evaluated against four alternatives, considering inclusion of additional variables that
might have a bearing on the analysis and different types of sign restrictions. Specifically,
column (a) shows the responses to a supply-type shock, such that both the unemployment
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Times Start End s p ip ug TS PS R
Normal Jun-94 May-01 1.91 1.86 4.80 -0.48 4.93 0.79 5.44
Pre-ZLB Jan-02 Dec-08 2.48 2.45 1.30 0.33 5.28 1.28 2.75
ZLB Jan-09 Dec-15 3.00 1.29 0.63 2.50 9.81 9.57 0.13
Post-ZLB Jan-16 Oct-18 2.30 1.64 1.05 -0.22 12.5 10.18 1.01

Table F.1: Histories used for computing IRFs during normal times, pre-ZLB period, ZLB
period and post-ZLB period.

gap and inflation increase at the one month horizon; column (b) shows the responses to a
demand-type shock, such that the unemployment gap increases while inflation decreases at
the one month horizon; column (c) shows the responses to the credit-type shock once the
VSTAR is re-estimated after replacing industrial production with the growth rate of real
GDP; column (d) the responses to the credit-type shock once the VSTAR is re-estimated
after replacing industrial production with the percentage change in the federal debt-to-
GDP ratio. Each column reports the confidence bands of the policy instrument responses
under a different simulation with black dotted lines for normal times and red dotted lines
for the ZLB. Confidence bands of the responses to the credit-type shock from Figure ??
are also included in the background for reference.

As for the credit-type shock, all the responses in these four simulations correctly show
how different policy instruments operate at different time periods (active conventional
monetary policy and passive QE during normal times, passive conventional monetary policy
and active QE at the ZLB). The monetary policy response to the supply shock in column
(a) is contractionary during normal times while it is expansionary during the ZLB period.
This is because the spread increases with inflation during this simulation. As the reduction
in inflation puts downward pressure on the spread, the opposite is observed in column
(b), where the monetary policy response to the demand shock is expansionary during
normal times and contractionary during the ZLB. The responses of the policy instruments
in column (c) show the correct sign on impact, but are way more muted compared to the
benchmark reflecting the lower persistence of GDP growth relative to industrial production.
Finally, the responses to the credit-type shock obtained once controlling for public debt
in column (d) are very similar to those from the benchmark VSTAR. This latter result
provides some reassurance on the fact that the observed responses during the ZLB period
are the outcome of QE intervention rather than being a mere reflection of fiscal actions.

G Micro-founded Welfare Loss

In this appendix I derive a micro-founded welfare loss function from a structural model
that includes a central bank that undertakes unconventional monetary policy, through
large-scale asset purchases (quantitative easing, QE), while conventional monetary policy
is constrained by the zero lower bound (ZLB). I work with the four-equation New Keynesian
model of Sims et al. (2023b). For brevity, I will not reproduce the log-linear equilibrium
conditions, these are available in the Appendix of the original paper. I will instead start
with a brief outline of the economic environment and of the key aggregate equations, to
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Figure F.1: Dotted lines: Two standard deviation confidence bands of IRFs of policy in-
struments to a supply shock (a), demand shock (b), credit shock when the VSTAR includes
either GDP (c) or debt (d) instead of industrial production; during normal times (black)
and the ZLB (red). Shaded areas are confidence bands for the benchmark specification.
All variables are in percentage.

then focus on the derivation of the micro-founded welfare loss function.
The model features two types of households, savers and borrowers, who differ in their

degree of patience and access to financial markets; producers, who set prices in a staggered
fashion; financial intermediaries; and the central bank. Monetary policy includes the short
term nominal interest rate and quantitative easing (QE), which consists of long term bonds
purchases financed with the creation of reserves. Prices are subject to nominal frictions as
in Calvo (1983), with θ ∈ (0, 1), the share of firms unable to reset prices each period. Final

output is a Dixit and Stiglitz (1977) composite good, Y =
(∫ 1

0
y (ν)1/ε dν

)ε
, with ε > 1, the

elasticity of substitution across differentiated intermediate varieties. Savers have separable
flow utility functions over their consumption, C, and employment, N , given by u (C) −
v (N) = C1−1/σ/ (1− 1/σ) − N1+η/ (1 + η), with σ > 0, the elasticity of intertemporal
substitution, and η > 0, the inverse Frisch elasticity of labor supply. Their discount factor
is β ∈ (0, 1). Borrowers have a higher discount factor, do not earn labor income and can
only finance consumption by issuing long-term nominal bonds.

The equilibrium conditions can be approximated around the zero-inflation steady state
to derive the Phillips and IS curves that determine the aggregate dynamics of inflation,
πt, and of the output deviation from its steady state, Ŷt ≡

(
Yt − Y

)
/Y . These curves

capture the transmission mechanisms of conventional monetary policy, which controls the
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nominal interest rate, it; and unconventional monetary policy, measured as the deviation
of QE from its steady state, Q̂Et ≡

(
QEt − QE

)
/QE. In particular, the equations describing

the Phillips and IS curves are given by

πt = κŶt + βEtπt+1 − ς Q̂Et, (G.1)

Ŷt − ξQ̂Et = Et

(
Ŷt+1 − ξQ̂Et+1

)
− ϕ (it − Etπt+1 − rn) . (G.2)

The parameter κ ≡ λ
(

1
ϕ

+ η
)
> 0 stands for the elasticity of inflation to changes in

the output gap, where λ ≡ (1− θ) (1− θβ) /θ is the elasticity of inflation with respect
to marginal cost, and ϕ ≡ (1− z)σ > 0 is the intertemporal elasticity of substitution of

total household expenditure, with z ≡ Cb/
(
C + Cb

)
, the steady-state share of borrower

consumption. The parameter ς ≡ (λ/ϕ) ξ stands for the elasticity of inflation to changes

in QE, with ξ ≡ z
(
b

cb
/b
)
∈ (0, 1) the elasticity of private expenditure to changes in QE,

which depends on the size of the central bank’s balance sheet in steady state, b
cb

, as a
proportion of the total the steady-state real value of long-term bonds, b in the economy.
The parameter rn ≡ − log β stands for the long-run natural rate of interest.

Deriving an objective function that serves as an approximation of households’ utility
is not straightforward, as the model of the economy features two types of households with
different discount factors. This heterogeneity complicates the formulation of a utilitar-
ian welfare function, see Gollier and Zeckhauser (2005). Specifically, if the central bank
maximizes the average discounted sum of the flow utility for each group while adhering to
each household’s discount factor, this would result in a non-stationary solution where the
consumption of the most impatient individuals (borrowers) diminishes over time. To avoid
this issue, I assume that the central bank cares equally about both households and uses a
common factor, β, to discount the sum of their flow utilities. Further, to evaluate the loss
function at the ZLB, I follow Woodford (2011) and assume a two-state Markov environ-
ment, with the economy starting at the ZLB with the natural rate of interest rn = rL < 0,
and returning to rn > 0, with probability 1− µ each period.

The central bank wishes to maximise the total expected discounted utility of the two
agents, as follows

Et

∞∑
j=0

βj
[
u (Ct+j)− v (Nt+j) + u

(
Cb
t+j

) ]
, (G.3)

where u (C), u
(
Cb
)

and v (N) represent, respectively, the per-period utility from consump-
tion for savers, the utility from consumption for borrowers, and the disutility from labor.
This can be formulated as:

W = Et

∞∑
j=0

βj
[
u
(
Yt+j − Cb

t+j

)
− v (Nt+j) + u

(
Cb
t+j

) ]
= Et

∞∑
j=0

βjwt+j. (G.4)

The central bank is assumed to have enough instruments to implement an efficient (first-

best optimal) steady-state equilibrium, satisfying the following conditions: u′
(
C
)

= u′
(
C
b
)
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(which implies C = C
b

and thus z = 1/2), v′
(
N
)

= u′
(
C
)
, and Y = N = C+C

b
. Consid-

ering small disturbances around the efficient steady state, the loss function of the central
bank can be expressed in consumption equivalent, as follows

L =

{
Et

[
−
∞∑
j=0

βj

(
wt+j −w

u′
(
C
)
C

)]}
=

{
Et

[
∞∑
j=0

βjLt+j

]}
, (G.5)

with Lt = − (wt −w) /
(
u′
(
C
)
C
)
, the flow loss function of the central bank. The second-

order Taylor expansion of wt around steady state is given by

wt −w = u′
(
Yt − Y

)
+
u′′

2

[(
Yt − Y

)2
+ 2

(
Cb
t − C

b
)2
]

− u′′
[(
Yt − Y

)
+
(
Yt − Y

) (
Cb
t − C

b
)]
− v′

(
Nt −N

)
− v′′

2

(
Nt −N

)2
,

(G.6)

where all derivatives are evaluated at the steady-state equilibrium, I use the fact that

C = C
b
, and denote u′

(
C
)

= u′, u′′
(
C
)

= u′′, v′
(
N
)

= v′, v′′
(
N
)

= v′′. Making use of
the resource constraint, Yt = Ct + Cb

t , yields

wt −w = u′
(
Yt − Y

)
+
u′′

2

[(
Yt − Y

)2
+ 2

(
Cb
t − C

b
)2
]

− u′′
[(
Yt − Y

)
+
(
Ct + Cb

t − C − C
b
)(

Cb
t − C

b
)]

− v′
(
Nt −N

)
− v′′

2

(
Nt −N

)2
,

= u′
(
Yt − Y

)
+
u′′

2

[(
Yt − Y

)2
]
− u′′

[(
Yt − Y

)
+
(
Ct − C

) (
Cb
t − C

b
)]

− v′
(
Nt −N

)
− v′′

2

(
Nt −N

)2
.

(G.7)

Next, applying the approximation
(
Xt−X
X

)
' X̂t +

X̂2
t

2
to each term in (G.7), yields

wt −w

u′ Y
= Ŷt +

1

2

(
Ŷ 2
t −

Ŷ 2
t − 2Ŷ

ϕ
+

1

σ
ĈtĈ

b
t

)
− N̂t −

(1 + η) N̂2
t

2
+O (3) , (G.8)

with O (3) collecting all the terms of third order or higher, and where I used the fact that

Y = 2C
b
, and with 1/ϕ = − (u′′/u′)Y = 2/σ.

Next, from the equilibrium condition N̂t = v̂ pt + Ŷt, it follows that up to a second-order
approximation we have

v̂ pt = ln

∫ 1

0

(
Pt (ν)

Pt

)−ε
dν '

[
εvar (Pt (ν))

2

]
, (G.9)

with var (•) that denotes the cross-sectional variance of prices. Substituting N̂t = v̂ pt + Ŷt
and (G.9) in (G.8), yields

wt −w

u′ Y
= −1

2

(
1

ϕ
+ η

)(
Ŷt

)2

+

(
ξ/σ

b
cb
/b

)
ĈtĈ

b
t −

εvar (Pt (j))

2
+O (3) , (G.10)
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with z = 1/2 in the efficient steady state.
Finally, the quadratic approximation to the central bank’s welfare function is obtained

by making use of the result in Woodford (2003), that

∞∑
t=0

βtvar (Pt (j)) ' θ

(1− βθ) (1− θ)

∞∑
t=0

βtπ2
t . (G.11)

After combining (G.10) and (G.11), assuming small disturbances around the steady
state and the two-state Markov equilibrium structure described above, a quadratic approx-
imation to the central bank’s loss function (G.3), valid for small disturbances around the
efficient (first-best) steady state, yields

L =
1

2

[
π2
L +

κ

ε

(
Y L

)2
+ ςIL

]
, (G.12)

where, from now on, the subscript L denotes the value of the corresponding variable at
the ZLB. The first two terms in the loss function (G.12) are standard. They capture the
stabilization motive of the central bank, as measured by welfare losses associated with,
in turn, the volatility of inflation and the output gap. The weights attached to each of
these two objectives depend on the private’s sector parameters. The last term of the loss
function (G.12) corresponds to

IL = −1

2

(
1− g
bcb/b

)
CLC

b

L. (G.13)

This captures welfare losses accruing due to consumption inequality between borrowers

and savers: for a given average consumption,
(
CL + C

b

L

)
/2, the inequality term IL is

minimized the more equal are CL and C
b

L. Consumption inequality affects welfare. This is
because a benevolent planner wants to spread the welfare costs of business cycle fluctuations
equally among households. Thus, the term IL should be seen as capturing a redistributive
motive by the central bank.

Making use of the economy’s resource constraint (in log-linear form), Ŷt = (1− z) Ĉt +

zĈb
t , the borrowers’ budget constraint Ĉb

t =
(
b
cb

b

)
Q̂Et, alongside the definitions of the

parameters ϕ and ξ, the inequality term (G.13) can be written as

IL = −
(
Y L − ξQEL

)
QEL. (G.14)

As a result the loss function in equation (G.12) can be written as

L =
1

2

[
π2
L +

κ

ε

(
Y L

)2 − ςY LQEL + ςξQE
2
L

]
, (G.15)

which shows that both the level and volatility of QE matter for welfare.
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H Alternative Optimization Approaches

The optimization gains obtained with the SDC method are compared with those from three
alternatives.

LIN is based on the VAR estimates and identification under A2. Thus the structural
model is that from the VAR under A2 reported in Section 2.2. Since this is linear and
homoscedastic, optimization is amenable to dynamic programming. The optimal policy is
a linear feedback rule ut = k

(LIN)
t + K

(LIN)
t yt−1, whose coefficients can be computed using

Riccati equation iteration as in Ljungqvist and Sargent (2018).
MPC is based on the estimated VSTAR and identification under A1. Thus the structural

model takes the form of (4). The optimal policy feedback rule ut = k
(MPC)
t + K

(MPC)
t yt−1

can be combined in any period t with the system in (4) to form the reduced-form model:[
xt+1

ut+1

]
=

[
k

(V STARA1)
t

k
(MPC)
t

]
+

[
K

(V STARA1)
t

K
(MPC)
t

]
yt +

[
et+1

0

]
where

k
(V STARA1)
t = [1− gM(s′uyt)][1− lM(s′xyt)][φ1 + lM(s′xyt)φ2]+

gM(s′uyt)[1− lM(s′xyt][φ3 + lM(s′xyt)φ4]

K
(V STARA1)
t = [1− gM(s′uyt)][1− lM(s′xyt)][Φ1∗ + lM(s′xyt)Φ2∗]+

gM(s′uyt)[1− lM(s′xyt][Φ3∗ + lM(s′xyt)Φ4∗]

Φj∗ =

[
Φj

Γj

]
, j = 1, 2, 3, 4.

In the above, the coefficients k
(V STARA1)
t and K

(V STARA1)
t are those obtained from the

estimated VSTAR, whereas the coefficients k
(MPC)
t and K

(MPC)
t are optimized selecting

the one period ahead forecast of yt minimizes the loss (15).
DNS is also based on the estimated VSTAR and the structural model under A1 in

(4). As above, policy is set as the time-varying coefficients feedback rule ut = k
(DNS)
t +

K
(DNS)
t xt−1 to derive estimates of ût, and then forming yt =

[
x′t û′t

]′
. Again the quasi-

Newton method is employed to find the coefficients k
(DNS)
t and K

(DNS)
t that minimize the

loss (15).
The results for the optimization gains under different methods and samples are pre-

sented below. In particular, Table H.1 refers to the SDC method over the whole sample;
Tables H.2 and H.3 to the LIN method for the post 2008 and the whole sample, respec-
tively; Tables H.4 and H.5 to the MPC method for the post 2008 and the whole sample,
respectively; Tables H.6 and H.7 to the DNS method for the post 2008 and the whole sam-
ple, respectively. Table H.8 presents the results about the computational speed from each
of the ten estimation trials carried out under different optimization methods and samples.
The computations are carried out in MATLAB2021 with a Dell PowerEdge T630 server
with 2 x Intel Xeon E5-2643v3 processors, with a 3.4GHz base frequency/3.7GHz Turbo
frequency, totalling 12 cores (24 threads), and 320GB of 2133MHz DDR4 RAM, running
Windows Server 2019.

22



Table H.1: Optimization gain, SDC method: 1979-2018
Volatilities Loss Stabilization

(pt − p)2 ug2
t ∆TS2

t ∆PS2
t ∆R2

t V G û
Policy Baseline: υp = υug = υ∆TS = υ∆PS = υ∆R = 1
Actual 4.75 2.66 0.32 0.02 0.11 7.85

Optimal 3.47 2.40 0.35 0.12 0.18 6.53 16.88 1.15
Weights II: υp = 0.5, υug = υ∆TS = υ∆PS = υ∆R = 1

Actual 4.75 2.66 0.32 0.02 0.11 5.48
Optimal 3.81 2.35 0.35 0.09 0.15 4.84 11.64 0.80

Weights III: υug = 0.5, υp = υ∆TS = υ∆PS = υ∆R = 1
Actual 4.75 2.66 0.32 0.02 0.11 6.52

Optimal 3.44 2.52 0.35 0.11 0.18 5.34 18.07 1.54
Weights IV: υug = υp = 1, υ∆TS = υ∆PS = υ∆R = 0.5

Actual 4.75 2.66 0.32 0.02 0.11 7.63
Optimal 3.11 2.31 0.36 0.19 0.26 5.83 23.56 1.34

Weights V: υug = υp = υ∆R = 1, υ∆TS = υ∆PS = 0.5
Actual 4.75 2.66 0.32 0.02 0.11 7.79

Optimal 3.12 2.32 0.35 0.19 0.26 6.02 22.74 1.33
Weights VI: υug = υp = υ∆TS = υ∆PS = 1, υ∆R = 0.5

Actual 4.75 2.66 0.32 0.02 0.11 7.69
Optimal 3.45 2.40 0.37 0.12 0.19 6.34 17.61 1.16

Table H.2: Optimization gain, LIN method: 2008-2017
Terms in the loss function Loss Stabilization

(pt − p)2 ug2
t ∆TS2

t ∆PS2
t ∆R2

t V G û
Policy Baseline: υp = υug = υ∆TS = υ∆PS = υ∆R = 1
Actual 1.24 5.46 0.02 0.05 0.38 7.15

Optimal 1.03 5.13 0.05 0.04 0.31 6.57 8.12 0.76
Weights II: υp = 0.5, υug = υ∆TS = υ∆PS = υ∆R = 1

Actual 1.24 5.46 0.02 0.05 0.38 6.53
Optimal 1.11 5.15 0.04 0.04 0.28 6.07 6.97 0.67

Weights III: υug = 0.5, υp = υ∆TS = υ∆PS = υ∆R = 1
Actual 1.24 5.46 0.02 0.05 0.38 4.42

Optimal 1.02 5.24 0.04 0.04 0.31 4.04 8.64 0.87
Weights IV: υug = υp = 1, υ∆TS = υ∆PS = υ∆R = 0.5

Actual 1.24 5.46 0.02 0.05 0.38 6.92
Optimal 0.96 4.97 0.07 0.05 0.36 6.17 10.94 0.87

Weights V: υug = υp = υ∆R = 1, υ∆TS = υ∆PS = 0.5
Actual 1.24 5.46 0.02 0.05 0.38 6.93

Optimal 0.96 5.12 0.04 0.05 0.36 6.32 8.83 0.78
Weights VI: υug = υp = υ∆TS = υ∆PS = 1, υ∆R = 0.5

Actual 1.24 5.46 0.02 0.05 0.38 7.14
Optimal 1.04 4.99 0.08 0.05 0.30 6.41 10.13 0.85
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Table H.3: Optimization gain, LIN method: 1979-2018
Terms in the loss function Loss Stabilization

(pt − p)2 ug2
t ∆TS2

t ∆PS2
t ∆R2

t V G û
Policy Baseline: υp = υug = υ∆TS = υ∆PS = υ∆R = 1
Actual 4.75 2.66 0.32 0.02 0.11 7.85

Optimal 3.98 2.50 0.30 0.02 0.17 6.97 11.24 0.94
Weights II: υp = 0.5, υug = υ∆TS = υ∆PS = υ∆R = 1

Actual 4.75 2.66 0.32 0.02 0.11 5.48
Optimal 4.31 2.50 0.30 0.02 0.12 5.10 6.86 0.61

Weights III: υug = 0.5, υp = υ∆TS = υ∆PS = υ∆R = 1
Actual 4.75 2.66 0.32 0.02 0.11 6.52

Optimal 3.88 2.55 0.30 0.02 0.17 5.65 13.46 1.33
Weights IV: υug = υp = 1, υ∆TS = υ∆PS = υ∆R = 0.5

Actual 4.75 2.66 0.32 0.02 0.11 7.63
Optimal 3.66 2.41 0.32 0.03 0.26 6.37 16.50 1.12

Weights V: υug = υp = υ∆R = 1, υ∆TS = υ∆PS = 0.5
Actual 4.75 2.66 0.32 0.02 0.11 7.79

Optimal 3.65 2.49 0.30 0.03 0.26 6.59 15.41 1.10
Weights VI: υug = υp = υ∆TS = υ∆PS = 1, υ∆R = 0.5

Actual 4.75 2.66 0.32 0.02 0.11 7.69
Optimal 4.00 2.42 0.32 0.02 0.16 6.77 11.99 0.96

Table H.4: Optimization Gains, MPC method: 2008-2018
Terms in the loss function Loss Stabilization

(pt − p)2 ug2
t ∆TS2

t ∆PS2
t ∆R2

t V G û
Policy Baseline: υp = υug = υ∆TS = υ∆PS = υ∆R = 1
Actual 1.24 5.46 0.02 0.05 0.38 7.15

Optimal 1.14 5.44 0.08 0.05 0.38 7.09 0.83 0.24
Weights II: υp = 0.5, υug = υ∆TS = υ∆PS = υ∆R = 1

Actual 1.24 5.46 0.02 0.05 0.38 6.53
Optimal 1.14 5.44 0.08 0.05 0.38 6.52 0.14 0.10

Weights III: υug = 0.5, υp = υ∆TS = υ∆PS = υ∆R = 1
Actual 1.24 5.46 0.02 0.05 0.38 4.42

Optimal 1.14 5.44 0.08 0.05 0.38 4.37 1.14 0.32
Weights IV: υug = υp = 1, υ∆TS = υ∆PS = υ∆R = 0.5

Actual 1.24 5.46 0.02 0.05 0.38 6.92
Optimal 1.14 5.44 0.08 0.05 0.38 6.83 1.29 0.30

Weights V: υug = υp = υ∆R = 1, υ∆TS = υ∆PS = 0.5
Actual 1.24 5.46 0.02 0.05 0.38 6.93

Optimal 1.14 5.44 0.08 0.05 0.38 6.87 0.87 0.25
Weights VI: υug = υp = υ∆TS = υ∆PS = 1, υ∆R = 0.5

Actual 1.24 5.46 0.02 0.05 0.38 7.14
Optimal 1.14 5.44 0.08 0.05 0.38 7.05 1.27 0.30
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Table H.5: Optimization Gains, MPC method: 1979-2018
Terms in the loss function Loss Stabilization

(pt − p)2 ug2
t ∆TS2

t ∆PS2
t ∆R2

t V G û
Policy Baseline: υp = υug = υ∆TS = υ∆PS = υ∆R = 1
Actual 4.75 2.66 0.32 0.02 0.11 7.85

Optimal 4.62 2.64 0.30 0.02 0.11 7.69 2.09 0.41
Weights II: υp = 0.5, υug = υ∆TS = υ∆PS = υ∆R = 1

Actual 4.75 2.66 0.32 0.02 0.11 5.48
Optimal 4.62 2.64 0.30 0.02 0.11 5.38 1.81 0.32

Weights III: υug = 0.5, υp = υ∆TS = υ∆PS = υ∆R = 1
Actual 4.75 2.66 0.32 0.02 0.11 6.52

Optimal 4.62 2.64 0.30 0.02 0.11 6.37 2.41 0.56
Weights IV: υug = υp = 1, υ∆TS = υ∆PS = υ∆R = 0.5

Actual 4.75 2.66 0.32 0.02 0.11 7.63
Optimal 4.62 2.64 0.30 0.02 0.11 7.47 2.03 0.39

Weights V: υug = υp = υ∆R = 1, υ∆TS = υ∆PS = 0.5
Actual 4.75 2.66 0.32 0.02 0.11 7.79

Optimal 4.62 2.64 0.31 0.02 0.11 7.63 1.99 0.39
Weights VI: υug = υp = υ∆TS = υ∆PS = 1, υ∆R = 0.5

Actual 4.75 2.66 0.32 0.02 0.11 7.69
Optimal 4.62 2.64 0.30 0.02 0.11 7.54 2.02 0.39

Table H.6: Optimization Gains, DNS method: 2008-2018
Terms in the loss function Loss Stabilization

(pt − p)2 ug2
t ∆TS2

t ∆PS2
t ∆R2

t V G û
Policy Baseline: υp = υug = υ∆TS = υ∆PS = υ∆R = 1
Actual 1.24 5.46 0.02 0.05 0.38 7.15

Optimal 1.14 5.44 0.08 0.05 0.38 7.08 0.93 0.26
Weights II: υp = 0.5, υug = υ∆TS = υ∆PS = υ∆R = 1

Actual 1.24 5.46 0.02 0.05 0.38 6.53
Optimal 1.14 5.44 0.08 0.05 0.38 6.51 0.25 0.13

Weights III: υug = 0.5, υp = υ∆TS = υ∆PS = υ∆R = 1
Actual 1.24 5.46 0.02 0.05 0.38 4.42

Optimal 1.14 5.44 0.08 0.05 0.38 4.36 1.30 0.34
Weights IV: υug = υp = 1, υ∆TS = υ∆PS = υ∆R = 0.5

Actual 1.24 5.46 0.02 0.05 0.38 6.92
Optimal 1.14 5.44 0.08 0.05 0.38 6.83 1.34 0.30

Weights V: υug = υp = υ∆R = 1, υ∆TS = υ∆PS = 0.5
Actual 1.24 5.46 0.02 0.05 0.38 6.93

Optimal 1.14 5.44 0.08 0.05 0.38 6.87 0.95 0.26
Weights VI: υug = υp = υ∆TS = υ∆PS = 1, υ∆R = 0.5

Actual 1.24 5.46 0.02 0.05 0.38 7.14
Optimal 1.14 5.44 0.08 0.05 0.38 7.04 1.30 0.31
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Table H.7: Optimization Gains, DNS method: 1979-2018
Terms in the loss function Loss Stabilization

(pt − p)2 ug2
t ∆TS2

t ∆PS2
t ∆R2

t V G û
Policy Baseline: υp = υug = υ∆TS = υ∆PS = υ∆R = 1
Actual 4.75 2.66 0.32 0.02 0.11 7.85

Optimal 4.62 2.64 0.46 0.02 0.11 7.84 0.10 0.09
Weights II: υp = 0.5, υug = υ∆TS = υ∆PS = υ∆R = 1

Actual 4.75 2.66 0.32 0.02 0.11 5.48
Optimal 4.62 2.64 0.46 0.02 0.11 5.53 -1.05 n.a.

Weights III: υug = 0.5, υp = υ∆TS = υ∆PS = υ∆R = 1
Actual 4.75 2.66 0.32 0.02 0.11 6.52

Optimal 4.62 2.64 0.46 0.02 0.11 6.52 0.00 0.02
Weights IV: υug = υp = 1, υ∆TS = υ∆PS = υ∆R = 0.5

Actual 4.75 2.66 0.32 0.02 0.11 7.63
Optimal 4.62 2.64 0.46 0.02 0.11 7.55 1.00 0.28

Weights V: υug = υp = υ∆R = 1, υ∆TS = υ∆PS = 0.5
Actual 4.75 2.66 0.32 0.02 0.11 7.79

Optimal 4.62 2.64 0.46 0.02 0.11 7.78 0.10 0.09
Weights VI: υug = υp = υ∆TS = υ∆PS = 1, υ∆R = 0.5

Actual 4.75 2.66 0.32 0.02 0.11 7.69
Optimal 4.62 2.64 0.46 0.02 0.11 7.61 0.99 0.28

Table H.8: Computational speed trials
2008-2018 1978-2018

Trial SDC LIN MPC NS SDC LIN MPC NS
1 0.574 0.559 6.680 4.436 1.499 1.670 21.360 15.394
2 0.463 0.498 6.452 4.378 1.470 1.774 21.746 15.450
3 0.528 0.492 6.498 4.288 1.626 1.872 21.653 15.364
4 0.462 0.490 6.877 4.409 1.501 1.851 21.889 15.590
5 0.524 0.485 6.582 4.380 1.637 1.730 21.667 15.123
6 0.486 0.520 6.567 4.528 1.484 1.778 21.822 15.564
7 0.460 0.495 6.520 4.421 1.518 1.690 21.390 15.517
8 0.467 0.491 6.574 4.494 1.494 1.856 21.241 15.263
9 0.466 0.520 6.531 4.298 1.531 1.701 21.534 15.326
10 0.508 0.483 6.524 4.362 1.630 1.763 21.612 14.918

Average 0.494 0.503 6.580 4.399 1.539 1.768 21.592 15.351
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