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This supplementary material consists of 7 sections: SM.A provides simulation results of

parameter estimation for the proposed model with the lagged dependent variable being the

transition variable. SM.B provides simulation results comparing the performance of asymp-

totic and bootstrap confidence intervals. SM.C shows simulation results for the comparison

of various optimization algorithms. SM.D presents simulation results for variable selection

based on mixed integer optimization algorithms. SM.E provides simulation results for the

proposed model with two covariate-dependent thresholds. SM.F presents simulation results

for the parameter regions where the F -type tests perform poorly. SM.G reports simulation

results on the performance of variable selection when a time trend is included as a covariate.

SM.A: Simulation Results of Parameter Estimation for the

Model with the Lagged Dependent Variable Being the Tran-

sition Variable

In this section, we conduct a Monte Carlo simulation to evaluate the finite sample perfor-

mance of the proposed estimation procedure for the model with lagged dependent variable

being the transition variable. To do so, we consider the following data generating process

(DGP):

yit = β1xit + β2xitg(yi,t−1; k, γit) + β3zit + αi + uit, (SM.1)

g(yi,t−1; k, γit) = (1 + exp(−k(yi,t−1 − γit)))
−1, k > 0, (SM.2)

γit = γ0 + γ1sit, (SM.3)

where xit = 1 + 0.25αi + ux,it, zit = 0.5αi + uz,it, αi
i.i.d∼ N(0, 1), sit

i.i.d∼ N(2, 1), uit
i.i.d∼

N(0, 0.52), ux,it
i.i.d∼ N(0, 1) and uz,it

i.i.d∼ N(0, 1). The innovation processes ux,it and uz,it

are independent of each other. Following Ramı́rez-Rondán (2020), the data for the variables

are generated from t = −10 to t = T . To generate yit, we initialize yi,t−10 = 0. For the

estimation, we discard the first 10 observations, retaining the observations from t = 0 to

t = T . The number of replications is set to 1000.

The true parameters are set as (k, γ0, γ1) = (5, 0.2, 0.5) and (β1, β2, β3) = (1, 2, 1). The

simulation results are reported in Table SM.1, including the mean and standard deviation

for each parameter. These results indicate that the means of parameters are very close to



Table SM.1: Estimates of the parameters for the model with yi,t−1 being the transition
variable.
T N β1 = 1 β2 = 2 β3 = 1 k = 5 γ0 = 0.2 γ1 = 0.5

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

5 50 1.013 0.052 1.977 0.066 1.000 0.036 5.722 2.799 0.194 0.135 0.503 0.061
100 1.014 0.035 1.976 0.046 1.000 0.024 5.289 0.905 0.199 0.079 0.501 0.035
200 1.011 0.026 1.978 0.032 0.999 0.017 5.182 0.527 0.197 0.050 0.501 0.023

10 50 1.005 0.035 1.990 0.042 0.999 0.025 5.156 0.700 0.198 0.072 0.500 0.033
100 1.005 0.024 1.989 0.029 0.999 0.016 5.094 0.492 0.200 0.048 0.500 0.022
200 1.006 0.016 1.989 0.021 0.999 0.012 5.079 0.348 0.200 0.033 0.500 0.014

20 50 1.005 0.024 1.992 0.030 1.000 0.016 5.065 0.473 0.199 0.047 0.500 0.022
100 1.003 0.017 1.995 0.022 1.000 0.011 5.062 0.344 0.201 0.031 0.499 0.014
200 1.003 0.012 1.995 0.015 1.000 0.008 5.019 0.234 0.199 0.022 0.501 0.010

the true values across all sample sizes, and the standard deviations decrease to zero with the

sample size. The bias and standard deviation of the parameter estimation for the smoothness

parameter are slightly larger than other parameters, as discussed in Section 2. The simulation

results demonstrate that the proposed estimation procedure works well in the model with

lagged dependent variable being the transition variable.

SM.B: Bootstrap Confidence Intervals for Parameters

In this section, we construct confidence intervals for model parameters using a bootstrap

method, which is suitable as it does not depend on any assumption regarding population dis-

tributions and covariance structures (e.g. Nevitt and Hancock 2001). Following the threshold

literature (e.g. Hansen 1999, 2017), our bootstrap procedure is given as follows.

Algorithm G. Confidence intervals for parameters

Step 1. Use the original sample (yit,x
′
it, qit, s

′
it)’s to estimate model (1), obtain (β̂, k̂, γ̂)

and the residual ε̂it = ûit − ¯̂ui, where ûit = yit − β̂′xitg(qit; k̂, γ̂it), ¯̂ui =
1
T

∑T
t=1 ûit.

Step 2. Generate i.i.d draws u∗it from the N(0, 1) distribution for i = 1, ..., N and t =

1, ..., T , and set ε∗it = ε̂itu
∗
it and y∗it = β̂′xitg(qit; k̂, γ̂it) + ¯̂ui + ε∗it.

Step 3. Use the observations (y∗it,x
′
it, qit, s

′
it)’s to estimate model (1), obtaining the

parameter estimates (β̂∗, k̂∗, γ̂∗) and SSR∗
NT (k̂

∗, γ̂∗) = 1
NT (Ÿ − Ẍ(k̂∗, γ̂∗)β̂(k̂∗, γ̂∗))′(Ÿ −

Ẍ(k̂∗, γ̂∗)β̂(k̂∗, γ̂∗)).

Step 4. Repeat Steps 2 and 3 B times, and obtain the estimates for simulated sample

(β̂∗, k̂∗, γ̂∗).

Step 5. Then, we can use percentile interval method to construct the percentile bootstrap

1 − α confidence interval for each parameter. For example, for γ0, the confidence interval

is [γ̂∗α/2, γ̂
∗
1−α/2], where γ̂∗α/2 and γ̂∗1−α/2 are the α/2 and 1 − α/2 quantiles of the bootstrap

distribution of γ̂∗0 respectively.

We next conduct a Monte Carlo simulation to compare the performance of asymptotic

2



T
ab

le
S
M
.2
:
P
er
fo
rm

an
ce

of
as
y
m
p
to
ti
c
an

d
b
o
ot
st
ra
p
co
n
fi
d
en

ce
in
te
rv
al
s.

T
N

M
et
h
o
d

β
1

β
2

β
3

k
γ
0

γ
1

C
P

A
L

C
P

A
L

C
P

A
L

C
P

A
L

C
P

A
L

C
P

A
L

2
10

B
o
ot
st
ra
p

0.
54
9

0.
49
0

0
.5
1
7

0
.2
7
4

0
.5
2
7

0
.4
3
7

0
.5
5
7

7
.7
3
3

0
.5
3
7

0
.1
6
9

0
.5
0
4

0
.1
6
4

A
sy
m
p
to
ti
c

0.
64
2

0.
61
8

0
.6
0
9

0
.3
1
4

0
.6
3
7

0
.5
5
2

0
.5
8
2

6
.1
0
5

0
.5
4
5

0
.1
3
6

0
.5
3
4

0
.1
3
6

20
B
o
ot
st
ra
p

0.
69
0

0.
30
9

0
.6
9
2

0
.1
6
7

0
.6
8
0

0
.2
9
2

0
.7
1
0

1
.7
5
8

0
.6
5
6

0
.0
6
8

0
.6
2
2

0
.0
6
0

A
sy
m
p
to
ti
c

0.
84
9

0.
45
5

0
.8
4
2

0
.2
4
6

0
.8
4
0

0
.4
2
6

0
.8
4
8

2
.5
3
7

0
.8
0
7

0
.0
9
8

0
.7
8
4

0
.0
8
7

40
B
o
ot
st
ra
p

0.
77
6

0.
21
7

0
.7
7
1

0
.1
2
0

0
.7
6
5

0
.2
0
5

0
.7
2
4

1
.1
0
5

0
.7
5
6

0
.0
4
8

0
.6
7
9

0
.0
4
1

A
sy
m
p
to
ti
c

0.
90
5

0.
31
5

0
.9
1
0

0
.1
7
5

0
.9
1
4

0
.2
9
9

0
.8
9
8

1
.6
0
7

0
.8
9
0

0
.0
7
0

0
.8
1
7

0
.0
6
0

5
10

B
o
ot
st
ra
p

0.
83
5

0.
27
5

0
.8
6
1

0
.1
5
2

0
.8
5
8

0
.2
6
1

0
.8
5
3

1
.4
6
9

0
.8
4
1

0
.0
6
1

0
.7
9
5

0
.0
5
4

A
sy
m
p
to
ti
c

0.
84
9

0.
29
5

0
.8
6
5

0
.1
6
4

0
.8
5
1

0
.2
7
8

0
.8
6
1

1
.5
3
9

0
.8
2
8

0
.0
6
5

0
.7
8
9

0
.0
5
6

20
B
o
ot
st
ra
p

0.
88
7

0.
19
9

0
.9
1
2

0
.1
0
9

0
.8
7
7

0
.1
8
9

0
.8
9
5

0
.9
9
8

0
.8
8
3

0
.0
4
4

0
.8
6
8

0
.0
3
9

A
sy
m
p
to
ti
c

0.
91
4

0.
22
1

0
.9
3
2

0
.1
2
1

0
.9
0
1

0
.2
1
0

0
.9
1
9

1
.0
8
9

0
.9
1
0

0
.0
4
9

0
.8
9
1

0
.0
4
2

40
B
o
ot
st
ra
p

0.
90
3

0.
14
2

0
.9
0
5

0
.0
7
8

0
.9
0
4

0
.1
3
4

0
.9
1
6

0
.7
0
5

0
.8
7
2

0
.0
3
1

0
.8
7
8

0
.0
2
7

A
sy
m
p
to
ti
c

0.
93
3

0.
16
0

0
.9
4
0

0
.0
8
7

0
.9
3
7

0
.1
5
2

0
.9
4
4

0
.7
8
6

0
.9
0
7

0
.0
3
5

0
.9
0
7

0
.0
3
0

10
10

B
o
ot
st
ra
p

0.
90
5

0.
19
9

0
.9
0
9

0
.1
0
9

0
.9
0
4

0
.1
8
8

0
.9
0
7

1
.0
0
1

0
.8
9
6

0
.0
4
4

0
.8
7
3

0
.0
3
8

A
sy
m
p
to
ti
c

0.
90
2

0.
20
0

0
.9
0
1

0
.1
1
1

0
.8
9
4

0
.1
9
0

0
.8
8
5

0
.9
9
2

0
.8
8
8

0
.0
4
5

0
.8
5
1

0
.0
3
8

20
B
o
ot
st
ra
p

0.
92
3

0.
14
2

0
.9
1
3

0
.0
7
8

0
.9
1
1

0
.1
3
4

0
.9
2
0

0
.6
9
8

0
.9
0
6

0
.0
3
1

0
.8
9
3

0
.0
2
7

A
sy
m
p
to
ti
c

0.
91
9

0.
14
7

0
.9
1
8

0
.0
8
1

0
.9
2
8

0
.1
4
0

0
.9
1
9

0
.7
2
5

0
.9
0
7

0
.0
3
3

0
.9
0
4

0
.0
2
8

40
B
o
ot
st
ra
p

0.
94
1

0.
10
0

0
.9
1
0

0
.0
5
5

0
.9
2
2

0
.0
9
6

0
.9
1
6

0
.4
9
8

0
.9
2
9

0
.0
2
2

0
.9
2
0

0
.0
1
9

A
sy
m
p
to
ti
c

0.
94
9

0.
10
6

0
.9
2
7

0
.0
5
8

0
.9
3
4

0
.1
0
1

0
.9
4
1

0
.5
2
5

0
.9
4
6

0
.0
2
4

0
.9
3
1

0
.0
2
0

3



and bootstrap confidence intervals, using the same DGP as in Section 5.1. Table SM.2 reports

empirical coverage probabilities (CPs) and average lengths (ALs) of 95 % confidence intervals

for parameters, based on 1000 replications. As shown in Table SM.2, the asymptotic method

generally achieves coverage probabilities closer to the nominal 95 % level for most parameters

and sample sizes. However, it tends to yield wider intervals, particularly in smaller samples

(e.g. T = 2, N = 10), as evidenced by higher AL values. In contrast, the bootstrap method

generates shorter intervals at the expense of lower coverage probabilities in smaller samples.

When the sample size increases (e.g. T = 10, N = 40), the asymptotic method maintains

higher CP values while producing intervals of comparable or even shorter lengths than the

bootstrap method, demonstrating the superiority of asymptotic confidence intervals. The

bootstrap method exhibits higher CP values as the sample size increases, approaching the

nominal 95 % level, which suggests that the bootstrap could be a viable alternative. In

conclusion, we recommend prioritizing the asymptotic method in practical applications due

to its higher coverage probabilities, acceptable interval lengths, and computational efficiency

(by circumventing the resampling burden of the bootstrap).

SM.C: Simulation Results for the Comparison of Various Op-

timization Algorithms

In this section, we conduct a Monte Carlo simulation to evaluate the performance of the

proposed simulated annealing algorithm (SA) against seven optimization methods: Broy-

den–Fletcher–Goldfarb–Shanno (BFGS), Gauss-Newton (GN), Simplex, Genetic Algorithm

(GA), Differential Evolution (DE), Conjugate Gradient (CG), and Markov chain Monte Carlo

(MCMC).

We provide a brief description of the algorithms mentioned above. (1) Broyden–Fletcher–

Goldfarb–Shanno (BFGS): The BFGS is a quasi-Newton algorithm for unconstrained opti-

mization, which approximates the Hessian matrix to update search directions. It has been

applied in parameter estimation for state-dependent threshold Smooth Transition Autoregres-

sive (STAR) models (e.g. Dueker et al. 2013). (2) Gauss-Newton (GN): The GN algorithm

is a modification of Newton’s method for nonlinear least squares problems. It approximates

the Hessian using the Jacobian matrix, avoiding direct computation of second derivatives

(e.g. Osborne 2007). (3) Simplex: As a derivative-free method, the Simplex has been applied

to parameter estimation in the STR-type model (e.g. Omay and Emirmahmutoğlu 2017).

As demonstrated by Omay and Emirmahmutoğlu (2017), the Simplex method outperforms

gradient-based methods (e.g. BFGS) in obtaining accurate critical values for nonlinear unit

root tests. (4) Genetic algorithm (GA): It is a heuristic optimization technique inspired

by the principles of natural selection and heredity, and this technique has been applied to

estimation and modeling problems (e.g. El-Shagi 2011). The algorithm begins with an ini-

4



tial population of candidate solutions. Through iterative processes of selection, crossover,

and random mutation, new solutions are generated and evaluated based on a fitness func-

tion (objective function). The population evolves until convergence criteria are satisfied. (5)

Differential Evolution (DE): The DE method is a population-based heuristic similar to the

Genetic Algorithm (GA), but it requires simpler parameter tuning (e.g. Hegerty, Hung, and

Kasprak 2009). Moreover, DE outperforms GA in many numerical single objective optimiza-

tion problems (e.g. Tušar and Filipič 2007). (6) Conjugate Gradient (CG): The CG method is

an iterative algorithm for minimizing unconstrained nonlinear functions. It requires minimal

computer storage, making it particularly suitable for large-scale optimization problems. (7)

Markov chain Monte Carlo (MCMC): MCMC is a Bayesian sampling technique that gener-

ates parameter samples from posterior distributions. Recent studies (e.g. Yu and Fan 2021;

Yang 2024; Yang et al. 2024) propose MCMC as an alternative to grid search. This approach

reduces computational cost when estimating models with numerous parameters.

The DGP follows the PSTCT model, with parameters identical to those in Section 5.1.

The number of replications is set to 1000, and the simulation results are reported in Table

SM.3. The criteria used for comparison include the means and standard deviations of the

parameter estimates and the average computational time (in seconds) of 1000 estimations for

each algorithm. To make the comparisons more intuitive, we use a relatively large sample

size (T,N) = (20, 200).

Table SM.3 presents simulation results for the different algorithms including the means

and standard deviations for the parameters β, k and γ, along with the time consumption

for estimation. As shown in Table SM.3, the estimates of parameter k obtained from various

algorithms exhibit sizable differences. The SA, Simplex, GA, DE algorithms yield better

results, while the BFGS, GN, CG and MCMC methods perform poorly. Specifically, among

the better-performing algorithms, SA is the best algorithm in terms of estimation accuracy

and time consumption. The Simplex method is fastest, but the standard deviation of k is

slightly larger than that of SA. The means and standard deviations obtained by the GA and

DE are close to those of SA, albeit with longer time consumption. Moreover, in terms of

time consumption, the SA, BFGS and Simplex can obtain the estimation results within a few

seconds. The GA and DE require dozens of seconds. The GN takes the longest time, taking

several hundred seconds.

Overall, in terms of the accuracy in parameter estimation and the time consumption, the

simulated annealing (SA) and Simplex are optimal methods in this optimization problem,

while the Gauss-Newton (GN), Conjugate Gradient (CG) and Markov chain Monte Carlo

(MCMC) perform poorly. The Differential Evolution (DE) approach outperforms the Genetic

Algorithm (GA) in terms of estimation precision and time consumption, as confirmed by

Tušar and Filipič (2007). Taken together, the simulation results indicate that the proposed

simulated annealing algorithm is more efficient both in parameter estimation and in time

5



Table SM.3: Performance comparison among various algorithms

Method Time
β1 = 1 β2 = 2 β3 = 1 k = 5 γ0 = 0.2 γ1 = 0.5

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

SA 1.364 1.000 0.008 2.000 0.005 1.001 0.008 5.000 0.041 0.200 0.002 0.500 0.002
BFGS 2.903 1.045 0.068 1.910 0.131 1.000 0.012 11.448 10.755 0.200 0.013 0.498 0.014
GN 430.619 1.164 0.032 1.673 0.045 1.001 0.020 47.526 5.913 0.200 0.013 0.497 0.011

Simplex 1.333 1.000 0.008 2.000 0.005 1.001 0.008 5.000 0.046 0.200 0.003 0.500 0.002
GA 56.030 1.000 0.009 2.000 0.006 1.001 0.008 5.002 0.079 0.200 0.003 0.500 0.003
DE 26.079 1.000 0.008 2.000 0.005 1.001 0.008 5.000 0.041 0.200 0.002 0.500 0.002
CG 3.840 1.168 0.023 1.666 0.011 1.001 0.021 49.841 1.417 0.200 0.013 0.498 0.012

MCMC 23.228 1.147 0.052 1.707 0.091 1.001 0.019 38.390 17.361 0.200 0.027 0.496 0.026

consumption. It exhibits both high estimation accuracy and low computational time.

SM.D: Simulation Results for Variable Selection Based on Mixed

Integer Optimization Algorithms

In this section, we proposed two variable selection methods based on mixed integer opti-

mization (MIO) as alternatives to the LASSO approach. As suggested by Bertsimas, King,

and Mazumder (2016), the classical best subset selection problem can be formulated as an

MIO problem, which can significantly improve computational efficiency. Consequently, we

first adopt an MIO-based method as an alternative to LASSO for variable selection within

the framework of the linear approximation model (Equation 18). Consider the following

ℓ0-estimator

β̂
λ

M = argmin
β∈R

{ŜSRNT (β) + λM∥β∥l0}, (SM.4)

where ŜSRNT (β) =
1

NT

∑N
i=1

∑T
t=1(ÿit − β′ẍit)

2. λM is the tuning parameter that controls

the sparsity level of the model. The Bayesian Information Criterion (BIC) can be used to

select the tuning parameter λM :

λ̂M = argmin
λM∈Λ

{
log ŜSRNT (β) + λNT

log(NT )

NT
|S|

}
, (SM.5)

where |S| presents the number of non-zero parameters, Λ is a grid of λM values, and λNT

is a deterministic function of the sample size. Following Yang, Yao, and Xie (2024), We use

λNT = log(log(NT )) in the algorithm. Once λ̂M is determined, the corresponding best subset

is identified.

The estimator (SM.5) can be computed using a cyclic coordinate descent (CCD) with local

combinatorial search algorithm proposed by Hazimeh and Mazumder (2020). The idea of the

algorithm is straightforward: it first employs CCD to quickly find a solution, and then uses

6



a local combinatorial search formulated as an MIO problem to refine the solution obtained

in the previous step. This algorithm can be implemented via the function ‘L0Learn.fit’ of R

package ‘L0Learn’ (Hazimeh and Mazumder 2020).1

Although the Lasso-based variable selection method described in Section 3 performs well

within the linear approximation framework, two potential limitations of this framework should

be considered. First, the validity of the linear approximation for variable selection depends

on the existence of the threshold effect and the restriction that xit ̸= sit. Second, it remains

unclear how the linear approximation model approximates the PSTCT model, since first-

order asymptotic approximation may not be very accurate. To address these limitations, we

adapt the block coordinate descent (BCD) algorithm proposed by Lee et al. (2021) as an

alternative estimation strategy. 2 As noted by Lee et al. (2021), the Mixed-Integer Quadratic

Programming (MIQP) step in BCD may run slowly when the dimension of xit is large. To

enhance computational efficiency, we modify the BCD algorithm by replacing the MIQP step

with a grid search over threshold parameters and introducing a cut-off point to terminate

iterations early. 3

Next, we conduct Monte Carlo simulations to examine the finite-sample performance of

the proposed algorithms. To ensure comparability, we retain the DGP, parameter settings and

evaluation criteria from Section 5.3. In the BCD algorithm, the threshold parameter spaces

are defined as [q(η), q(1−η)] × · · · × [q(η), q(1−η)], where q(η) denotes the η-th order statistic of

qit with η = 0.15. The parameter spaces for slope parameters are set as [−2, 2]× ...× [−2, 2].

We set the time limit Maxtime = 60s and maximum number of iterations K∗ = 2, since K∗

= 2 iterations would suffice in the algorithm. The number of replications is set to 1000, and

the corresponding results are reported in Table SM.4.

Table SM.4 shows that the CCD algorithm achieves comparable variable selection accu-

racy to LASSO, with superior performance in smaller sample sizes (e.g. N × T < 250). For

the BCD algorithm, simulations under the PSTCT DGP with moderate smoothness (k = 5)

demonstrate its ability to identify true covariates. In conclusion, our simulation results in-

dicate that MIO-based algorithms perform well in variable selection, providing a viable tool

for empirical robustness checks in empirical applications.

1For brevity, technical details of the implementation are omitted here but are available upon request.
2The original BCD algorithm was developed for factor-driven threshold models and may not perform

optimally in our setting with small smoothness parameters. Future research could further explore the BCD
algorithm in the context of our proposed model.

3For brevity, technical details of the implementation are omitted here but are available upon request.
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Table SM.4: Variable selection performance of MIO-based algorithms.
T N PS Accuracy ERR Precision Recall F-score

Panel A: Variable selection performance of the CCD algorithm
5 50 0.9620 0.9810 0.0190 0.9661 0.9970 0.9813

100 0.9910 0.9955 0.0045 0.9911 1.0000 0.9955
200 0.9940 0.9970 0.0030 0.9940 1.0000 0.9970

10 50 0.9870 0.9935 0.0065 0.9872 1.0000 0.9995
100 0.9990 0.9995 0.0005 0.9990 1.0000 0.9990
200 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000

20 50 0.9980 0.9990 0.0010 0.9980 1.0000 0.9990
100 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000

Panel B: Variable selection performance of the BCD algorithm
5 50 0.8060 0.9020 0.0980 0.8407 0.9920 0.9101

100 0.8940 0.9470 0.0530 0.9042 1.0000 0.9497
200 0.9480 0.9740 0.0260 0.9506 1.0000 0.9747

10 50 0.8830 0.9415 0.0585 0.8953 1.0000 0.9447
100 0.9560 0.9780 0.0220 0.9579 1.0000 0.9785
200 0.9680 0.9840 0.0160 0.9690 1.0000 0.9843

20 50 0.9410 0.9705 0.0295 0.9443 1.0000 0.9713
100 0.9660 0.9830 0.0170 0.9671 1.0000 0.9833
200 0.9710 0.9855 0.0145 0.9718 1.0000 0.9857

SM.E: Simulation Results for the Model with Two Covariate-

Dependent Thresholds

In this section, we conduct Monte Carlo simulations to evaluate the finite-sample perfor-

mance of the proposed panel smooth transition model with two covariate-dependent thresh-

olds. To this end, we consider the following data-generating process (DGP):

yit = β1xit + β2xitg1(qit; k1, γ1,it) + β3xitg2(qit; k2, γ2,it) + β4zit + αi + uit, (SM.6)

gj(qit; kj , γj,it) = (1 + exp(−kj(qit − γj,it)))
−1, j = 1, 2, kj > 0, (SM.7)

γj,it = γj0 + γj1sit, j = 1, 2, γ1,it < γ2,it (SM.8)

where xit = 5 + 0.25αi + ux,it, zit = 2 + 0.5αi + uz,it, αi
i.i.d∼ N(0, 1), qit

i.i.d∼ N(0.2, 1)

and sit
i.i.d∼ N(0, 1). The innovation processes ux,it and uz,it are independent of each other.

uit
i.i.d∼ N(0, 0.52), ux,it

i.i.d∼ N(0, 1) and uz,it
i.i.d∼ N(0, 1). The number of replications is 1000.

To evaluate the performance of the proposed estimation procedure for multiple covariate-

dependent thresholds, we set the true parameters as (β1, β2, β3, β4) = (1, 2, 3, 1) and (k1, γ10,

γ11, k2, γ20, γ21) = (5,−0.6, 0.3, 5, 0.3, 0.5) and examine the empirical means and standard

deviations of all parameters, which are reported in Table SM.5. The simulation results show

that the mean of each parameter is close to its true value for all combinations of T and N ,

and the standard deviations decrease with the sample size. These results indicate that the

8



estimation procedure works well in the case of multiple thresholds.

In the second experiment, we evaluate the finite-sample properties of the test statistic

F2 (defined in (28)), which tests one threshold against two thresholds. The size and power

of F2 are assessed under the null model (1)-(3) for one threshold and the alternative model

(SM.6)-(SM.8) for two thresholds, respectively. The simulation results are reported in Table

SM.6. These results indicate that the test statistic exhibits good size and power properties

in finite samples.

9



T
a
b
le

S
M
.5
:
E
st
im

a
te
s
of

th
e
p
ar
am

et
er
s
ob

ta
in
ed

b
y
u
si
n
g
th
e
es
ti
m
at
or

p
ro
p
os
ed

in
S
ec
ti
on

4.
T

N
β
1

=
1

β
2

=
2

β
3

=
3

β
4

=
1

k
1

=
5

γ
1
0

=
−
0
.6

γ
1
1

=
0
.3

k
2

=
5

γ
2
0

=
0
.3

γ
2
1

=
0
.5

M
e
a
n

S
td

M
e
a
n

S
td

M
e
a
n

S
td

M
e
a
n

S
td

M
e
a
n

S
td

M
e
a
n

S
td

M
e
a
n

S
td

M
e
a
n

S
td

M
e
a
n

S
td

M
e
a
n

S
td

5
5
0

0
.9
9
9

0
.0
4
4

2
.0
0
9

0
.0
9
3

2
.9
9
2

0
.0
8
7

1
.0
0
1

0
.0
3
6

5
.0
0
4

0
.3
5
2

-0
.5
9
9

0
.0
1
8

0
.3
0
0

0
.0
1
0

5
.0
1
7

0
.1
8
5

0
.3
0
1

0
.0
1
1

0
.5
0
1

0
.0
0
7

1
0
0

1
.0
0
0

0
.0
3
1

2
.0
0
3

0
.0
6
0

2
.9
9
8

0
.0
5
6

1
.0
0
0

0
.0
2
5

5
.0
0
6

0
.2
3
4

-0
.6
0
0

0
.0
1
2

0
.3
0
0

0
.0
0
6

5
.0
0
8

0
.1
2
1

0
.3
0
0

0
.0
0
7

0
.5
0
0

0
.0
0
4

2
0
0

1
.0
0
0

0
.0
2
1

2
.0
0
2

0
.0
4
1

2
.9
9
8

0
.0
3
9

1
.0
0
0

0
.0
1
8

5
.0
0
4

0
.1
6
7

-0
.5
9
9

0
.0
0
8

0
.3
0
0

0
.0
0
4

5
.0
0
3

0
.0
8
7

0
.3
0
0

0
.0
0
5

0
.5
0
0

0
.0
0
3

1
0

5
0

1
.0
0
0

0
.0
2
9

2
.0
0
1

0
.0
5
7

2
.9
9
8

0
.0
5
4

0
.9
9
9

0
.0
2
4

5
.0
1
7

0
.2
2
6

-0
.6
0
0

0
.0
1
1

0
.3
0
0

0
.0
0
6

5
.0
0
9

0
.1
1
9

0
.3
0
0

0
.0
0
7

0
.5
0
0

0
.0
0
4

1
0
0

0
.9
9
9

0
.0
2
0

2
.0
0
2

0
.0
3
9

2
.9
9
9

0
.0
3
7

1
.0
0
0

0
.0
1
7

5
.0
0
0

0
.1
5
5

-0
.6
0
0

0
.0
0
8

0
.3
0
0

0
.0
0
4

5
.0
0
2

0
.0
8
5

0
.3
0
0

0
.0
0
5

0
.5
0
0

0
.0
0
3

2
0
0

1
.0
0
0

0
.0
1
5

2
.0
0
2

0
.0
2
9

2
.9
9
9

0
.0
2
7

1
.0
0
0

0
.0
1
1

4
.9
9
8

0
.1
1
3

-0
.6
0
0

0
.0
0
6

0
.3
0
0

0
.0
0
3

5
.0
0
1

0
.0
5
8

0
.3
0
0

0
.0
0
4

0
.5
0
0

0
.0
0
2

2
0

5
0

1
.0
0
0

0
.0
2
0

1
.9
9
8

0
.0
3
9

3
.0
0
1

0
.0
3
6

1
.0
0
0

0
.0
1
6

5
.0
0
9

0
.1
5
2

-0
.6
0
0

0
.0
0
8

0
.3
0
0

0
.0
0
4

5
.0
0
2

0
.0
8
3

0
.3
0
0

0
.0
0
5

0
.5
0
0

0
.0
0
3

1
0
0

1
.0
0
0

0
.0
1
4

2
.0
0
0

0
.0
2
7

3
.0
0
0

0
.0
2
6

1
.0
0
0

0
.0
1
2

5
.0
0
3

0
.1
0
9

-0
.6
0
0

0
.0
0
5

0
.3
0
0

0
.0
0
3

5
.0
0
1

0
.0
5
9

0
.3
0
0

0
.0
0
3

0
.5
0
0

0
.0
0
2

2
0
0

1
.0
0
0

0
.0
1
0

1
.9
9
9

0
.0
2
0

3
.0
0
0

0
.0
1
8

1
.0
0
0

0
.0
0
8

5
.0
0
5

0
.0
7
5

-0
.6
0
0

0
.0
0
4

0
.3
0
0

0
.0
0
2

5
.0
0
1

0
.0
4
1

0
.3
0
0

0
.0
0
2

0
.5
0
0

0
.0
0
1

10



Table SM.6: Finite-sample size and power of the F2 test statistic.
T N Size Power

5 50 0.043 1.000
100 0.047 1.000
200 0.055 1.000

10 50 0.035 1.000
100 0.045 1.000
200 0.039 1.000

20 50 0.066 1.000
100 0.049 1.000
200 0.056 1.000

SM.F: Simulation Experiments for the Parameter Regions Where

the F -Type Tests Perform Poorly

In this section, more detailed Monte Carlo simulations are conducted to examine the

parameter regions where the powers of the F -tests are weak. The DGP is the same as that

in Section 5.1. We set (γ0, γ1) = (0.2, 0.5), (β1, β3) = (1, 1) and vary (β2, k) to investigate

the parameter regions where the F1 test has low power. Meanwhile, we set (k, γ0) = (5, 0.2),

(β1, β3) = (1, 1) and vary (β2, γ1) to investigate the parameter regions where the FC test

performs poorly. The number of replications is 100 to reduce computational cost.

The first experiment presents a detailed examination of the powers of the F -tests for a

range of parameter combinations for sample sizes such as (T,N) = (5, 100).4 The magnitude

of the threshold effect depends on both β2 and k, and thus affects the power of the test F1.

Therefore, we investigate the power of the test F1 by varying the combinations of β2 and k.

Threshold constancy is examined only when the threshold effect exists, and γ1 determines the

magnitude of the threshold constancy. Thus, we examine the power of the FC test by varying

β2 and γ1, which determine the magnitude of the threshold effect and threshold constancy,

respectively. From these simulations, we can observe how the powers of the F -type tests

vary with the parameters. The simulation results are reported in Table SM.7. To present

the simulation results more intuitively, the parameter regions where the F -type tests perform

poorly (below 0.9) are highlighted in gray.

As shown in Table SM.7, small values of β2 and k reduce the power of F1. For example,

when β2 = 0.01, the power of F1 falls below 0.2 across all values of k. For k ≤ 0.05, the

power of F1 remains below 0.7 across all tested β2 values. In such cases, the test F1 fails

to differentiate between the linear model and the proposed model effectively, due to the

relatively small threshold effect (e.g. β2 ≤ 0.01, k ≤ 0.05). Next, we focus on the power of

the test FC . For β2 ≤ 0.05 (insufficient threshold effect), the power of FC remains below 0.7

4We also conduct simulations for sample sizes (T,N) = (5, 50) and (T,N) = (10, 50). To save space, we
only outline the results for sample sizes (T,N) = (5, 100) in this online Appendix.
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Table SM.7: Powers of the F -type test statistics under different parameter combinations.
Test for threshold effect F1

k\β2 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.01 0.050 0.030 0.030 0.040 0.040 0.040 0.050 0.050 0.070 0.110 0.110 0.100
0.05 0.050 0.050 0.050 0.100 0.130 0.150 0.200 0.300 0.340 0.400 0.530 0.610
0.10 0.070 0.050 0.080 0.140 0.330 0.420 0.590 0.800 0.900 0.940 0.990 1.000
0.50 0.060 0.180 0.530 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.00 0.060 0.440 0.970 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.50 0.090 0.750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.00 0.110 0.840 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.50 0.110 0.890 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.00 0.100 0.900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.50 0.080 0.940 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4.00 0.110 0.920 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4.50 0.100 0.960 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5.00 0.100 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Test for threshold constancy FC

γ1\β2 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.01 0.050 0.050 0.050 0.030 0.060 0.080 0.090 0.090 0.110 0.140 0.180 0.200
0.05 0.020 0.030 0.070 0.200 0.330 0.550 0.740 0.890 0.980 0.980 1.000 1.000
0.10 0.070 0.090 0.230 0.580 0.890 0.980 1.000 1.000 1.000 1.000 1.000 1.000
0.15 0.040 0.130 0.410 0.890 0.980 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.20 0.040 0.180 0.450 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.25 0.020 0.200 0.650 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.30 0.080 0.370 0.820 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.35 0.020 0.380 0.890 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.40 0.040 0.360 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.45 0.050 0.490 0.980 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.50 0.050 0.610 0.970 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table SM.8: Powers of the F -type test statistics under specific parameter settings.
T N Test for threshold effect F1 Test for threshold constancy FC

(β2 = 0.05, k = 5) (β2 = 1, k = 0.05) (β2 = 0.1, γ1 = 0.3) (β2 = 1, γ1 = 0.03)

5 50 0.630 0.410 0.410 0.620
100 0.890 0.590 0.860 0.930
200 1.000 0.930 0.960 1.000

10 50 0.990 0.630 0.870 0.920
100 1.000 0.920 0.990 1.000
200 1.000 1.000 1.000 1.000

20 50 1.000 0.970 0.990 1.000
100 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000

regardless of γ1 values. When γ1 = 0.01 (indicating nearly constant threshold), the power

of FC remains below 0.2 even with β2 = 1.00 (a strong threshold effect). It is possible to

enhance the powers of the F -type tests by increasing the parameter values and/or sample

size. For instance, the power of the test F1 reaches a high level when β2 = 0.10 and k = 1.00.

The power of the test FC reaches 0.990 when β2 is 0.20 and γ1 is 0.20.

The second experiment examines the specific parameter settings where the power of the

F -type tests is weak across all T = 5, 10, 20 and N = 50, 100, 200. For the F1 test, we simulate

small threshold effects by setting (β2, k) to (0.05,5) and (1,0.05). For the FC test, we consider

two cases: (i) a small threshold effect with large threshold constancy (β2, γ1) = (0.1, 0.3), and

(ii) a large threshold effect with small threshold constancy (β2, γ1) = (1, 0.03). Table SM.8

shows that F1 has low power when either β2 or k is small, and FC performs poorly if either

β2 or γ1 is small.

In conclusion, the F1 test performs poorly in the parameter regions with small k (e.g.

0.05) or β2 (e.g. 0.05), and the FC test performs poorly when either γ1 (e.g. 0.01) or β2 (e.g.

0.05) is small. These simulation results demonstrate the parameter regions where the F -type

tests perform poorly, which also indicate the robustness of our proposed test statistics.

SM.G: Simulation Results of the Performance of Variable Se-

lection When the Time Trend Is Included as a Covariate

In this section, we conduct a Monte Carlo simulation to examine the performance of the

variable selection procedure when the time trend is included as a covariate. To this end, we

set s1,it = t/T ; other aspects of the DGP are identical to those in Section 5.3. The number of

replications is set to 1000, and the simulation results are reported in Table SM.9. The results

show that PS, Accuracy, Precision, Recall and F–score increase as T or N increases, while

ERR decreases. Perfect variable selection is achieved when N × T > 1000. These results

indicate that the variable selection procedure remains robust when a time trend is included
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as a covariate.

Table SM.9: Performance of variable selection when time trend as a covariate.
T N PS Accuracy ERR Precision Recall F-score

5 50 0.9030 0.9515 0.0485 0.9989 0.9040 0.9491
100 0.9830 0.9915 0.0085 1.0000 0.9830 0.9914
200 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000

10 50 0.9850 0.9925 0.0075 1.0000 0.9850 0.9924
100 0.9990 0.9995 0.0005 1.0000 0.9990 0.9995
200 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000

20 50 0.9990 0.9995 0.0005 1.0000 0.9990 0.9995
100 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
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