Home Determination of the Number of Breaks in Heterogeneous Panel Data Models
Article
Licensed
Unlicensed Requires Authentication

Determination of the Number of Breaks in Heterogeneous Panel Data Models

  • Lu Wang EMAIL logo and Shuke Hu
Published/Copyright: August 8, 2024
Become an author with De Gruyter Brill

Abstract

This paper considers a heterogeneous panel data model with an unknown number of breaks. We propose a so-called two-stage procedure to determine the number of breaks and detect the location of break points. The consistency of the estimated number of breaks and the estimated break points are established under fairly general conditions. Monte Carlo simulations and two empirical applications are provided to demonstrate the finite sample performance of the proposed method.

JEL Classification: C23

Corresponding author: Lu Wang, School of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, China, E-mail: 

Award Identifier / Grant number: 232102310200

Award Identifier / Grant number: 242102110145

  1. Research funding: This research is partially supported in part by the Science and Technology Research Project of Henan Province (Grant No. 232102310200, 242102110145).

Appendix: Technical Details

Let S 1  = {S j : S j can not contain any break }, S 2  = {S j :S j contains a break point}. The break point may locate at the interior or boundary of some S j . We denote S 2 a  =  S j : S j contains a break point k l such that lim ω j ω j , 1 ω j ( 0,1 ) , S 2 b  =  S j : S j contains a break point k l such that lim ω j ω j , 1 ω j = 0 , S 2 c  =  S j : S j contains a break point k l such that lim ω j ω j , 1 ω j = 1 , where ω j,1 = k l  − v j and ω j,2 = v j+1 − k l . Define S = { 0,1 , , J } , S 2 = S 2 a S 2 b S 2 c , η N ω j = min ( N , ω j ) . Let c j = lim T ω j , 1 ω j when j S 2 . Let Θ j * = b l , β j * = β l and a j = η N ω j 1 when j S 1 and S j k l , k l + 1 . Let Θ j * = b l 1 , β j * = β l 1 and a j = ω j , 2 ω j + η N ω j 1 when j S 2 a and k l  ∈ S j . Let Θ j * = b l , β j * = β l and a j = ω j , 1 ω j + η N ω j 1 when j S 2 b and k l  ∈ S j . Let Θ j * = c j b l 1 + ( 1 c j ) b l , β j * = c j β l 1 + ( 1 c j ) β l and a j = ω j , 1 ω j c j + η N ω j 1 when j S 2 c and k l  ∈ S j .

Lemma 1.

Under Assumptions 1 6, 1 N i = 1 N β ̇ i , j β j * = O p ( a j ) .

Proof of Lemma 1. For case (i) j S 1 , we focus on the subinterval S j k l , k l + 1 . Noting that Y i , S j = X i , S j β i ( l ) + ε i , S j and β ̇ i , j = X i , S j X i , S j 1 X i , S j Y i , S j . Then we have

(10) 1 N i = 1 N β ̇ i , j = β j * + 1 N i = 1 N ξ i , l + 1 N i = 1 N X i , S j X i , S j 1 X i , S j ε i , S j .

Since E ( ε i t ) = 0 , ɛ it are cross-sectionally independent and independent with x it , then we have

(11) E 1 N i = 1 N X i , S j X i , S j 1 X i , S j ε i , S j = 0 ,

(12) Var 1 N ω j i = 1 N X i , S j X i , S j ω j 1 1 ω j X i , S j ε i , S j = 1 N ω j i = 1 N X i , S j X i , S j ω j 1 1 ω j X i , S j Var ( ε i , S j ) X i , S j X i , S j X i , S j ω j 1 = O p 1 ω j .

Thus, the third term on the right hand of Equation (10) is O p ( 1 N ω j ) .

Note that ξ i,l  ∼ IID(0, Ω ξ,l ), then we have 1 N i = 1 N ξ i , l = O p ( 1 N ) .

Thus,

(13) 1 N i = 1 N β ̇ i , j β j * = O p 1 N .

For case (ii) j ∈ S 2a , without loss of generality, we assume k l  ∈ S j . The model in S j can be written as

Y i , S j = X i , S j , 1 β i ( l 1 ) X i , S j , 2 β i ( l ) + ε i , S j ,

where S j,1 = (v j , k l ], S j,2 = (k l , v j+1], X i , S j , 1 = ( x i v j + 1 , , x i k l ) , X i , S j , 2 = ( x i k l + 1 , , x i v j + 1 ) .

(14) 1 N i = 1 N β ̇ i , j = 1 N i = 1 N β i ( l 1 ) + 1 N i = 1 N X i , S j X i , S j 1 X i , S j , 2 X i , S j , 2 δ i , l + 1 N i = 1 N X i , S j X i , S j 1 X i , S j ε i , S j = 1 N i = 1 N β i ( l 1 ) + ω j , 2 ω j 1 N i = 1 N X i , S j X i , S j ω j 1 X i , S j , 2 X i , S j , 2 ω j , 2 δ i , l + O p 1 N ω j = β j * + 1 N i = 1 N ξ i , l 1 + O p ω j , 2 ω j + O p 1 N ω j = β j * + O p ω j , 2 ω j + O p 1 N .

For case (iii) j ∈ S 2b , the similar proof technical of case (ii) can be used to prove that

(15) 1 N i = 1 N β ̇ i , j = β j * + O p ω j , 1 ω j + O p 1 N .

For case (iv) j S 2 c , we have

(16) 1 N i = 1 N β ̇ i , j = 1 N i = 1 N β i ( l 1 ) + 1 N i = 1 N X i , S j X i , S j 1 X i , S j , 2 X i , S j , 2 δ i , l + 1 N i = 1 N X i , S j X i , S j 1 X i , S j ε i , S j A 1 + A 2 + A 3 .

For A 2,

A 2 = ω j , 2 ω j 1 N i = 1 N Σ i + 1 ω j X i , S j X i , S j Σ i 1 Σ i + 1 ω j , 2 X i , S j , 2 X i , S j , 2 Σ i δ i , l .

By the Equation 5.8.1 in Horn and Johnson (1985) and Assumption 5, we have

(17) A 2 = 1 N i = 1 N ( 1 c j ) δ i , l + O p ω j , 1 ω j c j + O p 1 ω j .

Using the proof technical of the second and third term in Equation (10), we have A 1 = O p ( 1 N ) and A 3 = O p ( 1 N ω j ) . Thus, 1 N i = 1 N β ̇ i , j = c j β l 1 + ( 1 c j ) β l + O p ( ω j , 1 ω j c j ) + η N , ω j 1 . □

Lemma 2.

Under Assumptions 1 6, 1 N Θ j * Θ ̂ j = O p ( a j ) , j = 0, 1, …, J.

Proof of Lemma 2. Define Θ j = Θ j * + a j η j , j = 0, 1, …, J. Next we will prove that Θ ̂ j falls in a sphere Θ j * + a j η j : 1 N η j ς j M , where ς j is constant.

L Θ 0 , , Θ J L Θ 0 * , , Θ J * = 1 2 N j = 0 J 1 ω j Y S j X S j Θ j 2 + γ j = 1 J ω j Θ j Θ j 1 1 2 N j = 0 J 1 ω j Y S j X S j Θ j * 2 γ j = 1 J ω j Θ j * Θ j 1 * = 1 2 N j = 0 J 1 ω j Y S j X S j Θ j * + X S j Θ j * X S j Θ j 2 1 2 N j = 0 J 1 ω j Y S j X S j Θ j * 2 + γ j = 1 J ω j Θ j Θ j 1 Θ j * Θ j 1 * = 1 N j = 0 J 1 ω j X S j Θ j * Θ j 2 + 1 N j = 0 J 1 ω j Y S j X S j Θ j * X S j Θ j * Θ j + γ j = 1 J ω j Θ j Θ j 1 Θ j * Θ j 1 *

= 1 2 N j S 1 1 ω j X S j Θ j * Θ j 2 + 2 Y S j X S j Θ j * X S j Θ j * Θ j + 1 2 N j S 2 a 1 ω j X S j Θ j * Θ j 2 + 2 Y S j X S j Θ j * X S j Θ j * Θ j + 1 2 N j S 2 b 1 ω j X S j Θ j * Θ j 2 + 2 Y S j X S j Θ j * X S j Θ j * Θ j + 1 2 N j S 2 c 1 ω j X S j Θ j * Θ j 2 + 2 Y S j X S j Θ j * X S j Θ j * Θ j + γ j = 0 J ρ j Θ j Θ j 1 Θ j * Θ j 1 * B 1 + B 2 + B 3 + B 4 + B 5 .

For B 1,

B 1 = 1 N j S 1 1 ω j X S j Θ j * Θ j 2 + 1 N j S 1 1 ω j Y S j X S j Θ j * X S j Θ j * Θ j B 1,1 + B 1,2 .

For B 1,1,

B 1,1 = 1 2 j S 1 1 N Θ j * Θ j X S j X S j ω j 1 N Θ j * Θ j 1 2 min j S 1 μ min X S j X S j ω j j S 1 1 N Θ j * Θ j 2 .

For B 1,2,

B 1,2 = 1 N j S 1 1 ω j Y S j X S j Θ j * X S j Θ j * Θ j = 1 2 N j S 1 1 ω j ε S j X S j Θ j * Θ j 1 2 N j S 1 1 ω j ε S j X S j Θ j * Θ j 1 2 ω j j S 1 1 N i = 1 N 1 ω j t = v j + 1 v j + 1 ε i t x i t 2 1 / 2 1 N Θ j * Θ j = j S 1 O p 1 ω j 1 N Θ j * Θ j .

Thus, B 1 = j S 1 1 2 μ * a j 2 1 N η j 2 + O p ( 1 ω j ) a j 1 N η j .

For B 2,

B 2 = 1 N j S 2 a 1 ω j X S j Θ j * Θ j 2 + 1 2 N j S 2 a ω j , 2 ω j D 1 * Θ j * Θ j + 1 2 N j S 2 a 1 ω j ε S j X S j Θ j * Θ j B 2,1 + B 2,2 + B 2,3 ,

where

D 1 * = X 1 , S j , 2 X 1 , S j , 2 ω j , 2 δ 1 , l , , X N , S j , 2 X N , S j , 2 ω j , 2 δ N , l .

For B 2,1,

B 2,1 = 1 N j S 2 a 1 ω j X S j Θ j * Θ j 2 1 2 min j S 2 a μ min X S j X S j ω j j S 2 a 1 N Θ j * Θ j 2 .

Since the largest eigenvalue of X i , S j , 2 X i , S j , 2 ω j , 2 and 1 N i = 1 N δ i , l 2 are upper bounded, then

1 N D 1 * 2 = 1 N i = 1 N X i , S j , 2 X i , S j , 2 ω j , 2 δ i , l 2 = O p ( 1 ) .

Therefore,

B 2,2 = j S 2 a O p ω j , 2 ω j 1 N Θ j * Θ j .

Using the proof technical of B 1,2, we have

B 2,3 = j S 2 a O p 1 ω j 1 N Θ j * Θ j .

Thus, B 2 = j S 2 a 1 2 μ * a j 2 1 N η j 2 + O p ( 1 ω j + ω j , 2 ω j ) a j 1 N η j .

For B 3,

B 3 = 1 N j S 2 b 1 ω j X S j Θ j * Θ j 2 + 1 2 N j S 2 b ω j , 1 ω j D 2 * Θ j * Θ j + 1 2 N j S 2 b 1 ω j ε S j X S j Θ j * Θ j B 3,1 + B 3,2 + B 3,3 ,

where D 2 * = X 1 , S j , 1 X 1 , S j , 1 ω j , 1 δ 1 , l , , X N , S j , 1 X N , S j , 1 ω j , 1 δ N , l .

For B 3,1,

B 3,1 = 1 N j S 2 b 1 ω j X S j Θ j * Θ j 2 1 2 min j S 2 b μ min X S j X S j ω j j S 2 b 1 N Θ j * Θ j 2 .

Since the largest eigenvalue of X i , S j , 1 X i , S j , 1 ω j , 1 and 1 N i = 1 N δ i , l 2 are upper bounded, then

1 N D 2 * 2 = 1 N i = 1 N X i , S j , 1 X i , S j , 1 ω j , 1 2 δ i , l 2 = O p ( 1 ) .

Then, we have B 3,2 = j S 2 b O p ( ω j , 1 ω j ) 1 N Θ j * Θ j .

The proof technical of B 1,2 can be used to prove that

B 3,3 = O p 1 ω j 1 N j S 1 Θ j * Θ j 2 1 / 2 .

Thus, we have

B 3 = j S 2 b 1 2 μ * a j 2 1 N η j 2 + O p 1 ω j + ω j , 1 ω j a j 1 N η j ,

where μ * = min 0 j J ( μ min X S j X S j ω j ) .

For B 4,

B 4 = 1 N j S 2 c 1 ω j X S j Θ j * Θ j 2 + 1 2 N j S 2 c 1 ω j X S j , 1 b l 1 X S j , 2 b l X S j Θ j * X S j Θ j * Θ j + 1 2 N j S 2 c 1 ω j ε S j X S j Θ j * Θ j B 4,1 + B 4,2 + B 4,3 .

For B 4,1,

B 4,1 = 1 N j S 2 c 1 ω j X S j Θ j * Θ j 2 1 2 min j S 2 c μ min X S j X S j ω j j S 2 c 1 N Θ j * Θ j 2 .

For B 4,2,

B 4,2 = 1 2 N j S 2 c 1 ω j D 3 * Θ j * Θ j

where D 3 * = ( X 1 , S j , 1 X 1 , S j , 1 β 1 ( l 1 ) + X 1 , S j , 2 X 1 , S j , 2 β 1 ( l ) , , X N , S j , 1 X N , S j , 1 β N ( l 1 ) + X N , S j , 2 X N , S j , 2 β N ( l ) ) . Note that

D 3 * ω j N 2 = 1 ω j 2 N i = 1 N X i , S j , 1 X i , S j , 1 β i ( l 1 ) c j X i , S j X i , S j β i ( l 1 ) 2 + 1 ω j 2 N i = 1 N X i , S j , 2 X i , S j , 2 β i ( l ) ( 1 c j ) X i , S j X i , S j β i ( l ) 2 .

For the first term of above equation,

1 ω j 2 N i = 1 N X i , S j , 1 X i , S j , 1 β i ( l 1 ) c j X i , S j X i , S j β i ( l 1 ) 2 1 N i = 1 N ω j , 1 ω j X S i , j , 1 X S i , j , 1 ω j , 1 Σ i + ω j , 1 ω j c j Σ i + Σ i X i , S j X i , S j ω j c j 2 β i ( l 1 ) 2 3 N i = 1 N ω j , 1 ω j X i , S j , 1 X i , S j , 1 ω j , 1 Σ i 2 β i ( l 1 ) 2 + ( ω j , 1 ω j c j ) 2 3 N i = 1 N Σ i 2 β i ( l 1 ) 2 + 3 N i = 1 N Σ i X i , S j X i , S j ω j c j 2 β i ( l 1 ) 2 = O p 1 ω j + O p ω j , 1 ω j c j 2 .

Using the proof technical of the first term, the second term is O p ( 1 ω j ) + O p ( ω j , 1 ω j c j ) 2 .

Thus, B 4,2 = j S 2 c O p 1 ω j + ω j , 1 ω j c j 1 N Θ j * Θ j .

The proof technical of B 1,2 is used to prove that

B 4,3 = j S 1 O p 1 ω j 1 N Θ j * Θ j .

Therefore, B 4 = j S 2 c 1 2 μ * a j 2 1 N η j 2 + O p ( 1 ω j + ω j , 1 ω j c j ) a j 1 N η j .

B 5 = γ j S 1 , j 1 S 1 ρ j Θ j Θ j 1 Θ j * Θ j 1 * + γ j S 1 , j 1 S 2 b ρ j Θ j Θ j 1 Θ j * Θ j 1 * + γ j S 2 a , j 1 S 1 ρ j Θ j Θ j 1 Θ j * Θ j 1 * + γ j S 2 b S 2 c , j 1 S 1 ρ j Θ j Θ j 1 Θ j * Θ j 1 * + γ j S 1 , j 1 S 2 a S 2 c ρ j Θ j Θ j 1 Θ j * Θ j 1 * B 5,1 + B 5,2 + B 5,3 + B 5,4 + B 5,5 .

Since Θ j *  =  Θ j 1 * in equations B 5,1, B 5,2 and B 5,3, then B 5,1 ≥ 0, B 5,2 ≥ 0 and B 5,3 ≥ 0.

For B 5,4,

B 5,4 = γ j S 2 b S 2 c , j 1 S 1 ρ j Θ j Θ j 1 Θ j * Θ j 1 * γ j S 2 b S 2 c , j 1 S 1 ρ j Θ j Θ j * + Θ j 1 Θ j 1 * 2 γ max j S 2 b S 2 c , j 1 S 1 ρ j j = 0 J Θ j * Θ j .

Note that ρ j = i = 1 N ( β ̇ i , j β ̇ i , j 1 ) N κ , j S 2 b S 2 c and j 1 S 1 . By Lemma 1, we have max j S 2 b S 2 c , j 1 S 1 ρ j = O p ( 1 ) . Thus, B 5,4 = O p ( γ ) j = 0 J Θ j * Θ j .

In proceed,

B 1 + B 2 + B 3 + B 4 + B 5,4 + B 5,5 = 1 2 j S 1 μ * a j 2 1 N η j 2 + O p 1 ω j + γ N a j 1 N η j + 1 2 j S 2 a μ * a j 2 1 N η j 2 + O p 1 ω j + ω j , 2 ω j + γ N a j 1 N η j + 1 2 j S 2 b μ * a j 2 1 N η j 2 + O p 1 ω j + ω j , 1 ω j + γ N a j 1 N η j + 1 2 j S 2 c μ * a j 2 1 N η j 2 + O p 1 ω j + ω j , 1 ω j c j + γ N a j 1 N η j = 1 2 j = 0 J μ * N η j 2 + O p 1 + γ N a j 1 1 N η j a j 2 .

Since B 5,1, B 5,2, B 5,3 ≥ 0 and L ( Θ ̂ 0 , , Θ ̂ J ) L Θ 0 * , , Θ J * 0 , then Θ ̂ 0 , , Θ ̂ J satisfy the following inequality with probability approaching to one

(18) B 1 + B 2 + B 3 + B 4 + B 5,4 + B 5,5 0 .

Note that 1 a j ω j and γ N ω j = O ( 1 ) , then γ N a j 1 = O p ( 1 ) . Thus, there exist a constant ς j such that 1 N η j ς j by the properties of quadratic functions; Otherwise, it is in contradiction with Equation 18. □

Lemma 3.

Under Assumptions 1 6,

  1. for j, j − 1 ∈ S 1, lim N , T P ( Θ ̂ j = Θ ̂ j 1 ) = 1 ;

  2. for j ∈ S 2c , lim N , T P ( Θ ̂ j + 1 Θ ̂ j , Θ ̂ j Θ ̂ j 1 ) = 1 ;

  3. for j ∈ S 2a , lim N , T P ( Θ ̂ j + 1 Θ ̂ j ) = 1 ;

  4. for j ∈ S 2b , lim N , T P ( Θ ̂ j Θ ̂ j 1 ) = 1 .

Proof of Lemma 3. (i) The model with at least one change point. If Δ ̂ j 0 , let ϑ j = Δ ̂ j Δ ̂ j . Otherwise, ϑ j is a constant that satisfy ‖ϑ j ‖ ≤ 1. Next we will consider three cases: (a) 2 ≤ j ≤ J − 1, (bj = J and (cj = 1.

For case (a), we consider three subcases a ( 1 ) j + 1 S 2 b S 2 c , a ( 2 ) j + 1 S 2 a and a ( 3 ) j + 1 S 1 .

For a(1), we can apply the subdifferential calculus to obtain the Karush-Kuhn-Tucker (KKT) condition of minimizing the objective function (4) with respect to Θ j

(19) L ( Θ 0 , , Θ J ) Θ j = 1 2 N ω j X S j ( Y S j X S j Θ ̂ j ) + γ ρ j Δ ̂ j Δ ̂ j + γ ρ j + 1 Δ ̂ j + 1 Δ ̂ j + 1 = 0 .

That is,

(20) 0 = a j N X S j * Y S j * X S j * Θ ̂ j + a j N ω j γ ρ j Δ ̂ j Δ ̂ j + a j N ω j γ ρ j + 1 Δ ̂ j + 1 Δ ̂ j + 1 = a j N X S j Y S j X S j Θ j * + X S j Θ j * X S j Θ ̂ j + a j N ω j γ ρ j Δ ̂ j Δ ̂ j + a j N ω j γ ρ j + 1 Δ ̂ j + 1 Δ ̂ j + 1 = a j X S j N Y S j X S j Θ j * + a j X S j X S j N Θ j * Θ ̂ j + a j N ω j γ ρ j Δ ̂ j Δ ̂ j + a j N ω j γ ρ j + 1 Δ ̂ j + 1 Δ ̂ j + 1 = a j N X S j ε S j + a j N X S j X S j Θ j * Θ ̂ j + a j N ω j γ ρ j Δ ̂ j Δ ̂ j + a j N ω j γ ρ j + 1 Δ ̂ j + 1 Δ ̂ j + 1 = D j , 1 + D j , 2 + D j , 3 + D j , 4 .

Note that D j , 1 = 1 N i = 1 N a j t = v j + 1 v j + 1 x i t ε i t 2 1 / 2 and a j = η N ω j 1 = 1 ω j , then we have ‖D j,1‖ = O p (1). For 1 ≤ i ≤ N, the largest eigenvalue of X i , S j X i , S j ω j are uniformly upper bounded, then ‖D j,2‖ = O p (1) by Lemma 2. Since j + 1 S 2 b S 2 c , j S 1 , then ρ j+1 is upper bound by Lemma 1. Noting that ‖D j,4‖ = O p (1) under Assumption 4. If Δ ̂ j 0 , then ‖D j,3‖ diverges; This conclusion is in contradiction with (20). Thus, Δ ̂ j lies in a position where ‖Θ j  − Θ j−1‖ is not differentiable with respect to Θ j . That is, Δ ̂ j = 0 .

For a(2), if Δ ̂ j 0 , D j,3 and D j,4 have the same divergence rate. Considering the Karush-Kuhn-Tucker (KKT) condition of minimizing the objective function (4) with respect to Θ j+1,

(21) 0 = a j + 1 N X S j + 1 e S j + 1 + a j + 1 N X S j + 1 X S j + 1 Θ j * Θ ̂ j + a j + 1 N ω j + 1 γ ρ j + 1 ϑ j + 1 + a j + 1 N ω j + 1 γ ρ j + 2 ϑ j + 2 D j + 1,1 + D j + 1,2 + D j + 1,3 + D j + 1,4 .

Using the proof technical of a(1), we have D j+1,1 = O p (1) and D j+1,2 = O p (1). Note that D j + 1,3 = a j + 1 a j D j , 4 , a j+1 ≥ a j and D j+1,3 diverges. But D j+1,4 = O p (1) is in contradiction with Equation (21). Thus, we reach a conclusion that Δ ̂ j lies in a position where ‖Θ j  − Θ j−1‖ is not differentiable with respect to Θ j . That is, Δ ̂ j = 0 .

For a(3), if Δ ̂ j 0 , D j,3 and D j,4 have the same divergence speed by the Karush-Kuhn-Tucker(KKT) condition of minimizing the objective function (4) with respect to Θ j . Note that D j + 1,3 = a j + 1 a j D j , 4 and a j+1 = a j , then D j+1,3 and D j,4 diverge at the same speed. If j + 2 S 1 , then D j + 2,3 = a j + 2 a j D j , 4 , that is, D j+2,3 and D j,4 diverge at the same speed. And so on, until j + l S 1 and j + l + 1 S 2 , then we have D j + l , 3 = a j + l a j D j , 4 . As the discussion of subcases a(1) and a(2), a contradiction would arise unless there is no point after v j+1.

In proceed, we consider the Karush-Kuhn-Tucker (KKT) condition of minimizing the objective function (4) with respect to Θ j−1

(22) 0 = a j 1 N X S j 1 e S j 1 + a j 1 N X S j 1 X S j 1 Θ j 1 * Θ ̂ j 1 + a j 1 N ω j 1 γ ρ j 1 ϑ j 1 + a j 1 N ω j 1 γ ρ j ϑ j D j 1,1 + D j 1,2 + D j 1,3 + D j 1,4

If Δ ̂ j 0 , then D j−1,3 and D j−1,4 have the same divergence speed. If j 2 S 1 , then D j 1,3 = a j 1 a j 2 D j 2,4 . Thus, D j−2,4 and D j−1,3 have the same divergence speed. And so on, until j l S 1 and j l 1 S 2 , we have D j 1,3 = a j 1 a j l D j l , 4 . As the discussion of cases a(1) and a(2), a contradiction would arise unless there is no point after v j . Note that there are at least one change point, then Δ ̂ j lies in a position where ‖Θ j  − Θ j−1‖ is not differentiable with Θ j . Thus, Δ ̂ j = 0 .

Next we consider case (b). Noting that only one term contains Θ J in Equation (4), the Karush-Kuhn-Tucker (KKT) condition of minimizing the objective function (4) with respect to Θ J is given by

(23) 0 = a J N X S J e S J + a J N X S J X S J Θ J * Θ ̂ J + a J N ω J γ ρ J ϑ J .

Using the same proof technical of D j,1, D j,2 in Equation (20), the first two terms in the right hand of Equation (23) are O p (1). If Δ ̂ J 0 , the third term in the right hand of Equation (23) diverges. This conclusion is in contradiction with (23). Thus, Δ ̂ J lies in a position where ‖Θ J  − Θ J−1‖ is not differentiable with Θ J , that is, Δ ̂ J = 0 .

For case (c), considering the Karush-Kuhn-Tucker (KKT) condition of minimizing the objective function (4) with respect to Θ0; Using the proof technical of case (b), we have Δ ̂ 1 = 0 .

For the case of no change point. If there exist j such that Θ ̂ j Θ ̂ j 1 0 , it is in contradiction with case (b) or (c).

(ii) For j ∈ S 2c ,

(24) 1 N Θ ̂ j Θ ̂ j 1 = 1 N Θ ̂ j Θ j * + Θ j * Θ j 1 * + Θ j 1 * Θ ̂ j 1 = 1 N Θ j * Θ j 1 * + O p ( a j ) + O p ( a j 1 ) .

Noting that 1 N Θ j * Θ j 1 * 2 = ( 1 c j ) 2 1 N i = 1 N δ i , l δ i , l , then Θ ̂ j Θ ̂ j 1 . By analogy, we have Θ ̂ j + 1 Θ ̂ j .

For (iii) and (iv), the proof technical of (ii) can be adopted. □

Proof of Theorem 1. For Δ ̃ j 0 , Δ ̂ j + 1 0 , if S j can not contain any break, then at most one of S j−1 and S j contain a change point. By Lemma 3(i), at most one of Δ ̂ j and Δ ̂ j + 1 is equal to zero. This is in contradiction with Δ ̂ j 0 , Δ ̂ j + 1 0 . Thus, S j contains a change point.

For Δ ̂ j 0 , Δ ̂ j + 1 = 0 , Δ ̂ j 1 = 0 , since Δ ̂ j 0 , then one of S j and S j−1 contains a change point by Lemma 3(i). By Lemma 3(ii), this change point cannot be located in the interior or right end of S j . Otherwise, a contradiction would arise. Therefore, this change point is located in S j−1 or the left end of S j .

For Δ ̂ j = 0 , Δ ̂ j + 1 0 , Δ ̂ j + 2 = 0 , the above proof technical can be adopted.

For Δ ̂ j = 0 , Δ ̂ j + 1 = 0 , if j S 2 , this is in contradiction with Lemma 3(ii)–(iv). Thus, S j can not contain any break. □

Proof of Theorem 2. The proof technical of Theorem 1 in Baltagi, Feng, and Kao (2016) can be used to prove this Theorem. □

References

Antoch, J., J. Hanousek, L. Horváth, M. Hušková, and S. Wang. 2018. “Structural Breaks in Panel Data: Large Number of Panels and Short Length Time Series.” Econometric Reviews 38 (7): 828–55. https://doi.org/10.1080/07474938.2018.1454378.Search in Google Scholar

Bai, J. 2010. “Common Breaks in Means and Variances for Panel Data.” Journal of Econometrics 157 (1): 78–92. https://doi.org/10.1016/j.jeconom.2009.10.020.Search in Google Scholar

Bai, J., and P. Perron. 1998. “Estimating and Testing Linear Models with Multiple Structural Changes.” Econometrica 66 (1): 47. https://doi.org/10.2307/2998540.Search in Google Scholar

Baltagi, B. H., C. Kao, and L. Liu. 2015. “Estimation and Identification of Change Points in Panel Models with Nonstationary or Stationary Regressors and Error Term.” Econometric Reviews 36 (1–3): 85–102. https://doi.org/10.1080/07474938.2015.1114262.Search in Google Scholar

Baltagi, B. H., Q. Feng, and C. Kao. 2016. “Estimation of Heterogeneous Panels with Structural Breaks.” Journal of Econometrics 191 (1): 176–95. https://doi.org/10.1016/j.jeconom.2015.03.048.Search in Google Scholar

Baltagi, B. H., Q. Feng, and C. Kao. 2019. “Structural Changes in Heterogeneous Panels with Endogenous Regressors.” Journal of Applied Econometrics 34 (6): 883–92, https://doi.org/10.1002/jae.2712.Search in Google Scholar

Boldea, O., B. Drepper, and Z. Gan. 2020. “Change Point Estimation in Panel Data with Time-Varying Individual Effects.” Journal of Applied Econometrics 35 (6): 712–27. https://doi.org/10.1002/jae.2769.Search in Google Scholar

Feldstein, M., and C. Horioka. 1980. “Domestic Saving and International Capital Flows.” The Economic Journal 90 (358): 314. https://doi.org/10.2307/2231790.Search in Google Scholar

Gruber, J. W., and S. B. Kamin. 2007. “Explaining the Global Pattern of Current Account Imbalances.” Journal of International Money and Finance 26 (4): 500–22. https://doi.org/10.1016/j.jimonfin.2007.03.003.Search in Google Scholar

Hallin, M., and R. Liška. 2007. “Determining the Number of Factors in the General Dynamic Factor Model.” Journal of the American Statistical Association 102 (478): 603–17. https://doi.org/10.1198/016214506000001275.Search in Google Scholar

Horn, R. A., and C. R. Johnson. 1985. Matrix Analysis. New York: Cambridge University Press.10.1017/CBO9780511810817Search in Google Scholar

Horváth, L., and M. Hušková. 2012. “Change-Point Detection in Panel Data.” Journal of Time Series Analysis 33 (4): 631–48. https://doi.org/10.1111/j.1467-9892.2012.00796.x.Search in Google Scholar

Kaddoura, Y., and J. Westerlund. 2022. “Estimation of Panel Data Models with Random Interactive Effects and Multiple Structural Breaks when T is Fixed.” Journal of Business & Economic Statistics 41 (3): 778–90. https://doi.org/10.1080/07350015.2022.2067546.Search in Google Scholar

Kim, D. 2011. “Estimating a Common Deterministic Time Trend Break in Large Panels with Cross Sectional Dependence.” Journal of Econometrics 164 (2): 310–30. https://doi.org/10.1016/j.jeconom.2011.06.018.Search in Google Scholar

Kim, D. 2014. “Common Breaks in Time Trends for Large Panel Data with a Factor Structure.” The Econometrics Journal 17 (3): 301–37. https://doi.org/10.1111/ectj.12033.Search in Google Scholar

Li, D., J. Qian, and L. Su. 2016. “Panel Data Models with Interactive Fixed Effects and Multiple Structural Breaks.” Journal of the American Statistical Association 111 (516): 1804–19. https://doi.org/10.1080/01621459.2015.1119696.Search in Google Scholar

Ma, S., and L. Su. 2018. “Estimation of Large Dimensional Factor Models with an Unknown Number of Breaks.” Journal of Econometrics 207 (1): 1–29. https://doi.org/10.1016/j.jeconom.2018.06.019.Search in Google Scholar

Obstfeld, M., and A. Taylor. 2002. “Globalization and Capital Markets.” NBER Working Paper, No. 8846.10.3386/w8846Search in Google Scholar

Okui, R., and W. Wang. 2021. “Heterogeneous Structural Breaks in Panel Data Models.” Journal of Econometrics 220 (2): 447–73. https://doi.org/10.1016/j.jeconom.2020.04.009.Search in Google Scholar

Pauwels, L. L., F. Chan, and T. M. Griffoli. 2012. “Testing for Structural Change in Heterogeneous Panels with an Application to the Euro’s Trade Effect.” Journal of Time Series Econometrics 4 (2). https://doi.org/10.1515/1941-1928.1141.Search in Google Scholar

Qian, J., and L. Su. 2016. “Shrinkage Estimation of Common Breaks in Panel Data Models via Adaptive Group Fused Lasso.” Journal of Econometrics 191 (1): 86–109. https://doi.org/10.1016/j.jeconom.2015.09.004.Search in Google Scholar

Roberts, J., and P. E. Grimes. 1997. “Carbon Intensity and Economic Development 1962–1991: A Brief Exploration of the Environmental Kuznets Curve.” World Development 25 (2): 191–8. https://doi.org/10.1016/s0305-750x(96)00104-0.Search in Google Scholar

Saleh, E. A. 2023. “The Effects of Economic and Financial Crises on Fdi: A Literature Review.” Journal of Business Research 161: 113830. https://doi.org/10.1016/j.jbusres.2023.113830.Search in Google Scholar

Wachter, S. D., and E. Tzavalis. 2012. “Detection of Structural Breaks in Linear Dynamic Panel Data Models.” Computational Statistics & Data Analysis 56 (11): 3020–34. https://doi.org/10.1016/j.csda.2012.02.025.Search in Google Scholar

Yamamoto, Y., and S. Tanaka. 2015. “Testing for Factor Loading Structural Change under Common Breaks.” Journal of Econometrics 189 (1): 187–206. https://doi.org/10.1016/j.jeconom.2015.06.018.Search in Google Scholar

Yamazaki, D., and E. Kurozumi. 2014. “Testing for Parameter Constancy in the Time Series Direction in Panel Data Models.” Journal of Statistical Computation and Simulation 85 (14): 2874–902. https://doi.org/10.1080/00949655.2014.945089.Search in Google Scholar

Zhang, L., Z. Zhu, X. Feng, and Y. He. 2021. “Shrinkage Quantile Regression for Panel Data with Multiple Structural Breaks.” Canadian Journal of Statistics 50 (3): 820–51. https://doi.org/10.1002/cjs.11659.Search in Google Scholar

Zhu, H., V. Sarafidis, and M. J. Silvapulle. 2019. “A New Structural Break Test for Panels with Common Factors.” The Econometrics Journal 23 (1): 137–55. https://doi.org/10.1093/ectj/utz018.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/snde-2024-0018).


Received: 2024-03-12
Accepted: 2024-07-03
Published Online: 2024-08-08

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/snde-2024-0018/html?lang=en
Scroll to top button