9

Liana Jacobi*, Chun Fung Kwok, Andrés Ramírez-Hassan and Nhung Nghiem

Posterior Manifolds over Prior Parameter Regions: Beyond Pointwise Sensitivity Assessments for Posterior Statistics from MCMC Inference

https://doi.org/10.1515/snde-2022-0116

Received December 18, 2022; accepted October 16, 2023; published online December 22, 2023

Abstract: Increases in the use of Bayesian inference in applied analysis, the complexity of estimated models, and the popularity of efficient Markov chain Monte Carlo (MCMC) inference under conjugate priors have led to more scrutiny regarding the specification of the parameters in prior distributions. Impact of prior parameter assumptions on posterior statistics is commonly investigated in terms of local or pointwise assessments, in the form of derivatives or more often multiple evaluations under a set of alternative prior parameter specifications. This paper expands upon these localized strategies and introduces a new approach based on the graph of posterior statistics over prior parameter regions (sensitivity manifolds) that offers additional measures and graphical assessments of prior parameter dependence. Estimation is based on multiple point evaluations with Gaussian processes, with efficient selection of evaluation points via active learning, and is further complemented with derivative information. The application introduces a strategy to assess prior parameter dependence in a multivariate demand model with a high dimensional prior parameter space, where complex prior-posterior dependence arises from model parameter constraints. The new measures uncover a considerable prior dependence beyond parameters suggested by theory, and reveal novel interactions between the prior parameters and the elasticities.

Keywords: Bayesian robustness; Gaussian process; prior elicitation; sensitivity analysis

JEL Classification: C11; C31; C52; D12; I12

1 Introduction

Bayesian inference plays an increasingly important role in empirical research across many fields including economics and related areas. A common application requires the specification of a potentially large set of location and precision parameters (henceforth referred to as prior parameters) for prior distributions that have been predetermined based on modelling aspects and computational efficiency (i.e. prior conjugacy). It is well known that prior parameter choices can lead to a prior dependence of the posterior statistics (Berger 1990) and they should

E-mail: kwokcf@unimelb.edu.au. https://orcid.org/0000-0002-0716-3879

Andrés Ramírez-Hassan, Universidad EAFIT, School of Finance, Economics and Government, Medellín, Colombia,

Nhung Nghiem, Department of Public Health, University of Otago, Wellington, New Zealand, E-mail: nhung.nghiem@otago.ac.nz

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

^{*}Corresponding author: Liana Jacobi, Department of Economics, The University of Melbourne, Melbourne, Australia, E-mail: ljacobi@unimelb.edu.au

Chun Fung Kwok, Department of Economics, The University of Melbourne, Melbourne, Australia,

be carefully chosen (Lancaster 2004). This paper introduces a new approach that assesses prior parameter dependence via the functions of the posterior statistics over relevant prior parameter regions (sensitivity manifolds) with the aim to expand upon commonly used localized strategies. We propose a computational strategy for settings where inference is based on efficient MCMC methods that opens up possibilities of a more comprehensive analysis of prior dependence patterns through a range of new numerical and graphical measures. For example, it allows the identification of prior parameters with the largest impacts on posterior estimates of key statistics, as well as to identify those posterior statistics that are particularly sensitive to prior parameter specifications (within a region in the prior parameter space).

By design, analysis of prior parameter dependence differs in focus from the broader set of issues in the wellestablished and large literature on Bayesian robustness (Berger 1985; Bhatia et al. 2023; Giacomini, Kitagawa, and Read 2022; Li and Dunson 2020; Ríos Insua, Ruggeri, and Martín 2000; Ruggeri 2008). The main objective of the former is in assessing changes in posterior inference when moving away from an initial point within the prior parameter space for a given model (likelihood) and prior distribution. For example in the context of sparse modelling in macroeconomic time series analysis with prior shrinkage, several studies have looked on the impacts of widely used shrinkage parameters (Amir-Ahmadi, Matthes, and Wang 2020; Chan, Jacobi, and Zhu 2022; Jarociński and Marcet 2019). In practice, researchers typically investigate the impact of prior parameter assumptions on posterior statistics in terms of local or pointwise assessments. This has been done in the form of partial derivatives (see for example Giordano et al. 2022; Gustafson 2000; Jacobi, Zhu, and Joshi 2022) or, more often, in terms of multiple evaluations under a restricted set of alternative prior parameter specifications popularized by Richardson and Green (1997).

Both the design and analytical and computational complexity of the posterior inference limit the possible scope of such approaches. For example, the popular "scenario" type perturbation (or multi-evaluation) analysis evaluates posterior statistics at a few additional sets of prior parameter specifications from perturbing the initial parameter setting (An and Schorfheide 2007; Kim and Nelson 1999; Richardson and Green 1997). An additional limitation is the exogenous choice of these additional evaluation points in the prior parameter space, mostly ad hoc and without any reference to the posterior surface, at most supported by prior simulations (Del Negro and Schorfheide 2008) or modelling aspects (Chan, Jacobi, and Zhu 2019; Giannone, Lenza, and Primiceri 2015). Following a different strategy, local derivative approaches consider the impact of a one-directional infinitesimal change away from an initial point in the prior parameter space on posterior statistics (Gustafson 2000). The required analytical derivative expressions are commonly intractable, although several papers have discussed computational approaches to obtain derivative estimates for posterior mean parameters and with respect to a subset of hyperparameters in specific parametric classes (Basu, Jammalamadaka, and Liu 1996; Geweke 1999; Müller 2012; Pérez, Martin, and Rufo 2006).

This paper expands upon common localized strategies by developing comprehensive formal measures and graphical assessments of prior parameter dependence based on the graph of a posterior statistic over regions in the prior parameter space (sensitivity manifolds). For example, sensitivity manifolds allow for the computation of a broader sensitivity measure that relates to the global results measure (Berger 1990). Importantly, information based on the geometry properties of these posterior surfaces can capture aspects of prior parameter dependence beyond available pointwise and local assessments, including policy turning points and joint-influence of multiple prior parameters, that are particularly relevant in empirical applications.

Analytical expressions for the sensitivity manifold, a function of a posterior statistic over a region in the prior parameter space, are only available in a few simple cases as in the Bernoulli example used as an illustration below. For MCMC settings, such a multivariate demand analysis as considered in our application, we propose an innovative computational strategy based on Gaussian Processes (GP) methods (Rasmussen and Williams 2006) with an extension to combine GP estimation with derivative information obtained via a computation approach for MCMC inference (Jacobi, Zhu, and Joshi 2022). Our approach builds on recent convergence results for GP in the context of posterior inference (Stuart and Teckentrup 2018) and contributes to the recent literature on the use of GP-based methods in Bayesian inference (see for example work on GP priors in Branson et al. (2019), Clark et al. (2022), Hauzenberger et al. (2021)). To achieve both precision and efficiency for the sensitivity manifold estimation with MCMC evaluations, we employ a GP-based strategy that is based on multiple point evaluations under the GP that is combined with efficient selection of evaluation points via Active Learning (Settles 2012).

Derivative information, if available, can be readily included within such a GP-based estimation framework since the derivative of a GP itself takes the form of a GP. In addition to improving the precision of the GP approximation of the manifolds, and reducing computational load as less evaluation points are required (see example below), such derivative information supports additional sensitivity measures. As we illustrate in our application, it also affords a more informative use manifold-based sensitivity analysis of particular relevance in settings with higher-dimensional prior parameter space where many prior parameters can potentially drive prior dependence of inference. To realize these benefits, we exploit a novel approach for unbiased estimation of derivatives of posterior statistics formalized in Jacobi, Zhu, and Joshi (2022) that can be efficiently estimated via the vectorized automatic differentiation approach (Kwok, Zhu, and Jacobi 2020), implemented in the context of Bayesian VAR analysis with shrinkage priors (Chan, Jacobi, and Zhu 2020, 2022).

We apply the new approach and methods in the context of the estimation of food demand elasticities in a widely used multivariate framework with parameter constraints arising from economic theory and inference based on efficient Gibbs sampling (Briggs et al. 2013, 2017; Clements and Si 2016; Tiffin and Arnoult 2010). We explicitly address the higher dimension of the parameter space and high uncertainty about the prior-posterior dependence structure when estimating the most relevant sensitivity manifolds for the main set of posterior statistics, i.e. posterior means of price and expenditure elasticities over regions of high sensitivity in the prior parameter space. Our analysis focuses on the five main food groups using a sample from a Virtual Supermarket Experiment with exogenous price variation (Waterlander et al. 2015). The initial set of prior location parameters for the demand coefficients are set to be consistent with elasticity estimates in the literature as in Jacobi et al. (2021), and precision parameters specified to reflect a reasonable level of confidence with the prior location settings. A step-wise gradient-based approach, computing derivatives using Infinitesimal Perturbation Analysis (IPA) and starting at the initial prior settings, identifies regions of high prior parameter sensitivity and alongside uncovers the influential prior parameters and particularly sensitive elasticities. The path-based sensitivity analysis captures the prior dependence as a function of the confidence level in the prior (experts), thereby revealing a non-linear relationship and also the turning point of the food group classification along a spectrum of priors. The surface-based sensitivity analysis uncovers a considerable prior dependence beyond own location and precision parameters, and also reveals the novel interaction between location parameters, precision parameters and elasticities.

The remainder of the paper is organized as follows. In Section 2 we introduce sensitivity manifolds of posterior statistics over prior parameter regions, discuss the estimation strategy and illustrate the estimation methods and robustness measure with numerical examples in a low dimensional setting. Section 3 contains a real data application in a high dimensional setting, and Section 4 concludes.

2 Methods

2.1 Prior Parameter Dependence of Posterior Statistics

Suppose we have a statistical model $p_{m{\phi}}$ about the data ${m y}$ with a model parameter vector ${m{\phi}} \in {f R}^l$, a prior distribution π_{θ} about ϕ with prior parameters (or hyperparameters) $\theta \in \Theta \subset \mathbb{R}^p$, where Θ is the hyperparameter space. Further, let $h: \mathbb{R}^l \to \mathbb{R}^j$ denote a statistical functional of interest. The objective is to perform prior sensitivity analysis of the posterior statistics $\mathbb{E}[h(\phi)|y, p_{\phi}, \pi_{\theta}]$. For example, when **h** is the identity function, i.e. $h(\phi) = \phi$, then the objective would be to study how the posterior mean estimates of the model parameter change as the prior parameters vary.

Due to the computational and analytical complexities, assessment of prior parameter dependence has focused on local and pointwise approaches. Formally, prior parameter dependence has been defined in terms of the local derivative (Gustafson 2000) evaluated at some point $\theta_0 \in \Theta$ as

$$\frac{\partial}{\partial \theta} \mathbb{E}[h(\phi)|y,\theta] \bigg|_{\theta=\theta_0},$$

where the conditioning on the fixed likelihood and prior has been suppressed to simplify notation. Hence prior parameter sensitivity is defined in terms of the partial derivatives of a posterior statistic with respect to a prior parameter and provides an exact but only one-directional local measure of the change in the posterior statistic as these partial derivatives are used one at a time. Note that this local and prior parameter focus is different from Bayesian robustness analysis which typically concerned with the global sensitivity

$$\underline{h} = \inf_{p_{\phi} \in \mathcal{F}} \inf_{\pi_{\theta} \in \Gamma_{p_{\phi}}} E[h(\theta)|y, \pi_{\theta}, p_{\phi}], \quad \overline{h} = \sup_{p_{\phi} \in \mathcal{F}} \sup_{\pi_{\theta} \in \Gamma_{p_{\phi}}} E[h(\theta)|y, \pi_{\theta}, p_{\phi}],$$

where $\mathcal{F}, \Gamma_{p_{\star}}$ are some classes of distributions (Berger 1994). Note though that Berger, Insua, and Ruggeri (2000) points to the analysis of impacts of prior parameter choices where p_{ϕ} and π_{θ} are fixed as an important aspect of Bayesian robustness analysis.

The far more widely practiced but less formal approach to prior parameter sensitivity analysis is to evaluate $\mathbb{E}[h(\phi)|y,\theta]$ using a few points in the prior parameter space (Roos et al. 2015):

$$\{\mathbb{E}[\boldsymbol{h}(\boldsymbol{\phi})|\boldsymbol{y},\boldsymbol{\theta}_k]\}, \text{ where } \boldsymbol{\theta}_k \in \{\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_K\}.$$

While the analysis is not strictly local and provides some exploration of the prior-posterior dependence over the prior parameter space, it is informal and restricted to the evaluation points. No information about the sensitivity behaviour of the posterior statistics between the few evaluation points is available and the approach does not lend itself to quantify sensitivity via formal measures. In addition, and as pointed out previously, evaluation points are mostly chosen in an ad hoc manner from a very large set of possible points within the prior parameter space. Some sophisticated choices have been considered, e.g. prior simulation and modelling aspects, but choices are not based on analytical or geometrical aspects of the posterior statistics.

We introduce a "surface"-based approach to prior sensitivity analysis that draws on the ideas and strength of these two main approaches, but enables us to extend formal assessment of prior parameter sensitivity beyond the local and pointwise approaches and expand the set of available measures on prior-parameter dependence. We first propose the concept of sensitivity manifolds of posterior statistics over a region of the prior parameter space (Section 2.2), and provide a simple example where analytical solutions for the posterior statistics, thus, manifolds local sensitivity measures are available. It illustrates important links with the existing approaches and motivates the definition of sensitivity measures based on the manifold highlighted in our application. It also provides important insights that underlie the design of the proposed estimation strategy discussed in 2.3 that exploits a multiple evaluation strategy with endogenous specification of evaluation points and the use of local derivative at evaluation points.

2.2 Posterior Sensitivity Manifolds

We first introduce the concept of a sensitivity manifold over a region in the prior parameter space. It encompasses and extends existing assessments of prior parameter dependence discussed in the previous section by mapping posterior statistics $\mathbb{E}[h(\phi)|y,\pi_{\theta},p_{\phi}]$ on hyperparameter regions rather than points within the prior parameter space. Let $\mathbf{\Theta}_0 \subset \mathbf{\Theta}$ denote a compact and connected subset in the hyperparameter space that contains possible values given a particular application and let

$$H_{\theta} = \mathbb{E}[h(\phi)|y,\theta] \tag{1}$$

denote a j dimensional vector of posterior statistics which is differentiable in $\theta \in \Theta_0 \subset \Theta$. Formally, we define the sensitivity hyperparameter manifold (\mathcal{M}) as the graph of H_{θ}

¹ The analysis can be extended to include functionals other than expected values.

$$\mathcal{M}(H_{\Theta_0}) := \{(\theta, H_{\theta}), \theta \in \Theta_0\}.$$

Such a sensitivity manifold represents a high-dimensional map from the hyperparameter region Θ_0 to the posterior statistics.² This set-up includes the common case of varying only the hyperparameters of interest while fixing the others at specific values. For example, the hyperparameters of interest could be the shrinkage parameters in the Bayesian vector autoregression (VAR) literature or the prior precision of the (partially-identified) covariance parameter between potential outcomes in the treatment effects literature.

To demonstrate and visualize the concept of the sensitivity manifold and highlight the links to existing approaches, we consider the Binomial model with conjugate Beta priors. For n independent experiments, the likelihood takes the form $p(y_1, y_2, ..., y_n | \phi) = \prod_{i=1}^n \phi^{y_i} (1 - \phi)^{1 - y_i} = \phi^{\sum_{i=1}^n y_i} (1 - \phi)^{n - \sum_{i=1}^n y_i}$. Using a conjugate beta distribution as prior for ϕ , $\pi(\phi|\alpha_0, \beta_0)$, the posterior distribution is

$$\pi(\phi|y) \propto \phi^{\alpha_0 + \sum_{i=1}^{n} y_i - 1} (1 - \phi)^{\beta_0 + n - \sum_{i=1}^{n} y_i - 1}$$

where $\alpha_0, \beta_0 > 0$, and $\alpha_0 - 1$ can be interpreted as the prior knowledge regarding the number of successes and $eta_0 - 1$ as the prior number of failures. In this example analytical solutions are available for the posterior distribution and statistics (see e.g. Greenberg (2012)). The model has only two prior parameters and the sensitivity manifold, as well as local derivative information, can be obtained analytically and represented graphically.

We focus on the posterior variance, and define the posterior statistic of interest as $h(\phi) = (\phi - \phi)$ $\mathbb{E}[\phi|\mathbf{y},\alpha_0,\beta_0])^2$ so that the sensitivity manifold can be expressed analytically as

$$H_{\theta} = \text{Var}[\phi | \mathbf{y}, \alpha_0, \beta_0] = \frac{\left(\alpha_0 + \sum_{i=1}^n y_i\right) \left(\beta_0 + n - \sum_{i=1}^n y_i\right)}{(\alpha_0 + \beta_0 + n)^2 (\alpha_0 + \beta_0 + n + 1)},$$

where $\theta = [\alpha_0, \beta_0]^{\mathsf{T}}$. Suppose the sample data is $y = \{1, 0, 1\}$ and the prior information suggests that a sensible subspace of Θ is $\Theta_0 = [0.1, 10] \times [0.1, 10]$. The grey surfaces in Figure 1(A) and (B) represents the posterior sensitivity manifold over the prior parameter region of interest.

The posterior sensitivity manifold reflects the value of the posterior variance $\text{Var}[\phi|y,\alpha_0,\beta_0]$ over the prior parameter region which is largest when prior parameters approach the lower bound of the region, $Var[\phi|y,\alpha_0,\beta_0] \to 0.055$ as $\alpha_0,\beta_0 \to 0.1$. The grid lines in (a) are included to make the shape better visible. We observe there that moving away from the lower bound $Var[\phi|y,\alpha_0,\beta_0]$ decreases, particularly $Var[\phi|y,\alpha_0,\beta_0] \to 0.01$ as $\alpha_0,\beta_0 \to 10$. As the grid lines in Figure 1(A) show, the dependence on β_0 and α_0 is complex. This is made more visible in Figure 1(B) that also shows the manifold fixing β_0 at either 0.1 (red line), 5 (blue line) or 10 (green line). We observe in this panel that fixing $\beta_0~=~0.1$, there is an inverse relationship between $Var[\phi|y,\alpha_0,\beta_0]$ and α_0 , but fixing $\beta_0=5$ or $\beta_0=10$ the relationship between $Var[\phi|y,\alpha_0,\beta_0]$ and α_0 is not monotone. In addition, there is more sensitivity at lower values of β_0 as shown by the slopes of these lines. This simple example illustrates the interdependence of the hyperparameters on the sensitivity manifold.

In contrast, a scenario-type analysis provides a snapshot at some points in the prior parameter space. For example, $H_{\alpha_0=1,\beta_0=1}$ and $H_{\alpha_0=5,\beta_0=5}$ provide posterior estimates at points (1,1) and (5,5), and a comparison of the two values reveals the impact of this specific change in the prior parameters, but no information on sensitivity outside these two points in the prior parameter space, and dependence of hyperparameters regarding the posterior statistic is very difficult to uncover from this exercise. Comparison at two or three evaluation points is a common set-up in applied work where evaluations are computationally costly.

Derivative-based prior parameter sensitivity is mostly implemented at on point in the prior parameter space, typically the main prior parameter specification in the context of an empirical analysis. The yellow arrows in Figure 1 present local derivative information at different points in the prior parameter space. For example,

² Stuart and Teckentrup (2018) considered a more general setting and referred to this special case as the "parameter-to-observation map".

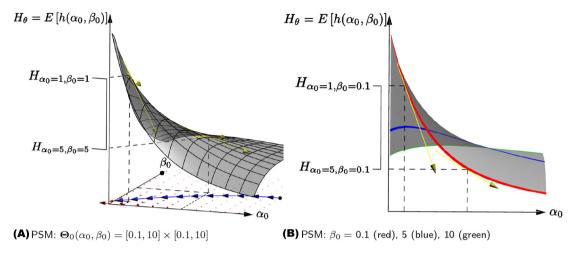


Figure 1: Posterior sensitivity manifold (PSM) in Beta-Binomial model. Left panel: the grey surface is the sensitivity manifold for the posterior variance of a Beta-Binomial model with hyperparameter subspace $[0.1,10] \times [0.1,10]$ and $\mathbf{y} = \{1,0,1\}$. Red arrows are the vector field, blue arrows point out a specific path to the highest sensitivity point given an initial evaluation point (10,5), yellow arrows give local derivative information at points (1,1) and (5,5), and $\left\{H_{\alpha_0=1,\beta_0=1}-H_{\alpha_0=5,\beta_0=5}\right\}$ gives information regarding hyperparameter sensitivity. Right panel: sensitivity analysis fixing $\boldsymbol{\beta}_0$ at 0.1 (red), 5 (blue) and 10 (green). There is more sensitivity at lower values of $\boldsymbol{\beta}_0$ as shown by the slopes of these lines. Yellow arrows give local derivative information at points (1, 0.1) and (5, 0.1), and $\left\{H_{\alpha_0=1,\beta_0=0.1}-H_{\alpha_0=5,\beta_0=0.1}\right\}$ gives information regarding hyperparameter sensitivity fixing $\boldsymbol{\beta}_0=0.1$.

in (b) the yellow arrows give local derivative of $Var[\phi|y,\alpha_0,\beta_0]$ with respect to α_0 at points (1, 0.1) and (5, 0.1) and in this case reflect the decreasing sensitivity to changes in α_0 along this trajectory of the manifold with β_0 remaining at 0.1. Observe that common applications of derivative-based prior parameter sensitivity do not consider evaluation at different points. In addition, this is a measure of local sensitivity.

Next, we draw attention to a close link between the sensitivity manifold and the local derivative analysis as this is a key feature of the estimation strategy that uses local derivative information to choose evaluation points efficiently and identify high sensitivity regions. To see more generally how local derivative information can aid the exploration of the prior parameter space and the sensitivity manifold, let $V: Int \Theta_0 \to \mathbb{R}^2$ be

$$\mathbf{V} = \nabla H_{\boldsymbol{\theta}}(\boldsymbol{\theta}_0) = \begin{bmatrix} \frac{\partial H_{\boldsymbol{\theta}}(\boldsymbol{\theta}_0)}{\partial \alpha_0} \\ \frac{\partial H_{\boldsymbol{\theta}}(\boldsymbol{\theta}_0)}{\partial \beta_0} \end{bmatrix}, \quad \boldsymbol{\theta}_0 \in \operatorname{Int} \, \boldsymbol{\Theta}_0,$$

denote the vector field of the sensitivity manifold in the interior of Θ_0 (Int Θ_0) defined in terms of partial derivatives with respect to each hyperparameter. The set of red arrows in Figure 1 are the projection of the vector field on the Cartesian coordinate system where the arrows point towards the direction of highest sensitivity. In addition, yellow arrows in (a) show local derivative information at points ($\alpha_0=1,\beta_0=1$) and ($\alpha_0=5,\beta_0=5$). We have also depicted one specific standardized path in blue $\frac{\nabla H_{\theta}(\theta_0)}{\|\nabla H_{\theta}(\theta_0)\|}$. Given an initial point (the black dot), it shows the path leading to the highest sensitivity point, with H_{θ} more sensitive in the α_0 direction. As noted above, panel (b) shows various manifolds for which one prior parameter is fixed, i.e. setting β_0 at $\{0.1,5,10\}$. Computing manifolds for a region defined on a subset of the prior parameter dimensions is an option when researchers are confident about some prior parameters, or are particularly interested in a subset of prior parameters such as those with the highest sensitivity. This is a computationally efficient strategy in settings with higher dimensions as demonstrated in the application and also a common strategy in the scenario analysis that often has only a small set of key prior parameters. In panel (b) the manifolds reduce to lines and the yellow arrows and hyperparameter sensitivity analysis based on evaluation of some points $(\{H_{\alpha_0=1,\beta_0=0.1}-H_{\alpha_0=5,\beta_0=0.1}\})$ given $\beta_0=0.1$.

Finally, we want to draw attention to the close link to the global sensitivity analysis. Given a sensitivity manifold $\mathcal{M}(H_{\Theta_0})$, we can assess the overall sensitivity in terms of the variation ("height") over the manifold of the posterior statistics in H_{θ} . We define $\overline{H^j}$ to denote the maximum variation range for the *j*th posterior statistics in H_{Θ_0} as

$$\overline{\boldsymbol{H}^{j}} = \sup_{\theta \in \boldsymbol{\Theta}_{0}} \boldsymbol{H}_{\theta}^{j} - \inf_{\theta \in \boldsymbol{\Theta}_{0}} \boldsymbol{H}_{\theta}^{j}, \tag{2}$$

to measure the largest possible change of the posterior statistics over the region. In the example we have $Var[\phi|y, \alpha_0 = 0.1, \beta_0 = 0.1] - Var[\phi|y, \alpha_0 = 10, \beta_0 = 10] = 0.05 - 0.01 = 0.04$ a relatively high change given the magnitude in this example. This measure has the immediate appeal of being a special case of the original global sensitivity (Berger 1990) fixing the class of prior distributions

$$\underline{H} = \inf_{p_{\phi} \in \mathcal{F}} \inf_{\pi_{\theta} \in \Gamma_{f_{\phi}}} \mathbb{E}[H(\phi)|y, \pi_{\theta}, p_{\phi}], \quad \overline{H} = \sup_{p_{\phi} \in \mathcal{F}} \sup_{\pi_{\theta} \in \Gamma_{f_{\phi}}} \mathbb{E}[H(\phi)|y, \pi_{\theta}, p_{\phi}],$$

where $\mathcal F$ and $\Gamma_{f_{b}}$ are the family of density functions for the observations m y, and the family of prior distributions for ϕ , respectively.

Developing our application we introduce further measures that can be obtained as part of our proposed inferential strategy. We consider various numerical and graphical measures to capture additional information on the prior parameter dependence contained in the geometry of the manifolds over prior parameter regions. An important aspect will be the inclusion of local derivative information to identify influential prior parameters, and highly sensitivity posterior statistics in typical empirical MCMC applications with larger prior and posterior parameter spaces.

2.3 Inference in MCMC Settings

Cases where the analytical expressions of the posterior distribution, the manifold and the partial derivatives are analytically available as in the Bernoulli example, are the exception rather than the norm. Our estimation strategy for posterior sensitivity manifolds focuses on settings where the expectation of the posterior statistic is not analytically available, but can be estimated via a standard MCMC algorithm, addressing a large set of empirical applications across a diverse range of fields.

Let Θ_n represent a set of points $\{\theta_1, \theta_2, \dots, \theta_n\}$ in the prior parameter region $\Theta_0 \subseteq \mathbb{R}^p$, based for example on previous literature choices or expert knowledge. Recall from (1) that the posterior statistical function H_{θ} $\mathbb{E}[h(\phi)|y,\theta]$ is a *j*-dimensional vector-valued function, where the *b*-th component is given by

$$\mathbb{E}\left[h^b(\boldsymbol{\phi})|\boldsymbol{y},\boldsymbol{\theta}_0\right] \approx G^{-1} \sum_{g=1}^G h^b(\boldsymbol{\phi}^g), \quad \boldsymbol{\phi}^g \sim \pi(\boldsymbol{\phi}|\boldsymbol{y},\boldsymbol{\theta}_0), \quad b = 1, 2, \dots, j,$$
(3)

where $\{\phi^g\}$ are the model parameter draws from the corresponding MCMC estimation. In such settings a simple grid based analysis with MCMC evaluations at grid points would either be infeasible given the computational intensity of MCMC simulation or yield a poor approximation if only a limited number of points are used.

Each b-th component in (3) will be independently modelled by a Gaussian Process (GP) (Rasmussen and Williams 2006).³ A Gaussian process (GP) is a collection of random variables, any finite of which have a joint Gaussian distribution. It is specified as $\mathcal{CP}(m(\theta), k(\theta, \theta'))$ where $m(\theta): \mathbb{R}^p \to \mathbb{R}$ is the mean function, $k(\theta, \theta')$: $\mathbf{R}^{\mathbf{p}} \times \mathbf{R}^{\mathbf{p}} \to \mathbf{R}$ is the kernel/covariance function and θ and θ' are two input values (evaluation points). GP regression offers a flexible and efficient non-parametric approach to recover manifolds as accurately as possible as more data become available. It is increasingly used to estimate unknown functions within Bayesian inferential settings due to its appealing computational properties and posterior consistency under minimal

³ In Supplementary Section A.3, we compare the performance of Gaussian Process and Neural Network trained with sparse grid points to show that GP is a suitable model for our problem where the number of MCMC evaluations is small.

assumptions (Branson et al. 2019; Choi and Schervish 2007; Stuart and Teckentrup 2018). We will use the squared exponential (SE) kernel function $k_{\sigma,l}(\theta,\theta')=\sigma^2\exp\left(-\frac{\|\theta-\theta'\|^2}{2l^2}\right)$ for the GP. It is a common choice (e.g. it is the default of the **kernlab::gausspr** function in R (Karatzoglou et al. 2004)) and has the property that functions drawn using this kernel are infinitely differentiable (with probability 1) (Wilson and Adams 2013), which would meet our smoothness requirement of the sensitivity manifolds.

Given the MCMC evaluation points (s_n, Θ_n) , where s_n is $(n \times 1)$ and Θ_n is $n \times p$, the posterior sensitivity manifold is modelled under the zero-mean GP assumption $\mathbf{s}_n \sim N(\mathbf{0}, \mathbf{K}_w(\mathbf{\Theta}_n, \mathbf{\Theta}_n))$, where $\mathbf{K}_w(\mathbf{\Theta}_n, \mathbf{\Theta}_n)$ is the $n \times n$ matrix with the (i, j) entry $= k_{\psi}(\theta_{i*}, \theta_{j*}), \theta_{i*}$ denotes the i-th row of the matrix Θ_n , and the kernel parameters $\psi = (\sigma, l)$ are estimated using Maximum Likelihood Estimation (MLE). To find the values s_m^* of the unevaluated points Θ_m^* on the posterior sensitivity manifold, we utilise that (s_m^*, s_n) have a joint normal distribution, and the manifold is generated using the predictive mean of the fitted Gaussian process from the predictive distribution

$$\mathbf{s}_{m}^{*}|\mathbf{s}_{n},\mathbf{\Theta}_{n},\mathbf{\Theta}_{m}^{*} \sim N(\mathbf{K}_{mn}(\mathbf{K}_{nn}+\mathbf{\Sigma}_{n})^{-1}\mathbf{s}_{n},\mathbf{K}_{mm}-\mathbf{K}_{mn}(\mathbf{K}_{nn}+\mathbf{\Sigma}_{n})^{-1}\mathbf{K}_{nm}), \tag{4}$$

where K_{nm} is the abbreviation of $K_{w}(\Theta_{n}, \Theta_{m})$ and Σ_{n} is the diagonal matrix where the diagonal entries are the squared standard errors of \mathbf{s}_n . Hence, given a set of posterior estimates of a statistic h^b at the evaluation points, $\hat{h} \approx \mathbb{E}[h^b(\phi)|y,\Theta_n]$, a new set of values from the corresponding posterior sensitivity manifold over the prior parameter region can be computed using

$$\boldsymbol{s}_{\boldsymbol{h},\boldsymbol{\Theta}_{0}}^{*} := \mathbb{E}\left[\boldsymbol{h}^{*}|\hat{\boldsymbol{h}},\boldsymbol{\Theta}_{n},\boldsymbol{\Theta}_{m}^{*}\right] = \boldsymbol{K}_{mn}(\boldsymbol{K}_{nn} + \boldsymbol{\Sigma}_{n})^{-1}\hat{\boldsymbol{h}}.$$
 (5)

2.3.1 Choosing Evaluation Points with Active Learning

The choice of evaluation points affects both computational efficiency and finite sample performance of the GP-based manifold estimates. Stuart and Teckentrup (2018) showed that the Hellinger distance between the posterior distribution and the normal approximation centred at the predictive mean given by the Gaussian process can be bounded above by a constant times the L2-distance between the posterior mean (i.e. $h(\theta)$ in our case) and the predictive mean (i.e. $s_{h\Theta}^*(\theta)$). As the Gaussian process interpolates between the evaluation points, so the predictive mean converges to the true posterior mean when the evaluation points "fills" the space, i.e. when the fill distance of the evaluation points $\sup_{\theta \in \Theta_0} \inf_{\theta' \in \Theta_0} d(\theta, \theta')$ goes to 0, and it is justified to use Gaussian process to estimate the sensitivity manifold.

While an uniform grid with decreasing grid size would fulfil the theoretical requirement, in practice it is a computationally inefficient choice for high-dimensional problems and not well suited to achieve a high precision of the sensitivity manifold estimates. In the high-dimensional settings, we use the Active Learning (AL) strategy (Settles 2012) and choose the new evaluation points at the location with highest predictive variance (i.e. uncertainty). From (4), we know at each interpolation point \mathbf{s}_n^* the predictive variance is given by \mathbf{K}_{mm} – $\mathbf{K}_{mn}(\mathbf{K}_{nn} + \boldsymbol{\Sigma}_n)^{-1}\mathbf{K}_{nm}$. So, given the evaluated points $(\boldsymbol{s}_n, \boldsymbol{\Theta}_n)$, the next evaluation point is chosen to be:

$$\theta_1^* = \underset{\theta \in \Theta_0}{\arg \max} \left[K_{\psi}(\theta, \theta) - K_{\psi}(\theta, \Theta_n) \left(K_{\psi}(\Theta_n, \Theta_n) + \Sigma_n \right)^{-1} K_{\psi}(\Theta_n, \theta) \right]. \tag{6}$$

The procedure begins with n' < n evaluation points and iterates until one gets n evaluation points (for the estimation of manifold), or until there are enough evaluation points such that the predictive variances over the entire region is below a threshold γ , i.e. the stopping criterion is

$$\sup_{\boldsymbol{\theta} \in \Theta_0} \left[K_{\sigma,l}(\boldsymbol{\theta},\boldsymbol{\theta}) - K_{\sigma,l} \big(\boldsymbol{\theta},\boldsymbol{\Theta}_{n'} \big) \big(K_{\sigma,l} \big(\boldsymbol{\Theta}_{n'},\boldsymbol{\Theta}_{n'} \big) + \boldsymbol{\Sigma}_{n'} \big)^{-1} K_{\sigma,l} \big(\boldsymbol{\Theta}_{n'},\boldsymbol{\theta} \big) \right] < \gamma.$$

In the latter case, it is recommended to set γ to be the mean of the squared standard errors of the MCMC estimates. The rationale is that the uncertainty of the Gaussian process at the evaluated points should simply be the uncertainty of the MCMC estimates. Interestingly, Gaussian process can actually achieve a better fit and lower uncertainty than the MCMC estimates by taking advantage of the smoothness of the posterior estimates computed from prior parameters in a small neighbourhood. In the numerical examples in Section 2.4, we will see how active learning can explore the region of interest efficiently and significantly speed up the posterior sensitivity manifold estimation.

2.3.2 Incorporating Derivative Information

The derivative information provides local sensitivity information and can be used to discover regions of interest in the prior parameter space, e.g. regions where results are highly sensitive/highly robust to the input, which will be discussed in Section 3.2.3. In the context of the manifold estimation, the derivative information can also be integrated into GP to improve the fit and precision of the posterior sensitivity manifold. The key observation to incorporate derivative information into GP is that the derivative of a Gaussian process is also a Gaussian process (Solak et al. 2003). Let ∇s_n denotes the partial derivatives of the posterior statistics s_n with respect to the prior parameters Θ_n . The joint distribution of $(s_n, \nabla s_n, s_m^*)$ follows the normal distribution, and the predictive distribution is given by:

$$\mathbf{s}_{m}^{*}|\mathbf{s}_{n}, \nabla \mathbf{s}_{n}, \mathbf{\Theta}_{n}, \mathbf{\Theta}_{m}^{*} \sim N \left(\mathbf{K}_{mn}' \mathbf{K}_{nn}'^{-1} \begin{pmatrix} \mathbf{s}_{n} \\ \nabla \mathbf{s}_{n} \end{pmatrix}, \mathbf{K}_{mm}' - \mathbf{K}_{mn}' \mathbf{K}_{nm}'^{-1} \mathbf{K}_{nm}' \right).$$

This can be used to produce predictions and predictive variances in place of (4) for computing (5) and (6). $\mathbf{K}'_{mm}, \mathbf{K}'_{nn}, \mathbf{K}'_{nm}$ and \mathbf{K}'_{mm} are the derivative-adjusted version of the kernel matrices, and the exact expressions are provided in Appendix A.1.

Analytical expressions for the required derivatives of the posterior statistics are mostly unavailable except in simple examples. Numerical approaches such as finite differencing (FD) and recently introduced IPA-based derivative analysis for MCMC inference (Jacobi, Zhu, and Joshi 2022) can be applied. FD relies on re-running the algorithm, while IPA-based analysis proceeds via differentiating the algorithm (Glasserman 2013). Hence FD is less suited for complex problems with longer MCMC chains and higher dimensional derivative vectors as in the case considered in the empirical analysis. Recent work has introduced an approach to compute IPA derivatives for MCMC output and shown that is possible augment MCMC evaluations with automatic differentiation to compute the Jacobian of the posterior statistics with respect to all the prior parameters without rerunning the MCMC evaluations and shown the unbiasedness of IPA derivative. We write the Jacobian as $J(\theta) = \nabla H_{\theta}(\theta) \approx \frac{1}{G} \sum_{g=1}^G \frac{\partial h(\phi^g)}{\partial \theta}, \text{ where } \phi^g, g=1,\ldots,G \text{ are the posterior draws and } \frac{\partial h(\phi^g)}{\partial \theta}, g=1,\ldots,G \text{ are the augmented derivative output from the MCMC evaluations. Under standard Gibbs sampling, IPA-based derivative output from the MCMC evaluations.}$ tive estimations are unbiased.4

2.4 Implementation and Examples

To begin the estimation, let $\Theta_0 \subset \mathbf{R}^p$ denote the space of prior parameters for the sensitivity manifold of interest, given by common practice or expert knowledge (in Section 3, we will also discuss how to find a region of interest when it is not available). And let the n' initial evaluation points in Θ_0 be $\Theta_{n'} = \{\theta_i \in \Theta_0, i = 1, 2, ..., n'\}$. This set should include some points at the boundary of Θ_0 . Observe that if we were to use a naive grid and choose M_k evaluation points for the hyperparameter $\theta_k, k=1,2,\ldots,p$, then the total number of evaluation points on the grid will be $\prod_{i=1}^p M_i$, giving us an exponentially large number of points to start with due to the curse of dimensionality. To circumvent the issue, we start with n' points instead and use the active learning strategy to expand the set of evaluation points. We first evaluate the n' points using MCMC (optionally augmented with automatic differentiation), fit a Gaussian process to the n' evaluated points using MLE, then we apply the selection process

⁴ See Supplementary Section A.3 for a comparison of accuracy and efficiency of Gaussian Process with and without derivatives for various dimensions.

given by (6). In practice, the maximum is taken over a finite number of points, i.e. we sample M points from Θ_0 , compute the predictive variances at these points using the fitted Gaussian process, then we select the point with the maximum predictive variance as the next point to evaluate (using MCMC). The process continues until a pre-specified number of points n is reached, or when the predictive variances of the M sampled points are all below a pre-specified threshold. We summarize the key steps of the proposed GP-based estimation strategy in Algorithm 1alg1. In the application we further discuss and illustrate the flexibility of the approach by combining manifold-based sensitivity analysis with discovery of regions of high sensitivity defined in terms of prior parameters that are the key drivers of changes in the sensitivity manifold.

Algorithm 1. Manifold Estimation

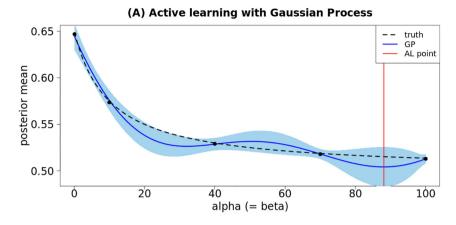
- 1: *Initialization*: Select N_0 initial evaluation points $\{\theta_i \in \Theta_0, i = 1, 2, ..., n'\}$ $\Theta_0 \subset \mathbb{R}^p$
- 2: MCMC estimation of posterior statistics at each θ_i
 - (i) Calculate the posterior estimate $H_{\theta_i} = \mathbb{E}\left[h(\boldsymbol{\phi})|\boldsymbol{y},\theta_i\right] \approx \frac{1}{6}\sum_{g=1}^6 h(\boldsymbol{\phi}^{g,i}).$
 - (ii) Optional: Apply IPA Derivative Analysis via AD within the MCMC to compute Jacobian matrix $J(\theta_i) = \frac{\partial H_{\theta_i}}{\partial \theta_i} \approx \frac{1}{6} \sum_{g=1}^{G} \frac{\partial h(\phi^{g,i})}{\partial \theta_i}$, where $\frac{\partial h(\boldsymbol{\phi}^{g,i})}{\partial \boldsymbol{\theta}_{i}}$
- 3: Gaussian process (GP) estimation
 - (i) Estimate a GP from the posterior estimates $\{(\theta_i, H_{\theta_i}, J(\theta_i)), i = 1, 2, ..., N_0\}, J(\theta_i)$ is optional (using 5.1).
 - (ii) Optional: Estimate GP with derivative information (using (9)).
- 4: Active Learning with Gaussian process
 - (i) Apply AL to sample M points from Θ_0 .
 - (ii) Use the fitted Gaussian process to evaluate the predictive confidence variances at the M points using (5).
 - (iii) Select the point that has the highest predictive variance θ^* ; evaluate H_{θ^*} and $J(\theta^*)$ (optional) with MCMC.
- 5: Repeat: Repeat from stage 3 using all the evaluated points, i.e. $N_0 \leftarrow N_0 + 1$, until N_0 reaches the pre-specified maximum number of evaluations, or until the uncertainty over the sensitivity manifold (i.e. the maximum of the M predictive variances) is reduced to below a pre-specified threshold.

In the remainder of this section we demonstrate key features of the proposed estimation strategies in two simple examples in lower dimensional settings to illustrate performance (precision and computation) gains over simple grid-based and GP-based estimation. The first example is continuation of the example in Section 2.2, and the second is interesting due to inconsistency of the heteroskedasticity parameter as increasing with sample size.

Example 1 (Bernoulli): Precision Gains. We revisit the Bernoulli example from Subsection 2.2 setting $\phi=0.75$, and estimate a sensitivity manifold for the posterior mean of $\phi=w imes rac{lpha_0}{lpha_0+eta_0}+(1-w) imes ar{y}$ where $w = \left(\frac{\alpha_0 + \beta_0}{\alpha_0 + \beta_0 + n}\right)$ is the weight given to prior information, and \bar{y} is the sample average. We have n = 20 trials, $\bar{y} = 0.65$, and for pedagogical exposition, we set $\alpha_0 = \beta_0$ and select the initial evaluation points to be $\Theta_0 = \{0.1, 10.0, 40.0, 70.0, 100.0\}$. We generate draws from the posterior beta distribution, calculate the posterior mean along with its derivative using these draws. Using active learning, we select the evaluation point $(\alpha_0^* = \beta_0^*)$ with the maximum predictive uncertainty in the 95 % prediction intervals as the new point. Then, for comparison purposes, we fit a Gaussian process to the posterior means with and without the derivative information.

The results are presented in Figure 2. Figure 2A shows the true evolution of the posterior mean (dashed black line) and the fitted Gaussian process (without automatic differentiation) (continuous blue line). Active

⁵ The sampling can be done with random or quasi-random numbers. Quasi-random numbers have better space coverage, but extra care is needed in high dimension. For example, the Halton sequence has high correlation between coordinate pairs in high dimension, and shuffling/scrambling is required to break the correlation (Schlier 2008).



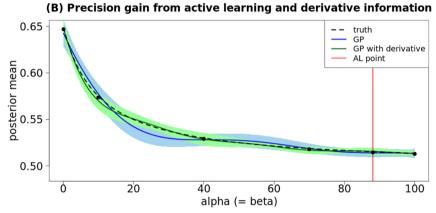


Figure 2: Estimation gains from adding grid point selected via active learning (AL) and derivative information (via AD). (A) Shows how active learning chooses the point with the maximum predictive variance from the Gaussian process (GP). (B) Shows the precision gain of the Gaussian process from adding the active learning point and the derivative information.

learning picks the next evaluation point (red line) at the location with the highest uncertainty as indicated by the Gaussian process.

Figure 2B shows the true evolution of the posterior mean (dashed black line), the fitted Gaussian process without derivative (continuous blue line) and with derivative (continuous green line) after the active learning step. Incorporating derivative into Guassian process improves predictive performance in the mean-squarederror sense and reduces the predictive uncertainty, as measured by the 95 % predictive intervals (light green area versus light blue area). Comparing Figure 2A and B, we also observe that the uncertainty of the Gaussian process (without derivative) reduces considerably with the added point, and the fit has also improved.

Figure 2B shows that $lpha_0 = eta_0 pprox 0$ means a posterior mean approximately equal to 0.64, then the posterior mean decreases fast to stabilize after $\alpha_0=\beta_0\approx 26$ around 0.52. This aligns with the analytical expression of the posterior mean, as we have that $\lim_{\alpha_0,\beta_0\to 0} \mathbb{E}[\phi|\mathbf{y}] \to \bar{y} = 0.65$ and $\lim_{\alpha_0,\beta_0\to \infty} \mathbb{E}[\phi|\mathbf{y}] \to \mathbb{E}[\phi] = 0.5$. Overall, we see that Gaussian process can estimate the posterior (sensitivity) manifold well over the full range given only a few evaluation points. This can be useful in more complicated settings where analytical solutions are not available.

Example 2 (heteroskedasticity): Reduction in Evaluation Points. The second example illustrates sensitivity manifolds over prior mean and variance regions in a linear regression design with heteroskedasticity, and we consider a linear regression design with heteroskedasticity of the form $y_i \sim N(x_i^{\mathsf{T}} \boldsymbol{\beta}, \sigma^2/\lambda_i)$ where $\sigma^2 \sim \text{Inv} - \Gamma(a_0, b_0), \ \lambda_i \sim \Gamma(\rho, \rho) \ \text{and} \ \boldsymbol{\beta} \sim N(\boldsymbol{\beta}_0, \boldsymbol{B}_0) \ \text{with} \ \boldsymbol{x}_{ik} \sim N(0, 1).$ Observe that in this setting, the nuisance heteroskedasticity parameter increases with the sample size, then, it is not possible to be consistently

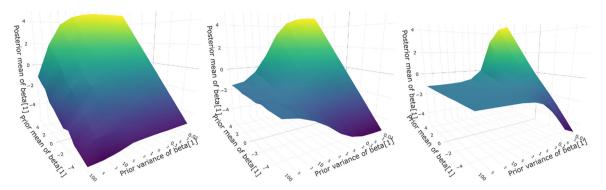


Figure 3: Sensitivity manifold graphing the posterior mean of β_1 over its prior mean and variance with increasing gamma parameter ($\rho = 0.125$ (left), $\rho = 0.177$ (middle) and $\rho = 0.25$ (right)).

estimated. We let $i = 1, 2, \dots, 300$ and $k = 1, \dots, 5^6$ and the population value (in two decimal places) for β is $\beta = [-1.27, 1.73, -0.55, 2.30, 2.64]^T$, the baseline prior hyperparameters are $\beta_0 = [0, 0, 0, 0, 0]^T$, $B_0 = I_5$, $a_0 = 30, b_0 = 3$. We use different values for $\rho \in \{2^m, m = -3, -2.5, -2, \dots, 0\}$ to demonstrate the effect of heteroskedasticity on the posterior mean. Observe that in this example we do not have an analytical expression for $\mathbb{E}[\beta|y,x]$. However, we can implement a Gibbs sampler to perform statistical inference given conditional posteriors (see Greenberg 2012, p. 115). Figure 3 shows the sensitivity manifolds for β_1 (against its prior mean and variance) as the heteroskedasticity hyperparameter increases. The graphs in the figure were obtained by a naive grid evaluation with evenly spaced grid points. They capture the geometrical aspects of the sensitivity surface on the hyperparameter subspace given by the prior mean and prior variance of β_1 under three different heteroskedasticity hyperparameters. We observe that the shapes of the sensitivity manifold change with the heteroskedasticity parameter. For instance, the posterior mean of β_1 using $\rho=0.125$ is very sensitive to the prior mean even with a high variance (Var[β_1] = 100). This is not the case when $\rho = 0.177$ or $\rho = 0.25$ using $Var[\beta_1] \geq 50$ and $Var[\beta_1] \geq 2$, respectively. As expected, the posterior mean is approximately equal to the prior mean when the prior variance is very small. Observe the 45 % degrees line on the $\mathbb{E}[\beta_1], \mathbb{E}[\beta_1|y,x]$ sub-plane given $Var[\beta_1] = 0.01$. This does not depend on the prior heteroskedasticity parameter. In addition, inflection points can be read off from these figures.

In Figure 4, the first two panels show the reduction of grid points moving from a naive grid to a set of points chosen by the Gaussian process with active learning for estimating the sensitivity manifold. Instead of 187 grid points we now require only 64 points to reach an (uniform) uncertainty level of 0.18 over the surface. The last panel shows the reduction in uncertainty (the predictive variance is computed for 100 points randomly sampled from the surface, then the maximum is taken) in the sensitivity surface under the active learning based evaluation.

3 Application: Prior Sensitivity of Posterior Price and Expenditure Elasticity Estimates

Reliable demand elasticity estimates are a key input for policy design, in many areas in economics, (public) health and beyond as they characterize key features of consumer behaviour. Our example considers the estimation of price and expenditure elasticities for food demand. Such estimates are used to examine the impact

⁶ See Supplementary Section A.3 for more results on the performance of Gaussian Process with active learning as the dimension becomes large.

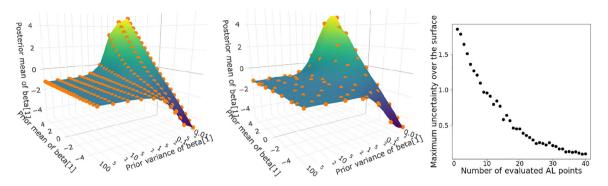


Figure 4: Sensitivity manifold β_1 over prior mean and variance with $\rho = 0.25:11 \times 17 = 187$ points on an uniform grid (left, run-time: 61.5 s); 64 points using GP with active learning at 0.18 uncertainty (middle, run-time: 22.3 s); uncertainty of GP against the number of points evaluated after the initialisation (right).

of food prices on food consumption and subsequent health consequences to assess policies targeting the growing problem of obesity and nutrition related health issues, and to investigate welfare consequences of rising food prices (Cornelsen et al. 2015; Gao 2012). Nonetheless, quality and robustness of empirical evidence on food demand elasticities remain an ongoing concern (Afshin et al. 2017; Nghiem et al. 2013). These are due to data limitations, but also estimation challenges relating to multivariate demand analysis under parameter constraints from economic theory (Baumeister and Hamilton 2019). Posterior inference on elasticities, functions of different demand parameters, requires the specification of a larger set of demand parameters and is likely to exhibit complex prior parameter dependencies that are potentially exacerbated by data limitations.

3.1 Inferential Framework for Food Demand Elasticities

Our empirical analysis is set within a widely-used multivariate demand system derived from micro-economic theory, efficiently estimated by standard MCMC methods, using data from an innovative Virtual Supermarket experiment with exogenous price variation. The so-called Linear Almost Ideal Demand System (LAIDS) is a popular framework to analyse nutrition choices and food policy interventions (Clements and Si 2016; Klonaris and Hallam 2003; Rickertsen, Kristofersson, and Lothe 2003; Tiffin and Arnoult 2010). It provides a multivariate demand analysis that captures a set of relevant food groups and choices. Importantly, the estimated substitution patterns are consistent across food groups (Briggs et al. 2013) and with underlying economic assumptions, such as the implied linear food Engel curves, supported by empirical evidence (Banks, Blundell, and Lewbel 1997). Bayesian MCMC methods offer an efficient and flexible approach to obtain inference on both elasticity point estimates and their precision within this demand framework for food shares that exhibits a number of economically motivated parameter restrictions (Bilgic and Yen 2014; Briggs et al. 2017; Kasteridis, Yen, and Fang 2011; Tiffin and Arnoult 2010).

3.1.1 Model Specification

Under LAIDS, originally proposed by Deaton and Muellbauer (1980), inference on price and expenditure elasticities are subject to restrictions arising from microeconomic theory. The Marshallian price elasticity (PE) of food group i with respect to food group j, ϵ_{ij} and the expenditure elasticities for good i, η_i under the LAIDS are:

$$\epsilon_{ij} = \frac{\gamma_{ij} - \beta_i \overline{w_j}}{\overline{w_i}} - \rho_{ij}, \quad \eta_i = 1 + \frac{\beta_i}{\overline{w_i}},$$

where $\rho_{ij} = \mathbb{1}\{i = j\}$ is an indicator for own price elasticities, and $\overline{w_j}$ is the average budget share for good jover all records. The elasticities are functions of price (γ_{ij}) and expenditure effects (β_i) in a household demand system modelled in terms of the proportion of spending of a household (h = 1, 2, ..., H) on the food group $i \in \{1, 2, \dots, N\}, w_i^{(h)}$:

$$w_i^{(h)} = \alpha_i + \sum_{j=1}^{N} \gamma_{ij} \log p_j^{(h)} + \beta_i \log XR^{(h)} + \epsilon_i^{(h)},$$

where w_i represents the spending shares on each food group $\left(\sum_{i=1}^N w_i = 1\right)$, p_i are prices, XRis the real expenditure and ϵ_i are i.i.d. Normal errors. Microeconomic theory requires additivity $\left(\sum_{i=1}^{n}\alpha_{i}=1,\;\sum_{i=1}^{n}\gamma_{ij}=0\;\mathrm{and}\;\sum_{i=1}^{n}\beta_{i}=0\right),\;\mathrm{homogeneity}\;\left(\sum_{j=1}^{n}\gamma_{ij}=0\right)\;\mathrm{and}\;\;\mathrm{symmetry}\;\left(\gamma_{ij}=\gamma_{ji}\right)\;\;\mathrm{cross-}$ equation restrictions to be satisfied in our inferential framework.

3.1.2 Prior-Posterior Inference for Virtual Supermarket Experiment

We focus on elasticity inference within a demand analysis of five main food groups (Fruits & Vegetables, Proteins, Starchy Foods, Drinks, Other), similar to the analysis in Clements and Si (2016) and Cornelsen et al. (2015). The anlaysis is based on a household sample from a Virtual Supermarket (VS) experiment (Waterlander et al. 2016) designed to address limitations in elasticity inference from insufficient and endogenous price variation in observational studies (Naghavi et al. 2017). The VS experiment contained 1412 unique food items positioned on supermarket shelves (about 75 % of the products in 'real' supermarkets) and was validated compared to actual shopping purchases in Waterlander et al. (2015). The sample contains 4258 completed shops where a household purchased from all main groups. In terms of budget shares, Fruits & Vegetables made up for 23 % of expenditure, Proteins (Meat and Dairy) 33 %, Starchy Foods 11 %, Non-Alcoholic Drinks 8 % and Other Foods (fats, oils, sweets, condiments) 25 % (see Jacobi et al. (2021) for more data details).

Main interest is on the posterior mean estimates of 16 price elasticities, $\epsilon = \{\epsilon_{ij}: i, j = 1, 2, 3, 4\}$, and four expenditure elasticities, $\eta = \{\eta_i : i = 1, 2, 3, 4\}$ for the main food groups Fruits & Vegetables, Proteins, Starchy Foods and Non-alcoholic Drinks:7

$$E\left[\epsilon_{ij}(\boldsymbol{\phi})|\boldsymbol{y},\boldsymbol{\theta}_{0}\right)\right] \approx G^{-1} \sum_{g=1}^{G} \frac{\gamma_{ij}^{g} - \beta_{i}^{g} \overline{w_{j}}}{\overline{w_{i}}} - \rho_{ij}, \quad E\left[\eta_{i}(\boldsymbol{\phi})|\boldsymbol{y},\boldsymbol{\theta}_{0}\right)\right] \approx G^{-1} \sum_{g=1}^{G} 1 + \frac{\beta_{i}^{g}}{\overline{w_{i}}}, \tag{7}$$

where draws of the model parameters come from the posterior distribution of the model parameters, $\pi(\boldsymbol{\phi}, \boldsymbol{\Sigma}|\mathbf{y}) \propto p(\mathbf{y}|\boldsymbol{\phi}, \boldsymbol{\Sigma})\pi(\boldsymbol{\phi}, \boldsymbol{\Sigma}).$

Under the typical choice of conditionally conjugate priors in terms of independent Gaussian prior distributions on the vector of demand coefficients, $\phi = [\alpha^T, \gamma^T, \beta^T]^T$, with $\alpha = [\alpha_i], \beta = [\beta_i], \gamma = \text{vech}([\gamma_{ii}])$ and an Inverse Wishart prior on the covariance matrix of the errors,

$$\pi(\boldsymbol{\phi}, \boldsymbol{\Sigma}) = \mathcal{N}(\boldsymbol{\phi} | \boldsymbol{\mu}_{\boldsymbol{\phi}}, \boldsymbol{V}_{\boldsymbol{\phi}}) \, \mathcal{IW}(\boldsymbol{\Sigma} | \rho_0, \boldsymbol{R}_0),$$

draws from the posteriors are generated via a standard two-step Gibbs sampler with a multivariate Normal update for the demand parameters and an Inverse Wishart update for the covariance parameter (see Appendix A.2 for the details on the Gibbs algorithm). There are 41 hyperparameters according to our specification, consisting of 18 locations and variances in the normal prior, and four elements in the scale matrix in the Inverse Wishart plus the degrees of freedom.

3.2 Sensitivity Analysis of Price Elasticities

In this section, we present the sensitivity analysis of the prior-posterior dependencies of the price elasticities. Different to previous illustrative examples, the application presents a more complex setting and exhibits larger

⁷ Focus is on the first four groups. We can recover elasticity estimates of the fifth group using the adding-up restriction. However, this process generates a high level of imprecision regarding these elasticities.

prior parameter and output spaces. The analysis is structured around a series of questions that are relevant to practitioners, and we will use our manifold approach to address them. Part of the novelty comes from how our approach can give specific responses to key sensitivity-related questions that are not addressed by existing approaches. Beginning with the first basic set of questions, we are interested in

- which input prior parameter has the biggest impact on the posterior output (i.e. price elasticity)?
- which posterior outputs are the most sensitive to fluctuations in prior parameters?
- how much would the posterior parameters change in response to small changes in a prior parameter?

These questions can be answered by studying the Jacobian of the posterior estimates, which we will compute from augmenting the MCMC estimation procedure with automatic differentiation (Jacobi, Zhu, and Joshi 2022). In our application the derivative information is initially computed to identify high sensitivity regions for the manifold construction, and hence is available for standard local analysis to complement the extended sensitivity assessment. This will be discussed in Section 3.2.1. The second set of guestions are

- what agreements/disagreements are there between the data and the expert opinion (expert-based priors)?
- what is the decision turning point or boundary between two opinions (prior settings) that disagree with each other?

To answer these questions, we consider the scenario spectrum, which is the path connecting the two priors of interest in the prior parameter space. The scenario spectrum contains the "intermediate" priors between two priors, and we will build the posterior sensitivity manifold over this path. It will show how the two priors disagree with each other, and when a decision or a conclusion gets overturned as we switch from one prior to another in a continuous way. This will be discussed in Section 3.2.2. Finally, we investigate the question

how rapidly does the posterior statistics change across the region of interest?

This relates to the central question regarding the robustness of the analysis. The scenario spectrum provides a tool to quantify the robustness via visual and numerical measures that capture the variation of the posterior estimates as the input prior parameters change. We will use the Jacobian from the augmented MCMC procedure to explore the prior parameter space and identify the high sensitivity region, over which the posterior sensitivity manifold will be built. The manifold provides formal assessment of sensitivity analysis beyond the pointwise analysis, and this will be discussed in Section 3.2.3. The overview to our analysis is provided in Figure 5, and an illustration of how our approach goes beyond local assessment is provided in Figure 6.

As the departure point of our extended sensitivity analysis, Figure 7 presents the posterior estimates and frequentist estimates in the spirit of a standard scenario-type analysis. The posterior estimates are computed based on the expert prior, elicited based on expert advice and available PE estimates from previous observational studies (Jacobi et al. 2021). For comparison purposes, we also present the posterior estimates computed based on the non-informative prior. This prior will serve as the proxy prior corresponding to the frequentist estimate in some of the following analysis. As a technical note, the expert advice only provides estimates for the location parameters, but not the precision parameters. The precision parameters are solved by matching the coefficient of variations of the frequentist estimates at a particular ratio, and the ratio is set such that 50 % confidence is placed on the expert prior and 50 % of confidence is placed on the data. For the non-informative prior, the ratio is set such that 90 % confidence is placed on the data and 10 % confidence is placed on the expert prior. The details are provided in Appendix A.2, and the full table of the prior parameters and the posterior estimates are given in Appendix A.4.

3.2.1 Local Prior Parameter Dependence of Elasticity Estimates

We begin the sensitivity analysis locally at the expert prior by evaluating at the prior the Jacobian matrix of the posterior price elasticities with respect to the prior parameters. The partial derivatives in the Jacobian matrix provides valuable information about how the posterior output would respond to a small change in the prior

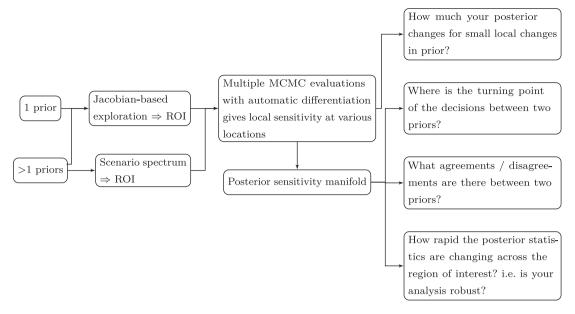


Figure 5: Sensitivity analysis with manifolds. The choice of priors includes the expert prior, the frequentist's "prior", and the non-informative prior. ROI stands for region of interest.

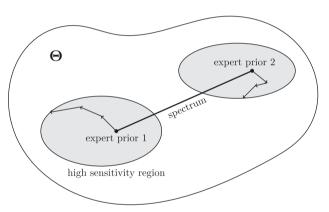


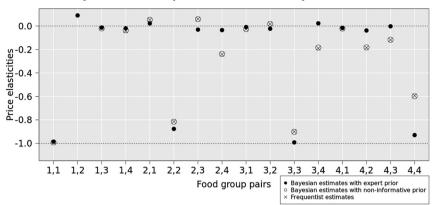
Figure 6: Illustration of the two strategies going beyond local assessments of prior parameters. The line connecting the two priors represents the prior "spectrum" which is the path connecting two set of prior parameters in the prior parameter space Θ . The grey areas are the high sensitivity regions discovered by the use of the Jacobian of the posterior estimates, depicted by the arrows. Manifolds are estimated over the spectrum and the high sensitivity regions.

input parameters. This helps us identify the most influential prior input parameter, as well as the most sensitive posterior price elasticity.

For computational efficiency and precision, the Jacobian matrix is computed based on the Gibbs IPA approach introduced in Jacobi, Zhu, and Joshi (2022) using automatic differentiation (AD) (Kwok, Zhu, and Jacobi 2020, 2022) that enables us to obtain unbiased derivative estimates alongside the MCMC estimation. The results are presented in Figure 8. The matrix entries are the sensitivities that represent how much the price and expenditure elasticities would respond to an instantaneous change in the prior specification. Each row reflects the partial derivative of a posterior elasticity estimate with respect to the prior mean or variance demand parameters, i.e. gradient information about the sensitivity manifold of a specific elasticity at a specific hyperparameters set. The dots represent non-zero partial derivatives of a particular elasticity with respect to a particular input with the magnitude indicated by size and colour.

We discuss two key findings from the results. Firstly, not all prior parameters matter, and not all elasticity estimates are locally sensitive to changes in the prior parameters, as we observe from the sparseness of the Jacobian matrix. For the Jacobian matrix with respect to the prior mean of the prior parameters, the large sensitivities are observed only in the partial derivatives of ϵ_{12} with respect to γ_{12} , ϵ_{14} with respect to β_1 , η_1 with respect to β_1 and η_3 with respect to β_3 . For each of them, a *ceteris paribus* small unit variation in the input would change the posterior mean of the price elasticity by \geq 1.51 units, for instance from $\epsilon_{12}=0.091$ to $\epsilon_{12}=0.106$

Bayesian and frequentist estimates of price elasticities



Bayesian and frequentist estimates of expenditure elasticities

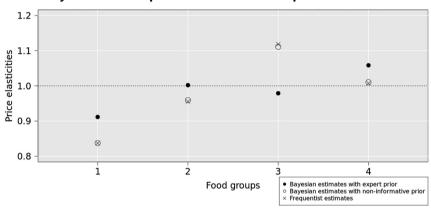


Figure 7: Bayesian estimates using the expert prior and Bayesian estimates using the non-informative prior and frequentist estimates of the price and expenditure elasticities.

approximately given a 0.01 change in γ_{12} . Next, we can identify the most influential input parameter by finding which column of the Jacobian matrix has the largest column absolute sum (i.e. the column sum of the absolute values of the entries), as the sum aggregates the changes in all the price elasticities as the prior parameter of interest varies. The three most influential location parameters are the prior mean of γ_{12} , β_1 and β_3 , and the three most influential precision parameters are the prior variance of γ_{24} , γ_{34} , and γ_{44} . Similarly, the row of the Jacobian matrix with the largest row absolute sum shows which price elasticity is the most sensitive. The three most sensitive price elasticities with respect to prior means are ϵ_{12} ϵ_{14} and η_1 , and the three most sensitive price elasticities with respect to the prior variance are ϵ_{24} , ϵ_{34} , and ϵ_{44} .

Secondly, the Jacobian matrix reveals interesting patterns in the input and output parameters. For the prior mean of the input parameters, we know from equation (7) β_i , i=1,2,3,4 contribute to the expenditure elasticity, but only from the Jacobian matrix we find out α_i , i=1,2,3,4 also matter, although not that much. Regarding the price effect, while it is expected to see γ_{12} affects ϵ_{12} and likewise γ_{22} affects ϵ_{22} , it is not known apriori that γ_{11} and γ_{13} have little local effect on any of the price elasticities. The Jacobian matrix also shows non-trivial interplay between the price effect and the price elasticity, as we see that γ_{24} not only affects ϵ_{24} , but also ϵ_{22} , ϵ_{44} in the opposite way, which can be confirmed by examining the reverse effect, i.e. the effect of γ_{22} on ϵ_{24} . Regarding the expenditure effects, β_1 affects ϵ_{12} , ϵ_{13} , ϵ_{14} , η_1 as expected, but β_4 shows little effect on any of the elasticities, while β_3 shows effect on a wide range of elasticities. For the prior variance, we observe sensitivities are concentrated on the price effects γ_{24} , γ_{33} , γ_{34} , γ_{44} . Overall, the Jacobian matrix offers a thorough summary of the relationships between the input and output parameters, along with helpful empirical insights that theory alone may not provide.

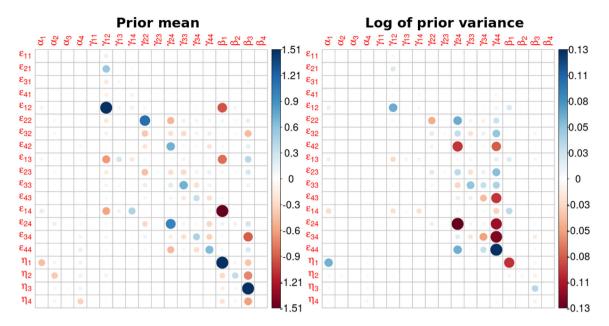


Figure 8: Jacobian matrix for price and expenditure elasticities with 50 % confidence on expert priors. The left graphs show the sensitivity with respect to the prior means; the positive part is capped at 1.51 to preserve the symmetry of the colour scale. The right graphs show the sensitivity with respect to the log of the prior variance; the positive part is capped at 0.13.

3.2.2 Assessing Impacts of Prior Parameters with Scenario Spectrum

It is not uncommon in empirical studies to have more than one (expert) opinion or views, and it is instructive to understand how two opinions differ and how a decision may change as we switch from one expert opinion to another. As (expert) opinions are encoded via the prior specifications, it is possible to compare two (expert) opinions by comparing two prior specifications. To that end, we propose to construct a manifold over the scenario spectrum. A scenario spectrum is any path connecting two prior specifications in the prior parameter space that allows one to continuously vary from one prior specification to another.

The scenario spectrum is built around the observation that for any two sets of hyperparameters, it is possible to form a valid convex set of hyperparameters by linearly interpolating between them. This is based on the fact that both positivity of real numbers and positive semi-definiteness of real matrices are closed under the convex transform (e.g. linearly interpolating two covariance matrices gives a covariance matrix), so the interpolated hyperparameter would still be valid. These properties also generalise to multiple sets of hyperparameters. Mathematically, given some hyperparameters labelled by $\theta_1, \theta_2, \ldots, \theta_m$, a scenario spectrum can be constructed as the convex set

$$S = \left\{ \theta \in \mathbb{R}^p : \theta = w_1 \theta_1 + \dots + w_m \theta_m, \sum_{i=1}^m w_i = 1, w_i \ge 0, i = 1, \dots, m \right\}.$$

When $\{w_i, i=1,2,\ldots,m\}$ take value from the standard basis, i.e. all zeros except one entry with value 1, the scenario spectrum collapses back to the conventional scenario analysis. Hence, the scenario spectrum can be viewed as an extension of the scenario (and perturbation) analysis, which compares posterior inference across a few discrete points in the prior parameter space by rerunning the MCMC chains (An and Schorfheide 2007; Chib and Ergashev 2009; Roos et al. 2015). As the scenario spectrum fills in the gaps of the scenario analysis, it can be used to identify the points in the hyperparameter space where a policy decision is reversed, as well as the inconsistencies between the various prior specifications.

Taking the convex set is one way to build the scenario spectrum, but in our case, there is no need to do so because the way the expert prior is constructed naturally produces a scenario spectrum – we could simply vary the confidence in the expert prior. Assigning low and high confidence to expert location parameters is a useful

strategy for generating two priors that present opposite ends of the scenario spectrum, and then varying the confidence in-between yields the entire spectrum.

In Figures 9 and 10, we show the manifold over the confidence in the expert prior information, ranging from 10 % (little confidence) to 90 % (high confidence). Note that the 50 % point is the expert prior used in our baseline analysis. It is observed that the non-informative prior recovers the frequentist estimates, whereas the posterior estimate reduces to the prior specification when high confidence is placed in the expert prior.

Interpreting the frequentist estimate as the estimates representing the data, we observe agreement between the data and the expert prior in the expenditure elasticities and own-price elasticities of food groups 1–4 with

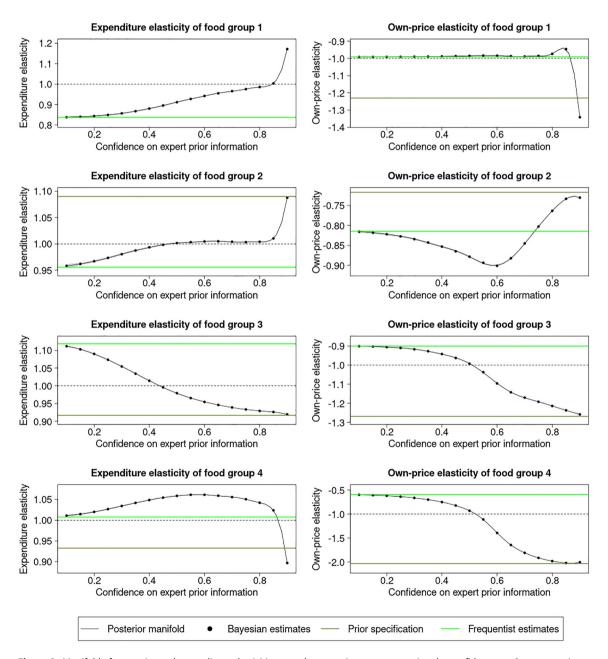


Figure 9: Manifold of own-price and expenditure elasticities over the scenario spectrum varying the confidence on the expert prior.

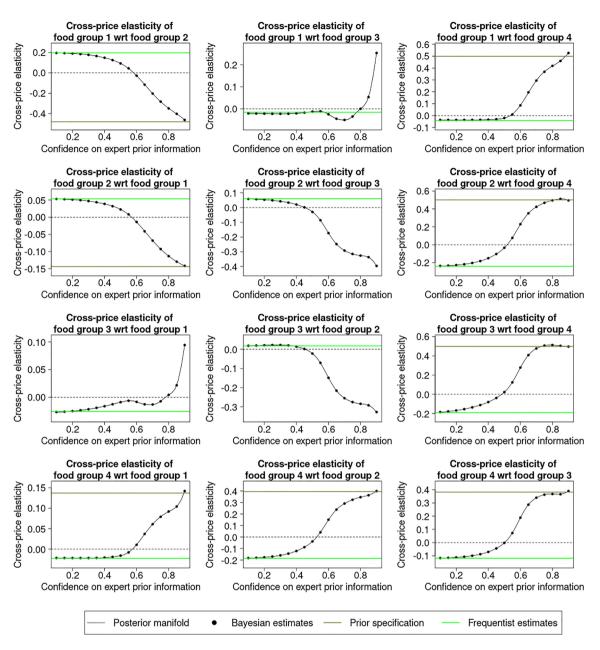


Figure 10: Manifold of cross-price elasticities over the scenario spectrum varying the confidence on the expert prior.

varying magnitudes of effects. For the expenditure elasticities of food groups 1, 2 and 4 and own-price elasticity of food group 1, large changes are observed near the end of the spectrum where extremely high confidence is placed in the expert prior information, indicating that the expert prior specification is excessive relative to the data. For the cross-price elasticities, denoting the cross-price elasticity of food group i with respect to food group j by ϵ_{ij} , we observe minor disagreement between the data and the expert prior specification in ϵ_{13} , ϵ_{21} and ϵ_{31} and major disagreement, i.e. the elasticities at two ends lie on different sides of the reference line with large gaps in-between, in ϵ_{12} , ϵ_{14} , ϵ_{23} , ϵ_{24} , ϵ_{32} , ϵ_{34} , ϵ_{41} , ϵ_{42} and ϵ_{43} .

We observe the turning point where the cross-price elasticities cross the reference line at around 0.5–0.6 (see for example ϵ_{12} , ϵ_{41} and ϵ_{34}). Note that 0.6 (or 60 %) confidence on the expert and 0.4 (or 40 %) confidence on the data indicate that the variance of the expert prior parameter is approximately two-thirds the variance of the

frequentist estimates. If the experts were confident about the location parameters and imposed tight variances on them, then the Bayesian estimates would reflect this and lean towards the expert specifications.

In practice, it is recommended to build the manifold over the confidence range of 0.1–0.5, where 0.5 corresponds to equal confidence on the expert prior and the data, since a confidence mix of 90 % on expert and 10 % on data is implausible. We did this to emphasise the contrast between the prior and the data and to reinforce a point seen in many of the classic examples in Bayesian analysis, namely that the posterior estimates interpolate between the frequentist estimates and the expert prior information. In simple cases where analytic formulae are available, interpolation can be linear, as seen in Example 1 of Section 2.4, whereas in complex cases where MCMC inference is required, interpolation can be nonlinear, as shown by the presented results.

3.2.3 Assessing Impacts of Prior Parameters with High Sensitivity Region

We now turn to studying how rapidly the posterior statistics change across the region of interest, which provides a mathematical response to the question "is your analysis robust?". We begin by discussing how to identify a high sensitivity region, which serves as a good starting point when the region of interest is unknown at the outset, and then we measure and visualise the sensitivity using the posterior sensitivity manifold built on the region.

To identify the high sensitivity region, we start with an expert prior and perform the AD-augmented MCMC inference to get the Jacobian matrix. Using the Jacobian, we move the expert prior point towards the steepest ascent in the prior parameter space and re-evaluate; iterating this step N_0 times yields an ascent trajectory. Then we restart from the beginning, but this time we move the expert prior point towards the direction of the steepest descent and obtain the descent trajectory. At the original expert prior, the trajectory of descent meets the trajectory of ascent. Overall, we explored the prior parameter space by taking the steepest paths and attempting to cause the greatest change in the posterior output (i.e. the price elasticities). The high sensitivity region is defined as the minimum bounding box of the full trajectory. It contains the starting expert prior, all the evaluated points on the full trajectory and all scenario spectrum that are built as the convex set of the evaluated

The comprehensiveness of the high sensitivity region comes at a cost that it is computationally more expensive to build a manifold on the high sensitivity region, due to the curse of dimensionality. While active learning can help to alleviate the problem, how well it works is determined by the complexity of the posterior sensitivity manifold; the simpler the manifold, the better. In practice, it is advised to use the Jacobian matrices computed along the trajectory to inform what input and output parameters to investigate. This builds on the sparseness of the Jacobian matrices and reduces the high dimensions down to only the relevant ones, keeping the analysis tractable.

We perform our analysis for the 20 expected values of the price elasticities and four expenditure elasticities. The gradient exploration is based on $N_0 = 5$ number of steps. We average over the $2N_0 + 1 = 11$ Jacobian matrices to produce the aggregate Jacobian, shown in Figure 11. We can see that as in the case of the local analysis, the aggregate Jacobian helps us identify the most influential inputs and most sensitive outputs.

Figure 11 indicates that the most influential inputs regarding the prior mean are associated with $\gamma_{12}, \gamma_{22}, \gamma_{24}, \beta_1$ and β_3 , whereas the most influential inputs associated with the prior covariance matrix of the location parameters are $Var(\alpha_4)$, $Var(\gamma_{24})$, $Var(\gamma_{34})$, $Var(\gamma_{44})$ and $Var(\beta_1)$. On the other hand, the most sensitive elasticities are ϵ_{12} , ϵ_{14} , ϵ_{34} , η_1 and η_3 . For instance, a *ceteris paribus* 0.1 change in the prior mean of β_1 would cause a change in ϵ_{14} approximately equal to -0.2.

As an auxiliary information, it is useful to report the max norms of the Jacobian matrices, which corresponds to the change of the most sensitive entry with respect to its most influential input. This provides a one-number summary for each of the Jacobian matrices. In the order of

⁸ The number of steps may be based on domain constraints over the hyperparameters region given by theory considerations. In our case, five steps were enough to have a sensible hyperparameter region.

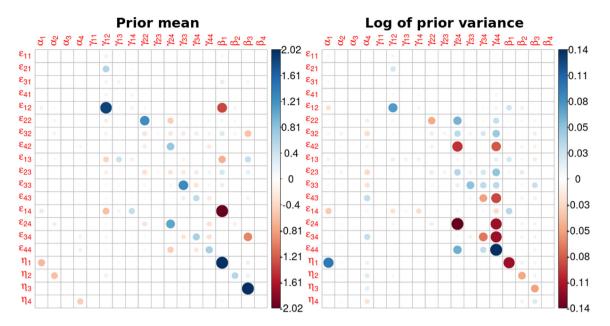


Figure 11: The aggregate Jacobian of the price elasticities, averaged over the Jacobian matrices from the gradient steps.

[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] steps, the max norms of the Jacobian matrices along the trajectory are [11.99, 11.97, 11.99, 11.96, 4.05, 7.71, 6.57, 5.62, 6.85, 5.79]. Observe the asymmetry of the max norms along the descent and ascent trajectories. It indicates that price and expenditure elasticities respond differently to increment and decrement in the prior parameters.

Once the gradient trajectory is traced out, we identify the minimum bounding box of the trajectory as the region of high sensitivity. Table 1 reports the prior input dimensions and the associated bounds of the most influential prior demand parameters according to Figure 11. Using Equation 3.1.1 where $\bar{w}_1=0.23$, we see that the bounding box of the prior mean of β_1 implies a prior expenditure elasticity of Fruits & Vegetables from 0.98 to 1.17, that is, from normal to luxury goods, this translates into posterior mean between 0.82 and 1.00. Regarding the bounding box of variance hyperparameters, we have that the Var(γ_{44}) implies a posterior mean of the own-price elasticity of Non-Alcoholic Drinks between -0.94 and -0.92. Our approach improves upon the *ad hoc* scenario analysis in that it provides explicit criteria to select the inputs along with the ranges for investigation. In addition, from Table 1, we observe that $Var(\alpha_4)$ is one of the most influential inputs, but since it does not

Table 1: Influential prior parameter dimensions from 5-step gradient procedure around the expert prior. Reported are the upper and lower bounds of the prior mean and variance settings. Variance hyperparameters are in log-scale. Results given for most influential prior inputs, i.e. yielding largest change in posterior elasticity inference in the most sensitive elasticity outputs.

Range of influential location and variance input dimensions							
Location settings				(log) Variance settings			
Coeff.	Mean LB	Expert	Mean UB	Coeff.	Var LB	Var	Var UB
γ ₁₂	-0.099	-0.032	0.035	α_4	-8.599	-8.317	-8.023
γ_{22}	0.000	0.071	0.142	γ_{24}	-9.920	-9.881	-9.842
γ_{24}	0.083	0.124	0.165	γ_{34}	-9.165	-9.101	-9.037
β_1	-0.005	0.017	0.039	γ ₄₄	-9.108	-9.078	-9.049
β_3	-0.288	-0.021	0.246	$\boldsymbol{\beta}_1$	-12.068	-12.047	-12.014

appear explicitly in the elasticity equations, it is unlikely to be considered in a scenario analysis. Our approach, in contrast, did not overlook it.

Next, we will construct the manifold over the region of high sensitivity. Note that the total of 36 prior mean and variance parameters makes estimating the manifold challenging. Because, in order to specify a bounding box, two endpoints per dimension would be required, and there would be approximately $2^{36} \approx 68$ billion vertices. But as we saw in the analysis of the aggregate Jacobian matrix, only a few inputs and outputs are significant, so we will focus on these parameters. They are the prior mean of γ_{12} , γ_{22} , γ_{24} , β_1 , β_3 for the most influential input and the price elasticities of ϵ_{12} , ϵ_{14} , ϵ_{34} , η_1 , η_3 for the most sensitive output. The remaining prior parameters are set at the expert prior levels. Once the five dimensional manifold embedded in the 36 dimensional space is estimated, we compute the maximum variation range using Equation (2) for each of the sensitive elasticities. The results are presented in Table 2. These numerical measures indicates the robustness of the analysis. We observe that the cross-price elasticity ϵ_{12} , ϵ_{14} are stable despite the change of sign in the ϵ_{12} . The cross-price elasticity ϵ_{34} and the expenditure elasticities η_1 and η_3 have large variations, with ϵ_{34} switching from complementary effect to substitute effect and η_3 varying from small increase of demand to large increase of demand in response to an increase in expenditure.

Finally, we present visualisations of the sensitivity manifold to highlight its geometric aspects. A limitation of the ad hoc scenario analysis, as well as the maximum variation range sensitivity measure, is that they cannot uncover relationships between variables at a more granular level. We saw earlier that scenario spectrum can help us discover the inflection points where decisions are overturned, we will show how three-dimensional subspace plots can show the interplay between the posterior output and the different prior input parameters. We generate the plots based on the most influential input parameters and most sensitive output shown in Tables 1 and 2, and Figure 11. In particular, we perform the sensitivity analysis for the posterior mean of the cross price elasticity between Starchy Foods and non-alcoholic drinks ($\mathbb{E}[\epsilon_{34}]$), the cross price elasticity between Fruits & Vegetables and non-alcoholic drinks ($\mathbb{E}[\epsilon_{14}]$), and the expenditure elasticity of the Starchy Foods ($\mathbb{E}[\eta_3]$). The result is presented in Figure 12. Variables that are not shown in the plots are kept fixed at the default (expert) priors.

The three plots in Figure 12 show different aspects of the posterior inference. Starting on the right, we can see that the expenditure elasticity of food group 3 remains positive even when the prior expenditure effect changes sign from -0.2 to 0.2, and the 0.4 variation in the expenditure effect translates into the magnified 1.4 variation in the elasticity. The magnitude of the elasticity is determined largely by the prior effect, as we observe a clear linear relationship between the prior effect and the posterior elasticity. The changes in the tight variance only affect the elasticity slightly. In the middle plot of the cross-price elasticity of the first and fourth food groups, we observed a peculiar non-negligible effect from prior mean of γ_{12} , a term that does not appear in Equation (7). This shows that while γ_{12} does not theoretically relate to ϵ_{14} , its prior specification has a competing effect with γ_{14} during estimation. At low variance, the variation in the prior mean maps linearly to the variation of the elasticity, and as the variance increases, the prior mean loses its effect. In contrast to the right plot, the size of the prior variance determines where the elasticity will be given a fixed prior mean.

Table 2: Bounds (min and max) of sensitivity manifolds of top five most sensitive price and expenditure elasticities over the 5-dimensional high sensitivity region

Summary of high sensitivity region manifolds				
Price elasticities	Min	Max	Variation	
ϵ_{12}	-0.02	0.06	0.09	
ϵ_{14}	-0.03	-0.00	0.03	
ϵ_{34}	-0.19	0.37	0.56	
η_1	0.71	1.19	0.48	
η_3	0.18	1.64	1.47	

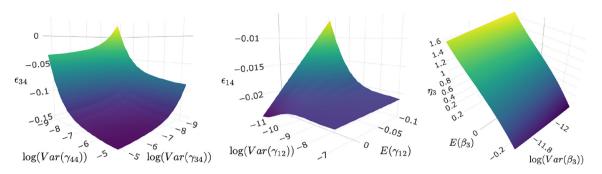


Figure 12: Cross-price elasticity surface of food group 3 and 4 (left), cross-price elasticity surface of food group 1 and 4 (middle), and expenditure elasticity of food group 3 (right). Variances are displayed in log-scale.

In the left plot, we show the cross-price elasticity of the third and fourth food groups against two prior variances in log-scale. The upper bounds of the variances are expanded, in part to enhance the visualisation and in part because the ranges were so narrow that there was ample computational power remaining. We observe non-linear relationship between each of the prior variance and the elasticity, with γ_{44} having a larger effect than γ_{34} . If we were to slice the surface with a horizontal plane, we would find the level set, i.e. the set in which elasticity has a constant value, which reveals the relationship between the two variances. Specifically, it describes how increased confidence in one variable and decreased confidence in another can cancel each other out and leave the results unchanged. The interdependence demonstrates that the specification of prior variances is a complex endeavour. Finally, we observe as both prior variances increase, the elasticity surface becomes flat, and the value stabilises.

As a closing remark, we saw that the interaction between the prior mean and the prior variance specification can be subtle. When the prior mean specification differs greatly from the sample information and a tight variance is imposed, the posterior inference can be highly sensitive. Other factors, however, can come into play. For example, when the likelihood function becomes flat, as in the case of the normal density with a very high variance, or when the prior distribution is concentrated on the likelihood's tails, the sensitivity can be further magnified (Ramírez-Hassan and Pericchi 2018).

4 Conclusions

The introduced concept of sensitivity manifolds over hyperparameter regions and the computational approach to estimate manifold-based sensitivity measures for MCMC inference links popular pointwise and local perspectives. Importantly, by doing so it extends assessment of prior parameter dependence beyond their limited scope to answer questions regarding the prior parameter sensitivity (robustness) that arise in many practical problems of Bayesian MCMC inference. Firstly, researchers typically consider values within a feasible or sensible region of the hyperparameter(s), often informed by previous studies or theoretical considerations, rather than a set of possible discrete points in the hyperparameter space. Secondly, researchers are often interested not just in whether an analysis is robust to misspecification – in fact, it is well understood that assumptions matter a great deal in practical problems, and they are not always robust – but also how the analysis would change when the prior specification changes. Further, understanding how the posterior analysis depends on the prior parameters helps researchers set sensible prior parameters which remains a challenging task due to well-known issues such as model complexity, cost of prior elicitation, flat priors and identification issues.

The approach acknowledges that reliable specification of prior information remains difficult and that researchers often consider a range of potentially reasonable prior parameter settings for each parameter.

⁹ In Bayesian analysis, the terms "robust" and "sensitive" are technically not antonyms. Robustness is with respect to data contamination/model misspecification, while sensitivity is with respect to the prior parameters.

We hope that the proposed methods contribute to the appeal of Bayesian inference for applied analysis as a well-designed prior robustness analysis can further increase transparency and confidence of policy makers in Bayesian inference. The methods also offer a tool to better understand the impact of common or default priors widely used in many applications, which is important as the extent to which prior assumptions influence posterior inference will vary across applications and data sets.

Acknowledgement: We are grateful to seminar participants at ESOBE (St Andrews), ANZESG (Melbourne), NBER-NSF (Saint Louis, online), IAAE (online), Monash University (Melbourne), Melboure Bayesian Econometrics workshop and University of Linz.

Research funding: LJ acknowledges funding from the Australia Research Council (https://doi.org/10.13039/ 501100000923) through FT170100124. CFK acknowledges funding from the Australia Research Council (https://doi .org/10.13039/501100000923) through DP180102538. NN acknowledges funding from the Health Research Council of New Zealand (https://doi.org/10.13039/501100001505) through grant 16/443.

Appendix A

A.1 Gaussian Processes

A Gaussian process (GP) is a collection of random variables, any finite of which have a joint Gaussian distribution (Rasmussen and Williams 2006). It is specified as

$$\mathcal{GP}(m(\theta), k(\theta, \theta')),$$

where $m(\theta)$: $\mathbf{R}^{\mathbf{p}} \to \mathbf{R}$ is the mean function and $k(\theta, \theta')$: $\mathbf{R}^{\mathbf{p}} \times \mathbf{R}^{\mathbf{p}} \to \mathbf{R}$ is the kernel/covariance function and heta and heta' are two input values. It can handle a wide range of data generating processes, adapt to data, capture uncertainty well and it is easy to implement.

Given some function values s ($n \times 1$) evaluated at the coordinates Θ_n ($n \times p$), the zero mean function and a kernel function $k_{w}(\cdot,\cdot)$, the estimation of the kernel parameters ψ proceeds as follows. Under the model assumption, we have

$$s \sim N(\mathbf{0}, \mathbf{K}_{u}(\mathbf{\Theta}_n, \mathbf{\Theta}_n)),$$

where $K_{\psi}(\Theta_n, \Theta_n)$ is the $n \times n$ matrix with the (i, j) entry $= k_{\psi}(\theta_{i*}, \theta_{j*}), \theta_{i*}$ denotes the i-th row of the matrix Θ_n . Writing $K_{\psi}(\Theta_n, \Theta_n)$ as K_{ψ} and denoting the determinant function by $|\cdot|$, the log-likelihood is given by

$$l(\boldsymbol{\psi}) \propto -\frac{1}{2} \Big(\log |\boldsymbol{K}_{\boldsymbol{\psi}}| - \boldsymbol{s}^{\mathsf{T}} \boldsymbol{K}_{\boldsymbol{\psi}}^{-1} \boldsymbol{s} \Big).$$

The kernel parameters ψ can be found using Maximum Likelihood Estimation (MLE). Note that the computational complexity is $O(n^3)$ due to the inversion of matrix needed to evaluate the likelihood. But this will not pose a problem as n is small in our application. If needed, approximate methods are also available to reduce the computational complexity from $O(n^3)$ to O(n); interested readers are referred to Gardner et al. (2018), Pleiss et al. (2018) and Wilson and Nickisch (2015).

Given new evaluation points Θ_m^* with function values s^* , the joint distribution of s_n and s_m^* is

$$\begin{pmatrix}
\mathbf{s}_{n} \\
\mathbf{s}_{m}^{*}
\end{pmatrix} \sim N \begin{pmatrix}
\mathbf{0}, & K_{\psi}(\mathbf{\Theta}_{n}, \mathbf{\Theta}_{n}) & K_{\psi}(\mathbf{\Theta}_{n}, \mathbf{\Theta}_{m}^{*}) \\
K_{\psi}(\mathbf{\Theta}_{m}^{*}, \mathbf{\Theta}_{n}) & K_{\psi}(\mathbf{\Theta}_{m}^{*}, \mathbf{\Theta}_{m}^{*})
\end{pmatrix}.$$
(8)

The conditional distribution is given by

$$\mathbf{s}_{m}^{*}|\mathbf{s}_{n},\mathbf{\Theta}_{n},\mathbf{\Theta}_{m}^{*}\sim N\big(\mathbf{K}_{21}\mathbf{K}_{11}^{-1}\mathbf{s}_{n},\mathbf{K}_{22}-\mathbf{K}_{21}\mathbf{K}_{11}^{-1}\mathbf{K}_{12}\big),$$

where K_{ij} is the (i, j)-th block entry in (8), and the conditional mean is used as the prediction.

To add derivative information for improving precision in the inferential process, the point of departure is that the derivative of a GP is also a GP, and we have

$$\begin{pmatrix}
\mathbf{s}_{n} \\
\nabla \mathbf{s}_{n} \\
\mathbf{s}_{m}^{*}
\end{pmatrix} = N \begin{pmatrix}
\mathbf{0}, \begin{bmatrix}
\mathbf{K}_{11}(\mathbf{\Theta}_{n}, \mathbf{\Theta}_{n}) & \mathbf{K}_{12}(\mathbf{\Theta}_{n}, \mathbf{\Theta}_{m}^{*}) \\
\mathbf{K}_{21}(\mathbf{\Theta}_{m}^{*}, \mathbf{\Theta}_{n}) & \mathbf{K}_{22}(\mathbf{\Theta}_{m}^{*}, \mathbf{\Theta}_{m}^{*})
\end{bmatrix}
\end{pmatrix},$$
(9)

where

$$\begin{split} \boldsymbol{K}_{11}(\boldsymbol{\Theta}_{n},\boldsymbol{\Theta}_{n}) &= \operatorname{Cov}\left(\begin{pmatrix}\boldsymbol{s}_{n}\\ \nabla \boldsymbol{s}_{n}\end{pmatrix},\begin{pmatrix}\boldsymbol{s}_{n}\\ \nabla \boldsymbol{s}_{n}\end{pmatrix}\right) = \begin{bmatrix}\operatorname{Cov}(\boldsymbol{s}_{n},\boldsymbol{s}_{n}) & \operatorname{Cov}(\boldsymbol{s}_{n},\nabla \boldsymbol{s}_{n})\\ \operatorname{Cov}(\nabla \boldsymbol{s}_{n},\boldsymbol{s}_{n}) & \operatorname{Cov}(\nabla \boldsymbol{s}_{n},\nabla \boldsymbol{s}_{n})\end{bmatrix} = \begin{bmatrix}\boldsymbol{A} & \boldsymbol{B}\\ \boldsymbol{C} & \boldsymbol{D}\end{bmatrix}, \\ \boldsymbol{A} &= \boldsymbol{K}_{\psi}(\boldsymbol{\Theta}_{n},\boldsymbol{\Theta}_{n}) + \boldsymbol{\Sigma}_{n}, \\ [\boldsymbol{B}_{i*}] &= \begin{bmatrix}\frac{\partial k_{\psi}(\boldsymbol{\theta}_{i*},\boldsymbol{\theta}_{1*})}{\partial \boldsymbol{\theta}_{1*}} & \frac{\partial k_{\psi}(\boldsymbol{\theta}_{i*},\boldsymbol{\theta}_{2*})}{\partial \boldsymbol{\theta}_{2*}} & \dots & \frac{\partial k_{\psi}(\boldsymbol{\theta}_{i*},\boldsymbol{\theta}_{a*})}{\partial \boldsymbol{\theta}_{a*}}\end{bmatrix}, \quad i = 1, 2, \dots, n, \quad a = n, \\ [\boldsymbol{C}_{*j}] &= \begin{bmatrix}\frac{\partial k_{\psi}(\boldsymbol{\theta}_{1*},\boldsymbol{\theta}_{j*})}{\partial \boldsymbol{\theta}_{1*}} & \frac{\partial k_{\psi}(\boldsymbol{\theta}_{2*},\boldsymbol{\theta}_{j*})}{\partial \boldsymbol{\theta}_{2*}} & \dots & \frac{\partial k_{\psi}(\boldsymbol{\theta}_{a*},\boldsymbol{\theta}_{j*})}{\partial \boldsymbol{\theta}_{a*}}\end{bmatrix}^{\mathsf{T}}, \quad j = 1, 2, \dots, n, \quad a = n, \\ [\boldsymbol{D}_{\text{block } i, \text{block } j}] &= \frac{\partial^{2}k_{\psi}(\boldsymbol{\theta}_{i*},\boldsymbol{\theta}_{j*})}{\partial \boldsymbol{\theta}_{i*}\partial \boldsymbol{\theta}_{j*}}, \quad i = 1, 2, \dots, n, \quad j = 1, 2, \dots, n, \\ \boldsymbol{K}_{12}(\boldsymbol{\Theta}_{n},\boldsymbol{\Theta}_{m}^{*}) &= \operatorname{Cov}\left(\begin{pmatrix}\boldsymbol{s}_{n}\\ \nabla \boldsymbol{s}_{n}\end{pmatrix}, \boldsymbol{s}_{m}^{*}\right) = \begin{bmatrix}\boldsymbol{K}_{\psi}(\boldsymbol{\Theta}_{n},\boldsymbol{\Theta}_{m}^{*})\\ \operatorname{Cov}(\nabla \boldsymbol{s}_{n},\boldsymbol{s}_{m}^{*})\end{bmatrix}, \\ \boldsymbol{K}_{21}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{n}) &= \operatorname{Cov}\left(\boldsymbol{s}_{m}^{*}, \begin{pmatrix}\boldsymbol{s}_{n}\\ \nabla \boldsymbol{s}_{n}\end{pmatrix}\right) = [\boldsymbol{K}_{\psi}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{n}) & \operatorname{Cov}(\boldsymbol{s}_{m}^{*},\nabla \boldsymbol{s}_{n})], \\ \boldsymbol{K}_{22}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{m}^{*}) &= \operatorname{Cov}(\boldsymbol{s}_{m}^{*},\boldsymbol{s}_{m}^{*}) = \boldsymbol{K}_{\psi}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{m}^{*}), \\ \boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{m}^{*}) &= \operatorname{Cov}(\boldsymbol{s}_{m}^{*},\boldsymbol{s}_{m}^{*}) = \boldsymbol{K}_{\psi}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{m}^{*}), \\ \boldsymbol{K}_{22}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{m}^{*}) &= \operatorname{Cov}(\boldsymbol{s}_{m}^{*},\boldsymbol{s}_{m}^{*}) = \boldsymbol{K}_{\psi}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{m}^{*}), \\ \boldsymbol{K}_{23}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{m}^{*}) &= \operatorname{Cov}(\boldsymbol{s}_{m}^{*},\boldsymbol{s}_{m}^{*}) = \boldsymbol{K}_{\psi}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{m}^{*}), \\ \boldsymbol{K}_{33}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{\Theta}_{m}^{*}) &= \operatorname{Cov}(\boldsymbol{s}_{m}^{*},\boldsymbol{S}_{m}^{*}) = \boldsymbol{K}_{33}(\boldsymbol{\Theta}_{m}^{*},\boldsymbol{S}_{m}^{*}), \\ \boldsymbol{K}_{3$$

 $\operatorname{Cov}(\nabla \boldsymbol{s}_n, \boldsymbol{s}_m^*)$ has the same expression as $\operatorname{Cov}(\nabla \boldsymbol{s}_n, \boldsymbol{s}_n)$ except the corresponding $\boldsymbol{\Theta}_n$ is replaced by $\boldsymbol{\Theta}_m^*$ (in which case a is equal to m rather than n), and the same goes for $\operatorname{Cov}(\boldsymbol{s}_m^*, \nabla \boldsymbol{s}_n)$. $\boldsymbol{\Sigma}_n$ is the diagonal matrix where the diagonal entries are the squared standard errors of \boldsymbol{s}_n .

A.2 Real Data Analysis: MCMC Inference

Given the standard assumption, $e^{(h)} \sim N_5(\mathbf{0}, \mathbf{\Sigma})$, the resulting LAIDS model can then be rewritten into the Seemingly Unrelated Regression (SUR) model so that the likelihood, without loss of generality, is given by

$$f(y|\boldsymbol{\phi}, \boldsymbol{\Sigma}) = \prod_{h=1}^{H} \mathcal{N}(\boldsymbol{w}^{(h)}|X^{(h)}\boldsymbol{\phi}, \boldsymbol{\Sigma}).$$

where $X^{(h)} = \left[\mathbf{I}_4 \ (\mathbf{I}_4 \otimes [\log(p_1^{(h)}/p_5^{(h)}) \dots \log(p_4^{(h)}/p_5^{(h)})] \right] \cdot \mathbf{D}_4 \ \log XR^{(h)} \cdot \mathbf{I}_4 , \boldsymbol{\phi} = [\boldsymbol{\alpha}^\top, \boldsymbol{\gamma}^\top, \boldsymbol{\beta}^\top]^\top$ is the vector of demand parameters, with $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ vectors of dimension 4, $\boldsymbol{\gamma} = \text{vech}(\boldsymbol{\Gamma}^\top)$ of dimension 10, \boldsymbol{D}_4 is the duplication matrix and $\boldsymbol{\psi}^{(h)}$ is the vector of shares for household h.

Table 7 shows the default elicited prior hyperparameters for the location parameters in the LAIDS model. That is, our point of departure for θ_0 are the parameters in this table, and $\mathbf{R}_0 = \mathbf{I}_4$ and $\rho_0 = 4$, which we set in order to be non-informative regarding the hyperparameters of the covariance matrix.

The prior variances of the demand parameters are specified in terms of a prior weight ratio r:

$$V_{\phi,ii} = \left(\frac{\mu_{\phi,i} \times \left(\frac{1-r_i}{r_i}\right)}{(\operatorname{coef} \operatorname{est}_i) / (\operatorname{se} \operatorname{est}_i)}\right)^2,$$

where "coef est $_i$ " and "se est $_i$ " are the frequentist estimates of the coefficients and their standard errors. Observe that $r_i = \frac{(\mu_{\phi,i}/V_{\phi,ii})^2}{(\mu_{\phi,i}/V_{\phi,ii})^2 + (\operatorname{coef}\operatorname{est/se}\operatorname{est})^2}$ which is the proportion of the uncertainty standardized signal from prior information of the uncertainty standardized signal from the uncertainty standardized signal fr mation to total information. We consider that this is a better elicitation strategy rather than directly eliciting the variance due to people being poor both at interpreting its meaning and establishing numerical values to it (Garthwaite, Kadane, and O'Hagan 2005). Observe that higher values of r_i implies higher information coming from the prior.

Without loss of generality, α_i , $i=1,\ldots,4$, γ_i , $i\leq j,j=1,\ldots,4$ and β_i , $i=1,\ldots,4$ are chosen as the free parameters.

The data is modelled by the SUR model $\boldsymbol{w}^{(h)} \sim N(\boldsymbol{X}^{(h)}\boldsymbol{\phi},\boldsymbol{\Sigma})$ with prior distribution placed on the $\phi \sim N(\mu_0, V_0)$ and $\Sigma \sim IW(\rho_0, R_0^{-1})$ (or equivalently $\Sigma^{-1} \sim W(\rho_0, R_0)$).

- Initialise Σ_0 , set g = 1.
- Draw $\boldsymbol{\phi}_{(g)}$ from $\pi(\boldsymbol{\phi}_{(g)}|\boldsymbol{\Sigma}_{(g-1)}) \sim N(\boldsymbol{b}_{(g)},\boldsymbol{B}_{(g)})$, where

$$\boldsymbol{B}_{(g)} = \left[\sum_{h=1}^{H} \boldsymbol{X}^{(h)\top} \boldsymbol{\Sigma}^{(g-1)-1} \boldsymbol{X}^{(h)} + \boldsymbol{V}_{0}^{-1} \right]^{-1} \quad \boldsymbol{b}_{(g)} = \boldsymbol{B}_{(g)} \left[\sum_{h=1}^{H} \boldsymbol{X}^{(h)\top} \boldsymbol{\Sigma}^{(g-1)-1} \boldsymbol{w}^{(h)} + \boldsymbol{V}_{0}^{-1} \boldsymbol{\mu}_{0} \right]$$

Draw $\mathbf{\Sigma}_{(g)}^{-1}$ from $\pi(\mathbf{\Sigma}_{(g)}|\boldsymbol{\phi}_{(g)}) \sim W(\rho_1, \mathbf{R}_{(g)})$, where $\rho_1 = \rho_0 + H, H$ is the number of households, and

$$R_{(g)} = \left[R_0^{-1} + \sum_{h=1}^{H} \left(w^{(h)} - X^{(h)} \phi_{(g)} \right) \left(w^{(h)} - X^{(h)} \phi_{(g)} \right)^{\top} \right]^{-1}$$

Set g = g + 1. If the maximum number of iteration is not reached, go back to 2.

A.3 Supplementary Analysis

A.3.1 Gaussian Process versus Neural Network

It is instructive to compare the performance of Gaussian Process with artificial Neural Network (NN) on sparse grid points.

We considered the Bayesian linear regression model, same as Example 2 in Section 2.4 but without heteroskedasticity, $\mathbf{y} \sim \mathbf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}), \ \boldsymbol{\beta}|\sigma^2 \sim N(\boldsymbol{\beta}_0, \sigma^2\mathbf{B}_0)$ and $\sigma^2 \sim IG(\alpha_0/2, \delta_0/2)$. We used n = 50 with $\beta_0 = (-1.21, 0.28, 1.08, -2.35, 0.43), B_0$ is a diagonal matrix with entries 1.19, 1.04, 0.78, 1.42, 0.79 on the diagonal, $\alpha_0 = 30, \delta_0 = 3.$

The NN is fitted using the nnet package in R. We considered fully connected networks with 1 hidden layer, of size from 2 to 10, each with 100 random initialisations. We pick the best model for NN using the testing dataset to favour it more.

Comparing the predictions with the ground truth, we get a mean squared error of 4.42×10^{-5} from GP and 1.346958 from NN. The drastic difference here is due to that NN did not learn properly in some of the dimensions. The mean squared errors by dimensions are provided in Table 3.

NN failed to learn for dimensions 1 and 4, while for dimensions 2 and 5, it did outperform GP. The result confirms a well-accepted empirical observation that GP generally does better than NN in data-poor regime and the other way around in data-rich regime.

Table 3: Dimension-by-dimension comparison of GP and NN on a fixed grid. Numbers are mean squared errors.

k-th dimension	1	2	3	4	5
GP	5.40×10^{-5}	8.48×10^{-5}	4.07×10^{-5}	2.29×10^{-5}	1.87×10^{-5}
NN	1.36	0.64×10^{-5}	0.012	5.36	0.47×10^{-5}

A.3.2 Gaussian Process with Active Learning in Higher Dimension

It is helpful to investigate if Gaussian Process with active learning can handle larger hyperparameter dimensions.

We consider the same linear regression model with conditional prior distributions as the last section, i.e. $\mathbf{y} \sim \mathbf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}), \ \boldsymbol{\beta}|\sigma^2 \sim N(\boldsymbol{\beta}_0, \sigma^2\mathbf{B}_0)$ and $\sigma^2 \sim IG(\alpha_0/2, \delta_0/2)$. The conditionals are given by $\sigma^2 | \mathbf{y}, \mathbf{X} \sim IG(\alpha^*/2, \delta^*/2), \alpha^* = \alpha_0 + n \text{ and } \delta^* = \delta_0 + \mathbf{y}'\mathbf{y} + \boldsymbol{\beta}_0' \boldsymbol{B}_0^{-1} \boldsymbol{\beta}_0 - \boldsymbol{\beta}^{*'} \boldsymbol{B}^{-1} \boldsymbol{\beta}^*, \boldsymbol{\beta}^* = \boldsymbol{B} \left(\boldsymbol{B}_0^{-1} \boldsymbol{\beta}_0 + \boldsymbol{X}' \boldsymbol{X} \hat{\boldsymbol{\beta}} \right),$ $\mathbf{B} = (\mathbf{B}_0^{-1} + \mathbf{X}'\mathbf{X})^{-1}$, and $\hat{\boldsymbol{\beta}}$ is the MLE. $\boldsymbol{\beta}|\mathbf{y} \sim t_k(\alpha^*, \beta^*, \mathbf{H})$, and $\mathbf{H} = \delta^*/\alpha^*\mathbf{B}$.

We conducted the simulation with increasing number of dimensions (p = 5, 10, 20, 40) and report the mean squared error (MSE) comparing with the analytical formula and the computing time. The experiment was conducted using eight cores with 40 GB RAM on an HPC cluster. The result is provided in Table 4.The result supports that our method can handle larger hyperparameters dimension with reasonable precision and computing time.

A.3.3 Gaussian Process with and without Derivatives

It is informative to explore the trade off between the use of derivatives and simply increasing the number of grid points without derivatives.

Considering the trade-off between derivatives and grid points in terms of finite-differencing, in a p-dimensional space, p + 1 evaluations are required to find all the partial derivatives at a point using finite differencing. So the information contained in a derivative may be considered to correspond to p grid points in a small neighbourhood. The correspondence is exact in the simple case when the sensitivity manifold is a hyperplane. In general, the "shape" of the sensitivity manifold determines the trade-off between derivatives and grid points, and it should be studied on a case-by-case basis.

We conducted an experiment for when p = 10, 20, 30. In each setting, we first fit a GP with derivatives and then a GP (without derivatives) with increasing number of grid size and observe when its accuracy becomes as good as the GP with derivatives, or if it fails to reach the accuracy within the computing budget of GP with derivatives. The result is summarised in Table 5.

For p = 10, GP (without derivative) caught up with GP with derivatives (100 grid points) in accuracy when 4000 grid points are used. The MSE of GP is about half of the MSE of GP with derivative, but the time taken to reach that accuracy is three to four times more.

For p = 20, GP did not reach the accuracy of GP with derivative in all the cases considered. With 4000 evaluation points, GP reached a MSE that was about three times the MSE of GP with derivatives, and it also took more time to complete.

For p = 30, like the first case, it took 4000 points for GP to reach the performance of GP with derivatives, with half the MSE and about three times the computing budget.

The results show that GP with derivative is generally more accurate given the same computing budget. However, if high precision is not required, then evaluating GP with more points (but not many more) may be more efficient. Since computing the derivatives incur some overhead cost, GP with derivative is more efficient only when the dimension is higher or a higher precision is sought.

Table 4: Accuracy and computing time of the sensitivity manifolds.

#Dimensions	p = 5	p = 10	p=20	p=40
MSE	0.15×10^{-4}	0.22×10^{-4}	1.40×10^{-4}	4.02×10^{-4}
Time	46.00 s	331.98 s	1537.57 s	6043.86 s

Table 5: Trade-off between the use of derivatives and increasing the number of grid points without derivatives for p = 10, 20, 30. Mean squared errors (MSE) are computed by comparing with the analytical formula.

#Evaluation points	100	500	1000	2000	4000	100 + AD
			p = 10			
MSE ($\times 10^{-7}$)	1345.84	76.54	21.21	5.75	1.7	3.37
Time	6.44 s	49.95 s	148.58 s	453.16 s	1412.16 s	373.52 s
			p = 20			
MSE (×10 ⁻⁷)	3295.89	630.06	196.41	48.5	15.05	5.13
Time	12.03 s	107.56 s	329.21 s	919.13 s	3457.73 s	1051.83 s
			p = 30			
MSE (×10 ⁻⁷)	5169.67	1861.54	743.16	225.23	72.36	186.62
Time	22.46 s	209.96 s	619.68 s	2359.28 s	7372.63 s	2730.37 s

A.4 Supplementary Tables and Figures

See Tables 6 and 7.

Table 6: Prior parameters of the expert prior and the non-informative prior.

'	Expert prior		Zero prior	
	Prior mean	Prior variance (×10 ⁻⁴)	Prior mean	Prior variance (×10 ^{−2})
$\overline{\alpha_1}$	0.25	2.65	0.00	2.14
α_2	0.25	2.78	0.00	2.25
α_3	0.25	25.37	0.00	20.55
$lpha_4$	0.25	2.44	0.00	1.98
γ_{11}	-0.02	16.15	0.00	13.08
γ ₁₂	-0.03	0.13	0.00	0.11
γ ₁₃	0.03	0.86	0.00	0.70
γ_{14}	0.04	0.54	0.00	0.44
γ_{22}	0.07	0.88	0.00	0.71
γ_{23}	-0.11	14.77	0.00	11.96
γ_{24}	0.12	0.51	0.00	0.41
γ_{33}	-0.07	1.23	0.00	0.99
γ ₃₄	0.12	1.12	0.00	0.90
γ ₄₄	-0.34	1.14	0.00	0.92
β_1	0.02	0.06	0.00	0.05
β_2	0.02	0.60	0.00	0.48
β_3	-0.02	0.07	0.00	0.05
β_4	-0.02	11.65	0.00	9.44

Table 7: Bayesian and frequentist estimates of price and expenditure elasticities.

	Bayesian estimates	Frequentist estimates
	Price elasticities	
ϵ_{11}	-0.99	-0.99
ϵ_{12}	0.02	0.05
ϵ_{13}	-0.01	-0.03
ϵ_{14}	-0.02	-0.02
ϵ_{21}	0.09	0.19
$\epsilon_{ t 22}$	-0.88	-0.81
ϵ_{23}	-0.02	0.02
ϵ_{24}	-0.04	-0.18
$\epsilon_{ m 31}$	-0.01	-0.02
ϵ_{32}	-0.03	0.06
ϵ_{33}	-0.99	-0.9
ϵ_{34}	0.00	-0.12
ϵ_{41}	-0.02	-0.04
ϵ_{42}	-0.03	-0.24
ϵ_{43}	0.02	-0.19
ϵ_{44}	-0.93	-0.59
	Expenditure elasticities	
$\overline{\eta_1}$	0.91	0.84
η_2	1.00	0.96
η_3	0.98	1.12
η_4	1.06	1.01

References

Afshin, A., J. L. Penalvo, L. Del Gobbo, J. Silva, M. Michaelson, M. O'Flaherty, S. Capewell, D. Spiegelman, G. Danaei, and D. Mozaffarian. 2017. "The Prospective Impact of Food Pricing on Improving Dietary Consumption: A Systematic Review and Meta-Analysis." PLoS One 12 (3): e0172277.

Amir-Ahmadi, P., C. Matthes, and M.-C. Wang. 2020. "Choosing Prior Hyperparameters: With Applications to Time-Varying Parameter Models." Journal of Business & Economic Statistics 38 (1): 124-36.

An, S., and F. Schorfheide. 2007. "Bayesian Analysis of Dsge Models." Econometric Reviews 26 (2-4): 113 - 72.

Banks, J., R. Blundell, and A. Lewbel. 1997. "Quadratic Engel Curves and Consumer Demand." The Review of Economics and Statistics 79 (4): 527-39.

Basu, S., S. R. Jammalamadaka, and W. Liu. 1996. "Local Posterior Robustness with Parametric Priors: Maximum and Average Sensitivity." In Maximum Entropy and Bayesian Methods, 97—106. Dordrecht: Springer.

Baumeister, C., and J. D. Hamilton. 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks." American Economic Review 109 (5): 1873 – 910.

Berger, J. O. 1985. Statistical Decision Theory and Bayesian Analysis. New York: Springer Science & Business Media.

Berger, J. O. 1990. "Robust Bayesian Analysis: Sensitivity to the Prior." Journal of Statistical Planning and Inference 25 (3): 303 – 28.

Berger, J. O., E. Moreno, L. R. Pericchi, M. J. Bayarri, J. M. Bernardo, J. A. Cano, J. De la Horra, et al. 1994. "An Overview of Robust Bayesian Analysis." Test 3 (1): 5-124.

Berger, J. O., D. R. Insua, and F. Ruggeri. 2000. "Bayesian Robustness." In Robust Bayesian Analysis, 1—32. New York: Springer.

Bhatia, K., Y.-A. Ma, A. D. Dragan, P. L. Bartlett, and M. I. Jordan. 2023. "Bayesian Robustness: A Nonasymptotic Viewpoint." Journal of the American Statistical Association (15): 1-12, https://doi.org/10.1080/01621459.2023.2174121.

Bilgic, A., and S. T. Yen. 2014. "Demand for Meat and Dairy Products by Turkish Households: A Bayesian Censored System Approach." Agricultural Economics 45 (2): 117-27.

Branson, Z., M. Rischard, L. Bornn, and L. W. Miratrix. 2019. "A Nonparametric Bayesian Methodology for Regression Discontinuity Designs." *Journal of Statistical Planning and Inference* 202: 14-30.

Briggs, A. D., A. Kehlbacher, R. Tiffin, T. Garnett, M. Rayner, and P. Scarborough. 2013. "Assessing the Impact on Chronic Disease of Incorporating the Societal Cost of Greenhouse Gases into the Price of Food: An Econometric and Comparative Risk Assessment Modelling Study." BMJ Open 3: 10.

- Briggs, A. D., O. T. Mytton, A. Kehlbacher, R. Tiffin, A. Elhussein, M. Rayner, S. A. Jebb, T. Blakely, and P. Scarborough. 2017. "Health Impact Assessment of the UK Soft Drinks Industry Levy: A Comparative Risk Assessment Modelling Study." The Lancet Public Health 2 (1): e15 - 22.
- Chan, J. C., L. Jacobi, and D. Zhu. 2019. "How Sensitive Are Var Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis." Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A Advances in Econometrics 40: 229-48.
- Chan, J. C., L. Jacobi, and D. Zhu. 2020. "Efficient Selection of Hyperparameters in Large Bayesian Vars Using Automatic Differentiation." Journal of Forecasting 39 (6): 934-43.
- Chan, J. C., L. Jacobi, and D. Zhu. 2022. "An Automated Prior Robustness Analysis in Bayesian Model Comparison." Journal of Applied Econometrics 37 (3): 583-602.
- Chib, S., and B. Ergashev. 2009. "Analysis of Multifactor Affine Yield Curve Models." Journal of the American Statistical Association 104 (488): 1324 - 37
- Choi, T., and M. J. Schervish. 2007. "On Posterior Consistency in Nonparametric Regression Problems." Journal of Multivariate Analysis 98 (10): 1969 - 87.
- Clark, T. E., F. Huber, G. Koop, and M. Marcellino. 2022. Forecasting Us Inflation Using Bayesian Nonparametric Models. arXiv preprint arXiv:2202.13793.
- Clements, K. W., and J. Si. 2016. "Price Elasticities of Food Demand: Compensated vs Uncompensated." Health Economics 25 (11): 1403 8. Cornelsen, L., R. Green, R. Turner, A. D. Dangour, B. Shankar, M. Mazzocchi, and R. D. Smith. 2015. "What Happens to Patterns of Food Consumption when Food Prices Change? Evidence from a Systematic Review and Meta-Analysis of Food Price Elasticities Globally." Health Economics 24 (12): 1548 - 59.
- Deaton, A., and J. Muellbauer. 1980. "An Almost Ideal Demand System." The American Economic Review 70 (3): 312 26.
- Del Negro, M., and F. Schorfheide. 2008. "Forming Priors for Dsge Models (And How it Affects the Assessment of Nominal Rigidities)." Journal of Monetary Economics 55 (7): 1191-208.
- Gao, G. 2012. "World Food Demand." American Journal of Agricultural Economics 94 (1): 25 51.
- Gardner, J., G. Pleiss, R. Wu, K. Weinberger, and A. Wilson. 2018. "Product Kernel Interpolation for Scalable Gaussian Processes." In International Conference on Artificial Intelligence and Statistics, 1407—16.
- Garthwaite, P. H., J. B. Kadane, and A. O'Hagan. 2005. "Statistical Methods for Eliciting Probability Distributions." Journal of the American Statistical Association 100 (470): 680 - 701.
- Geweke, J. 1999. "Simulation Methods for Model Criticism and Robustness Analysis." In Bayesian Statistics, Vol. 6, edited by J. Berger, J. Bernardo, A. Dawid, and A. Smith. Oxford: Oxford University Press.
- Giacomini, R., T. Kitagawa, and M. Read. 2022. "Robust Bayesian Inference in Proxy Svars." Journal of Econometrics 228 (1): 107 26.
- Giannone, D., M. Lenza, and G. E. Primiceri. 2015. "Prior Selection for Vector Autoregressions." Review of Economics and Statistics 97 (2): 436 - 51.
- Giordano, R., R. Liu, M. I. Jordan, and T. Broderick. 2022. "Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian Nonparametrics." Bayesian Analysis 1 (1): 1-34.
- Glasserman, P. 2013. Monte Carlo Methods in Financial Engineering, 53. New York: Springer Science & Business Media.
- Greenberg, E. 2012. Introduction to Bayesian Econometrics. New York: Cambridge University Press.
- Gustafson, P. 2000. "Local Robustness in Bayesian Analysis." In Robust Bayesian Analysis, 71 88. New York: Springer.
- Hauzenberger, N., F. Huber, M. Marcellino, and N. Petz. 2021. Gaussian Process Vector Autoregressions and Macroeconomic Uncertainty. arXiv preprint arXiv:2112.01995.
- Jacobi, L., N. Nghiem, A. Ramírez-Hassan, and T. Blakely. 2021. "Thomas Bayes Goes to the Virtual Supermarket: Combining Prior Food Price Elasticities and Experimental Data to Assess Price Elasticities and Food Price Policies in a Large Demand System." Economic Record 97 (319).
- Jacobi, L., D. Zhu, and M. Joshi. 2022. "Estimating Posterior Sensitivities with Application to Structural Analysis of Bayesian Vector Autoregressions." SSRN 3347399.
- Jarociński, M., and A. Marcet. 2019. "Priors about Observables in Vector Autoregressions." Journal of Econometrics 209 (2): 238 55.
- Karatzoglou, A., A. Smola, K. Hornik, and A. Zeileis. 2004. "Kernlab An S4 Package for Kernel Methods in R." Journal of Statistical Software 11 (9): 1-20.
- Kasteridis, P., S. T. Yen, and C. Fang. 2011. "Bayesian Estimation of a Censored Linear Almost Ideal Demand System: Food Demand in pakistan." American Journal of Agricultural Economics 93 (5): 1374-90.
- Kim, C.-J., and C. R. Nelson. 1999. "Has the US Economy Become More Stable? A Bayesian Approach Based on a Markov-Switching Model of the Business Cycle." Review of Economics and Statistics 81 (4): 608-16.
- Klonaris, S., and D. Hallam. 2003. "Conditional and Unconditional Food Demand Elasticities in a Dynamic Multistage Demand System." Applied Economics 35 (5): 503-14.
- Kwok, C. F., D. Zhu, and L. Jacobi. 2020. ADtools: Automatic Differentiation Toolbox. R package version 0.5.4.
- Kwok, C. F., D. Zhu, and L. Jacobi. 2022. An Analysis of Vectorised Automatic Differentiation for Statistical Applications. Available at SSRN
- Lancaster, T. 2004. An Introduction to Modern Bayesian Econometrics. Oxford: Blackwell.

- Li, M., and D. B. Dunson. 2020. "Comparing and Weighting Imperfect Models Using D-Probabilities." Journal of the American Statistical Association 115 (531): 1349-60.
- Müller, U. K. 2012. "Measuring Prior Sensitivity and Prior Informativeness in Large Bayesian Models." Journal of Monetary Economics 59
- Naghavi, M., A. A. Abajobir, C. Abbafati, K. M. Abbas, F. Abd-Allah, S. F. Abera, V. Aboyans, et al. 2017. "Global, Regional, and National Age-Sex Specific Mortality for 264 Causes of Death, 1980 – 2016: A Systematic Analysis for the Global Burden of Disease Study 2016." The Lancet 390 (10100): 1151-210.
- Nghiem, N., N. Wilson, M. Genc, and T. Blakely. 2013. "Understanding Price Elasticities to Inform Public Health Research and Intervention Studies: Key Issues." American Journal of Public Health 103 (11): 1954-61.
- Pérez, C., J. Martin, and M. Rufo. 2006. "MCMC-based Local Parametric Sensitivity Estimations." Computational Statistics & Data Analysis 51 (2): 823 - 35.
- Pleiss, G., J. Gardner, K. Weinberger, and A. G. Wilson. 2018. "Constant-Time Predictive Distributions for Gaussian Processes." In *International Conference on Machine Learning*, 4111–20.
- Ramírez-Hassan, A., and R. Pericchi. 2018. "Effects of Prior Distributions: An Application to Pipedwater Demand." Brazilian Journal of Probability and Statistics 32 (1): 1-19.
- Rasmussen, C. E., and C. K. Williams. 2006. Gaussian Processes for Machine Learning. Cambridge, MA: The MIT Press.
- Richardson, S., and P. J. Green. 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (With Discussion)." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 59 (4): 731 – 92.
- Rickertsen, K., D. Kristofersson, and S. Lothe. 2003. "Effects of Health Information on Nordic Meat and Fish Demand." Empirical Economics 28 (2): 249-73.
- Ríos Insua, D., F. Ruggeri, and J. Martín. 2000. "Bayesian Sensitivity Analysis." In Sensitivity Analysis, edited by A. Saltelli, K. Chan, and E. M. Scott, 225-44. Chichester: John Wiley & Sons.
- Roos, M., T. G. Martins, L. Held, and H. Rue. 2015. "Sensitivity Analysis for Bayesian Hierarchical Models." Bayesian Analysis 10 (2): 321-49. Ruggeri, F. 2008. "Bayesian Robustness." European Working Group, Multiple Criteria Decision Aiding 3 (17): 6-10.
- Schlier, C. 2008. "On Scrambled Halton Sequences." Applied Numerical Mathematics 58 (10): 1467 78.
- Settles, B. 2012. Active Learning. Pittsburgh: Morgan & Claypool Publishers.
- Solak, E., R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen. 2002. Derivative Observations in Gaussian Process Models of Dynamic Systems. Advances in Neural Information Processing Systems, 15.
- Stuart, A., and A. Teckentrup. 2018. "Posterior Consistency for Gaussian Process Approximations of Bayesian Posterior Distributions." Mathematics of Computation 87 (310): 721-53.
- Tiffin, R., and M. Arnoult. 2010. "The Demand for a Healthy Diet: Estimating the Almost Ideal Demand System with Infrequency of Purchase." European Review of Agricultural Economics 37 (4): 501-21.
- Waterlander, W. E., T. Blakely, N. Nghiem, C. L. Cleghorn, H. Eyles, M. Genc, N. Wilson, et al. 2016. "Study Protocol: Combining Experimental Methods, Econometrics and Simulation Modelling to Determine Price Elasticities for Studying Food Taxes and Subsidies (The Price Exam Study)." BMC Public Health 16 (1): 601.
- Waterlander, W. E., Y. Jiang, I. H. M. Steenhuis, and C. N. Mhurchu. 2015. "Using a 3d Virtual Supermarket to Measure Food Purchase Behavior: A Validation Study." Journal of Medical Internet Research 17 (4): e107.
- Wilson, A., and R. Adams. 2013. "Gaussian Process Kernels for Pattern Discovery and Extrapolation." In International Conference on Machine Learning, 1067-75.
- Wilson, A., and H. Nickisch, 2015. "Kernel Interpolation for Scalable Structured Gaussian Processes (Kiss-gp)." In International Conference on Machine Learning, 1775-84.

Supplementary Material: This article contains supplementary material (https://doi.org/10.1515/snde-2022-0116).