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Abstract: Increases in the use of Bayesian inference in applied analysis, the complexity of estimated models,

and the popularity of efficient Markov chain Monte Carlo (MCMC) inference under conjugate priors have led

to more scrutiny regarding the specification of the parameters in prior distributions. Impact of prior parame-

ter assumptions on posterior statistics is commonly investigated in terms of local or pointwise assessments, in

the form of derivatives or more often multiple evaluations under a set of alternative prior parameter specifi-

cations. This paper expands upon these localized strategies and introduces a new approach based on the graph

of posterior statistics over prior parameter regions (sensitivity manifolds) that offers additional measures and

graphical assessments of prior parameter dependence. Estimation is based on multiple point evaluations with

Gaussian processes,with efficient selection of evaluation points via active learning, and is further complemented

with derivative information. The application introduces a strategy to assess prior parameter dependence in a

multivariate demand model with a high dimensional prior parameter space, where complex prior-posterior

dependence arises from model parameter constraints. The new measures uncover a considerable prior depen-

dence beyond parameters suggested by theory, and reveal novel interactions between the prior parameters and

the elasticities.

Keywords: Bayesian robustness; Gaussian process; prior elicitation; sensitivity analysis

JEL Classification: C11; C31; C52; D12; I12

1 Introduction

Bayesian inference plays an increasingly important role in empirical research across many fields including eco-

nomics and related areas. A common application requires the specification of a potentially large set of location

andprecisionparameters (henceforth referred to as prior parameters) for prior distributions that havebeenpre-

determined based onmodelling aspects and computational efficiency (i.e. prior conjugacy). It is well known that

prior parameter choices can lead to a prior dependence of the posterior statistics (Berger 1990) and they should
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be carefully chosen (Lancaster 2004). This paper introduces a new approach that assesses prior parameter

dependence via the functions of the posterior statistics over relevant prior parameter regions (sensitivity man-

ifolds) with the aim to expand upon commonly used localized strategies. We propose a computational strategy

for settings where inference is based on efficient MCMC methods that opens up possibilities of a more com-

prehensive analysis of prior dependence patterns through a range of new numerical and graphical measures.

For example, it allows the identification of prior parameters with the largest impacts on posterior estimates of

key statistics, as well as to identify those posterior statistics that are particularly sensitive to prior parameter

specifications (within a region in the prior parameter space).

By design, analysis of prior parameter dependence differs in focus from the broader set of issues in thewell-

established and large literature on Bayesian robustness (Berger 1985; Bhatia et al. 2023; Giacomini, Kitagawa,

and Read 2022; Li and Dunson 2020; Ríos Insua, Ruggeri, and Martín 2000; Ruggeri 2008). The main objective

of the former is in assessing changes in posterior inference when moving away from an initial point within

the prior parameter space for a given model (likelihood) and prior distribution. For example in the context of

sparse modelling in macroeconomic time series analysis with prior shrinkage, several studies have looked on

the impacts of widely used shrinkage parameters (Amir-Ahmadi, Matthes, and Wang 2020; Chan, Jacobi, and

Zhu 2022; Jarociński and Marcet 2019). In practice, researchers typically investigate the impact of prior param-

eter assumptions on posterior statistics in terms of local or pointwise assessments. This has been done in the

form of partial derivatives (see for example Giordano et al. 2022; Gustafson 2000; Jacobi, Zhu, and Joshi 2022) or,

more often, in terms of multiple evaluations under a restricted set of alternative prior parameter specifications

popularized by Richardson and Green (1997).

Both the design and analytical and computational complexity of the posterior inference limit the possible

scope of such approaches. For example, the popular “scenario” type perturbation (or multi-evaluation) analysis

evaluates posterior statistics at a few additional sets of prior parameter specifications fromperturbing the initial

parameter setting (An and Schorfheide 2007; Kim and Nelson 1999; Richardson and Green 1997). An additional

limitation is the exogenous choice of these additional evaluation points in the prior parameter space, mostly

ad hoc and without any reference to the posterior surface, at most supported by prior simulations (Del Negro

and Schorfheide 2008) or modelling aspects (Chan, Jacobi, and Zhu 2019; Giannone, Lenza, and Primiceri 2015).

Following a different strategy, local derivative approaches consider the impact of a one-directional infinitesimal

change away from an initial point in the prior parameter space on posterior statistics (Gustafson 2000). The

required analytical derivative expressions are commonly intractable, although several papers have discussed

computational approaches to obtain derivative estimates for posterior mean parameters and with respect to a

subset of hyperparameters in specific parametric classes (Basu, Jammalamadaka, and Liu 1996; Geweke 1999;

Müller 2012; Pérez, Martin, and Rufo 2006).

This paper expands upon common localized strategies by developing comprehensive formal measures and

graphical assessments of prior parameter dependence based on the graph of a posterior statistic over regions in

the prior parameter space (sensitivity manifolds). For example, sensitivity manifolds allow for the computation

of a broader sensitivity measure that relates to the global results measure (Berger 1990). Importantly, informa-

tion based on the geometry properties of these posterior surfaces can capture aspects of prior parameter depen-

dence beyond available pointwise and local assessments, including policy turning points and joint-influence of

multiple prior parameters, that are particularly relevant in empirical applications.

Analytical expressions for the sensitivity manifold, a function of a posterior statistic over a region in the

prior parameter space, are only available in a few simple cases as in the Bernoulli example used as an illus-

tration below. For MCMC settings, such a multivariate demand analysis as considered in our application, we

propose an innovative computational strategy based on Gaussian Processes (GP) methods (Rasmussen and

Williams 2006) with an extension to combine GP estimation with derivative information obtained via a compu-

tation approach for MCMC inference (Jacobi, Zhu, and Joshi 2022). Our approach builds on recent convergence

results for GP in the context of posterior inference (Stuart and Teckentrup 2018) and contributes to the recent

literature on the use of GP-based methods in Bayesian inference (see for example work on GP priors in Bran-

son et al. (2019), Clark et al. (2022), Hauzenberger et al. (2021)). To achieve both precision and efficiency for the



L. Jacobi et al.: Posterior Manifolds over Prior Parameter Regions — 405

sensitivitymanifold estimationwithMCMC evaluations, we employ a GP-based strategy that is based onmultiple

point evaluations under the GP that is combinedwith efficient selection of evaluation points via Active Learning

(Settles 2012).

Derivative information, if available, can be readily included within such a GP-based estimation framework

since the derivative of a GP itself takes the form of a GP. In addition to improving the precision of the GP approx-

imation of the manifolds, and reducing computational load as less evaluation points are required (see example

below), such derivative information supports additional sensitivitymeasures. Aswe illustrate in our application,

it also affords amore informative usemanifold-based sensitivity analysis of particular relevance in settingswith

higher-dimensional prior parameter space where many prior parameters can potentially drive prior depen-

dence of inference. To realize these benefits, we exploit a novel approach for unbiased estimation of derivatives

of posterior statistics formalized in Jacobi, Zhu, and Joshi (2022) that can be efficiently estimated via the vector-

ized automatic differentiation approach (Kwok, Zhu, and Jacobi 2020), implemented in the context of Bayesian

VAR analysis with shrinkage priors (Chan, Jacobi, and Zhu 2020, 2022).

We apply the new approach and methods in the context of the estimation of food demand elasticities in a

widely used multivariate framework with parameter constraints arising from economic theory and inference

based on efficient Gibbs sampling (Briggs et al. 2013, 2017; Clements and Si 2016; Tiffin and Arnoult 2010). We

explicitly address the higher dimension of the parameter space and high uncertainty about the prior-posterior

dependence structure when estimating the most relevant sensitivity manifolds for the main set of posterior

statistics, i.e. posterior means of price and expenditure elasticities over regions of high sensitivity in the prior

parameter space. Our analysis focuses on the five main food groups using a sample from a Virtual Supermarket

Experiment with exogenous price variation (Waterlander et al. 2015). The initial set of prior location parameters

for the demand coefficients are set to be consistent with elasticity estimates in the literature as in Jacobi et al.

(2021), and precision parameters specified to reflect a reasonable level of confidence with the prior location

settings. A step-wise gradient-based approach, computing derivatives using Infinitesimal Perturbation Analysis

(IPA) and starting at the initial prior settings, identifies regions of high prior parameter sensitivity and alongside

uncovers the influential prior parameters and particularly sensitive elasticities. The path-based sensitivity anal-

ysis captures the prior dependence as a function of the confidence level in the prior (experts), thereby revealing

a non-linear relationship and also the turning point of the food group classification along a spectrum of priors.

The surface-based sensitivity analysis uncovers a considerable prior dependence beyond own location and pre-

cision parameters, and also reveals the novel interaction between location parameters, precision parameters

and elasticities.

The remainder of the paper is organized as follows. In Section 2 we introduce sensitivitymanifolds of poste-

rior statistics over prior parameter regions, discuss the estimation strategy and illustrate the estimationmethods

and robustness measure with numerical examples in a low dimensional setting. Section 3 contains a real data

application in a high dimensional setting, and Section 4 concludes.

2 Methods

2.1 Prior Parameter Dependence of Posterior Statistics

Suppose we have a statistical model p𝝓 about the data ywith a model parameter vector 𝝓 ∈ Rl, a prior distri-

bution 𝜋𝜽 about𝝓with prior parameters (or hyperparameters) 𝜽 ∈ 𝚯 ⊂ Rp, where𝚯 is the hyperparameter

space. Further, let h:Rl → R j denote a statistical functional of interest. The objective is to perform prior sen-

sitivity analysis of the posterior statistics 𝔼[h(𝝓)|y, p𝜙, 𝜋𝜽]. For example, when h is the identity function, i.e.

h(𝝓) = 𝝓, then the objective would be to study how the posterior mean estimates of the model parameter

change as the prior parameters vary.

Due to the computational and analytical complexities, assessment of prior parameter dependence has

focused on local and pointwise approaches. Formally, prior parameter dependence has been defined in terms

of the local derivative (Gustafson 2000) evaluated at some point 𝜽0 ∈ 𝚯 as
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𝜕

𝜕𝜽
𝔼[h(𝝓)|y,𝜽]||||𝜽=𝜽0 ,

where the conditioning on the fixed likelihood and prior has been suppressed to simplify notation. Hence prior

parameter sensitivity is defined in terms of the partial derivatives of a posterior statistic with respect to a prior

parameter and provides an exact but only one-directional local measure of the change in the posterior statistic

as these partial derivatives are used one at a time. Note that this local and prior parameter focus is different

from Bayesian robustness analysis which typically concerned with the global sensitivity

h = inf
p𝝓∈

inf
𝜋𝜽∈Γ p𝝓

E[h(𝜽)|y, 𝜋𝜽, p𝝓], h = sup
p𝝓∈

sup
𝜋𝜽∈Γ p𝝓

E[h(𝜽)|y, 𝜋𝜽, p𝝓],
where  ,Γ p𝝓

are some classes of distributions (Berger 1994). Note though that Berger, Insua, and Ruggeri (2000)

points to the analysis of impacts of prior parameter choices where p𝝓 and 𝜋𝜽 are fixed as an important aspect

of Bayesian robustness analysis.

The farmorewidely practiced but less formal approach to prior parameter sensitivity analysis is to evaluate

𝔼[h(𝝓)|y,𝜽] using a few points in the prior parameter space (Roos et al. 2015):

{𝔼[h(𝝓)|y,𝜽k]}, where 𝜽k ∈ {𝜽1,… ,𝜽K}.

While the analysis is not strictly local and provides some exploration of the prior-posterior dependence over the

prior parameter space, it is informal and restricted to the evaluation points. No information about the sensitivity

behaviour of the posterior statistics between the few evaluation points is available and the approach does not

lend itself to quantify sensitivity via formal measures. In addition, and as pointed out previously, evaluation

points aremostly chosen in an ad hocmanner from a very large set of possible points within the prior parameter

space. Some sophisticated choices have been considered, e.g. prior simulation andmodelling aspects, but choices

are not based on analytical or geometrical aspects of the posterior statistics.

We introduce a “surface”-based approach to prior sensitivity analysis that draws on the ideas and strength

of these twomain approaches, but enables us to extend formal assessment of prior parameter sensitivity beyond

the local and pointwise approaches and expand the set of available measures on prior-parameter dependence.

We first propose the concept of sensitivity manifolds of posterior statistics over a region of the prior parameter

space (Section 2.2), and provide a simple example where analytical solutions for the posterior statistics, thus,

manifolds local sensitivity measures are available. It illustrates important links with the existing approaches

and motivates the definition of sensitivity measures based on the manifold highlighted in our application. It

also provides important insights that underlie the design of the proposed estimation strategy discussed in 2.3

that exploits a multiple evaluation strategy with endogenous specification of evaluation points and the use of

local derivative at evaluation points.

2.2 Posterior Sensitivity Manifolds

We first introduce the concept of a sensitivity manifold over a region in the prior parameter space. It encom-

passes and extends existing assessments of prior parameter dependence discussed in the previous section by

mapping posterior statistics 𝔼[h(𝝓)|y, 𝜋𝜽, p𝝓] on hyperparameter regions rather than points within the prior
parameter space. Let𝚯0 ⊂ 𝚯 denote a compact and connected subset in the hyperparameter space that con-

tains possible values given a particular application and let

H𝜽 = 𝔼[h(𝝓)|y,𝜽] (1)

denote a j dimensional vector of posterior statistics which is differentiable in 𝜽 ∈ 𝚯0 ⊂ 𝚯.1 Formally, we

define the sensitivity hyperparameter manifold () as the graph of H𝜽

1 The analysis can be extended to include functionals other than expected values.
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
(
H𝚯0

)
:={(𝜽,H𝜽),𝜽 ∈ 𝚯0}.

Such a sensitivity manifold represents a high-dimensional map from the hyperparameter region𝚯0 to the pos-

terior statistics.2 This set-up includes the common case of varying only the hyperparameters of interest while

fixing the others at specific values. For example, the hyperparameters of interest could be the shrinkage param-

eters in the Bayesian vector autoregression (VAR) literature or the prior precision of the (partially-identified)

covariance parameter between potential outcomes in the treatment effects literature.

To demonstrate and visualize the concept of the sensitivity manifold and highlight the links to existing

approaches, we consider the Binomial model with conjugate Beta priors. For n independent experiments, the

likelihood takes the form p(y1, y2,… , yn|𝜙) =∏n

i=1𝜙
yi (1− 𝜙)1−yi = 𝜙

∑n
i=1 yi (1− 𝜙)n−

∑n
i=1 yi . Using a conjugate

beta distribution as prior for 𝜙, 𝜋(𝜙|𝛼0, 𝛽0), the posterior distribution is
𝜋(𝜙|y) ∝ 𝜙𝛼0+ n∑

i=1
yi−1

(1− 𝜙)
𝛽0+n−

n∑
i=1

yi−1
,

where 𝛼0, 𝛽0 > 0, and 𝛼0 − 1 can be interpreted as the prior knowledge regarding the number of successes

and 𝛽0 − 1 as the prior number of failures. In this example analytical solutions are available for the posterior

distribution and statistics (see e.g. Greenberg (2012)). The model has only two prior parameters and the sensitiv-

ity manifold, as well as local derivative information, can be obtained analytically and represented graphically.

We focus on the posterior variance, and define the posterior statistic of interest as h(𝜙) = (𝜙−
𝔼
[
𝜙|y, 𝛼0, 𝛽0])2 so that the sensitivity manifold can be expressed analytically as

H𝜃 = Var
[
𝜙|y, 𝛼0, 𝛽0] =

(
𝛼0 +

n∑
i=1

yi

)(
𝛽0 + n−

n∑
i=1

yi

)
(𝛼0 + 𝛽0 + n)2(𝛼0 + 𝛽0 + n+ 1)

,

where 𝜽 =
[
𝛼0, 𝛽0

]⊤
. Suppose the sample data is y = {1, 0, 1} and the prior information suggests that a sensi-

ble subspace of 𝚯 is 𝚯0 = [0.1, 10] × [0.1, 10]. The grey surfaces in Figure 1(A) and (B) represents the posterior

sensitivity manifold over the prior parameter region of interest.

The posterior sensitivity manifold reflects the value of the posterior variance Var
[
𝜙|y, 𝛼0, 𝛽0] over the

prior parameter region which is largest when prior parameters approach the lower bound of the region,

Var
[
𝜙|y, 𝛼0, 𝛽0]→ 0.055 as 𝛼0, 𝛽0 → 0.1. The grid lines in (a) are included to make the shape better vis-

ible. We observe there that moving away from the lower bound Var
[
𝜙|y, 𝛼0, 𝛽0] decreases, particularly

Var
[
𝜙|y, 𝛼0, 𝛽0]→ 0.01 as 𝛼0, 𝛽0 → 10. As the grid lines in Figure 1(A) show, the dependence on 𝛽0 and 𝛼0 is

complex. This is made more visible in Figure 1(B) that also shows the manifold fixing 𝛽0 at either 0.1 (red line),

5 (blue line) or 10 (green line). We observe in this panel that fixing 𝛽0 = 0.1, there is an inverse relationship

between Var
[
𝜙|y, 𝛼0, 𝛽0] and 𝛼0, but fixing 𝛽0 = 5 or 𝛽0 = 10 the relationship between Var

[
𝜙|y, 𝛼0, 𝛽0] and

𝛼0 is not monotone. In addition, there is more sensitivity at lower values of 𝛽0 as shown by the slopes of these

lines. This simple example illustrates the interdependence of the hyperparameters on the sensitivity manifold.

In contrast, a scenario-type analysis provides a snapshot at some points in the prior parameter space. For

example, H𝛼0=1,𝛽0=1 and H𝛼0=5,𝛽0=5 provide posterior estimates at points (1,1) and (5,5), and a comparison of the

two values reveals the impact of this specific change in the prior parameters, but no information on sensitivity

outside these two points in the prior parameter space, and dependence of hyperparameters regarding the pos-

terior statistic is very difficult to uncover from this exercise. Comparison at two or three evaluation points is a

common set-up in applied work where evaluations are computationally costly.

Derivative-based prior parameter sensitivity is mostly implemented at on point in the prior parameter

space, typically themain prior parameter specification in the context of an empirical analysis. The yellow arrows

in Figure 1 present local derivative information at different points in the prior parameter space. For example,

2 Stuart and Teckentrup (2018) considered a more general setting and referred to this special case as the “parameter-to-observation

map”.
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Figure 1: Posterior sensitivity manifold (PSM) in Beta-Binomial model. Left panel: the grey surface is the sensitivity manifold for the

posterior variance of a Beta-Binomial model with hyperparameter subspace [0.1, 10] × [0.1, 10] and y = {1, 0, 1}. Red arrows are the
vector field, blue arrows point out a specific path to the highest sensitivity point given an initial evaluation point (10,5), yellow arrows give

local derivative information at points (1,1) and (5,5), and
{
H𝛼0=1,𝛽0=1 − H𝛼0=5,𝛽0=5

}
gives information regarding hyperparameter

sensitivity. Right panel: sensitivity analysis fixing 𝛽0 at 0.1 (red), 5 (blue) and 10 (green). There is more sensitivity at lower values of 𝛽0 as

shown by the slopes of these lines. Yellow arrows give local derivative information at points (1, 0.1) and (5, 0.1), and{
H𝛼0=1,𝛽0=0.1 − H𝛼0=5,𝛽0=0.1

}
gives information regarding hyperparameter sensitivity fixing 𝛽0 = 0.1.

in (b) the yellow arrows give local derivative of Var
[
𝜙|y, 𝛼0, 𝛽0] with respect to 𝛼0 at points (1, 0.1) and (5, 0.1)

and in this case reflect the decreasing sensitivity to changes in 𝛼0 along this trajectory of the manifold with

𝛽0 remaining at 0.1. Observe that common applications of derivative-based prior parameter sensitivity do not

consider evaluation at different points. In addition, this is a measure of local sensitivity.

Next, we draw attention to a close link between the sensitivity manifold and the local derivative analysis as

this is a key feature of the estimation strategy that uses local derivative information to choose evaluation points

efficiently and identify high sensitivity regions. To see more generally how local derivative information can aid

the exploration of the prior parameter space and the sensitivity manifold, let V: Int𝚯0 → R2 be

V = ∇H𝜽(𝜽0) =
⎡⎢⎢⎢⎣
𝜕H𝜽(𝜽0)

𝜕𝛼0
𝜕H𝜽(𝜽0)

𝜕𝛽0

⎤⎥⎥⎥⎦
, 𝜽0 ∈ Int 𝚯0,

denote the vector field of the sensitivitymanifold in the interior of𝚯0 (Int𝚯0) defined in terms of partial deriva-

tives with respect to each hyperparameter. The set of red arrows in Figure 1 are the projection of the vector field

on the Cartesian coordinate system where the arrows point towards the direction of highest sensitivity. In addi-

tion, yellow arrows in (a) show local derivative information at points (𝛼0 = 1, 𝛽0 = 1) and (𝛼0 = 5, 𝛽0 = 5).

We have also depicted one specific standardized path in blue ∇H𝜽(𝜽0)‖∇H𝜽(𝜽0)‖ . Given an initial point (the black dot),

it shows the path leading to the highest sensitivity point, with H𝜽 more sensitive in the 𝛼0 direction. As noted

above, panel (b) shows various manifolds for which one prior parameter is fixed, i.e. setting 𝛽0 at {0.1, 5, 10}.
Computing manifolds for a region defined on a subset of the prior parameter dimensions is an option when

researchers are confident about someprior parameters, or are particularly interested in a subset of prior param-

eters such as those with the highest sensitivity. This is a computationally efficient strategy in settings with higher

dimensions as demonstrated in the application and also a common strategy in the scenario analysis that often

has only a small set of key prior parameters. In panel (b) the manifolds reduce to lines and the yellow arrows

and hyperparameter sensitivity analysis based on evaluation of some points
({
H𝛼0=1,𝛽0=0.1 − H𝛼0=5,𝛽0=0.1

})
given

𝛽0 = 0.1.
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Finally, we want to draw attention to the close link to the global sensitivity analysis. Given a sensitivity

manifold 
(
H𝚯0

)
, we can assess the overall sensitivity in terms of the variation (“height”) over the manifold

of the posterior statistics in H𝜽. We define H j to denote the maximum variation range for the jth posterior

statistics in H𝚯0
as

H j = sup
𝜽∈𝚯0

H
j

𝜽
− inf
𝜽∈𝚯0

H
j

𝜽
, (2)

to measure the largest possible change of the posterior statistics over the region. In the example we have

Var
[
𝜙|y, 𝛼0 = 0.1, 𝛽0 = 0.1

]
− Var

[
𝜙|y, 𝛼0 = 10, 𝛽0 = 10

]
= 0.05− 0.01 = 0.04 a relatively high change given

the magnitude in this example. This measure has the immediate appeal of being a special case of the original

global sensitivity (Berger 1990) fixing the class of prior distributions

H = inf
p𝜙∈

inf
𝜋𝜽∈Γ f𝜙

𝔼[H(𝝓)|y, 𝜋𝜽, p𝝓], H = sup
p𝜙∈

sup
𝜋𝜽∈Γ f𝜙

𝔼[H(𝝓)|y, 𝜋𝜽, p𝝓],
where  and Γ f𝜙

are the family of density functions for the observations y, and the family of prior distributions

for 𝝓, respectively.

Developing our application we introduce further measures that can be obtained as part of our proposed

inferential strategy. We consider various numerical and graphical measures to capture additional information

on the prior parameter dependence contained in the geometry of the manifolds over prior parameter regions.

An important aspectwill be the inclusion of local derivative information to identify influential prior parameters,

and highly sensitivity posterior statistics in typical empirical MCMC applications with larger prior and posterior

parameter spaces.

2.3 Inference in MCMC Settings

Cases where the analytical expressions of the posterior distribution, the manifold and the partial derivatives

are analytically available as in the Bernoulli example, are the exception rather than the norm. Our estimation

strategy for posterior sensitivity manifolds focuses on settings where the expectation of the posterior statistic

is not analytically available, but can be estimated via a standard MCMC algorithm, addressing a large set of

empirical applications across a diverse range of fields.

Let𝚯n represent a set of points {𝜽1,𝜽2,… ,𝜽n} in the prior parameter region𝚯0 ⊆ Rp, based for example

on previous literature choices or expert knowledge. Recall from (1) that the posterior statistical function H𝜽 =
𝔼[h(𝝓)|y,𝜽] is a j-dimensional vector-valued function, where the b-th component is given by

𝔼
[
hb(𝝓)|y,𝜽0] ≈ G−1

G∑
g=1

hb(𝝓g
), 𝝓g ∼ 𝜋(𝜙|y,𝜽0), b = 1, 2,… , j, (3)

where {𝝓g} are themodel parameter draws from the correspondingMCMC estimation. In such settings a simple

grid based analysis with MCMC evaluations at grid points would either be infeasible given the computational

intensity of MCMC simulation or yield a poor approximation if only a limited number of points are used.

Each b-th component in (3) will be independently modelled by a Gaussian Process (GP) (Rasmussen and

Williams 2006).3 A Gaussian process (GP) is a collection of random variables, any finite of which have a

joint Gaussian distribution. It is specified as 
(
m(𝜽), k(𝜽,𝜽′)

)
where m(𝜽):Rp → R is the mean function,

k(𝜽,𝜽′):Rp × Rp → R is the kernel/covariance function and 𝜽 and 𝜽′ are two input values (evaluation points).

GP regression offers a flexible and efficient non-parametric approach to recover manifolds as accurately as pos-

sible as more data become available. It is increasingly used to estimate unknown functions within Bayesian

inferential settings due to its appealing computational properties and posterior consistency under minimal

3 In Supplementary Section A.3, we compare the performance of Gaussian Process and Neural Network trained with sparse grid

points to show that GP is a suitable model for our problem where the number of MCMC evaluations is small.
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assumptions (Branson et al. 2019; Choi and Schervish 2007; Stuart and Teckentrup 2018). Wewill use the squared

exponential (SE) kernel function k𝜎,l(𝜽,𝜽
′) = 𝜎2 exp

(
− ‖𝜽−𝜽′‖2

2l2

)
for the GP. It is a common choice (e.g. it is the

default of the kernlab::gausspr function in R (Karatzoglou et al. 2004)) and has the property that functions

drawn using this kernel are infinitely differentiable (with probability 1) (Wilson and Adams 2013), which would

meet our smoothness requirement of the sensitivity manifolds.

Given the MCMC evaluation points (sn,𝚯n), where sn is (n × 1) and 𝚯n is n × p, the posterior sensitiv-

ity manifold is modelled under the zero-mean GP assumption sn ∼ N(0,K𝝍 (𝚯n,𝚯n)), where K𝜓 (𝚯n,𝚯n) is

the n × n matrix with the (i, j) entry = k𝝍 (𝜽i∗,𝜽 j∗), 𝜽i∗ denotes the i-th row of the matrix 𝚯n, and the kernel

parameters 𝝍 = (𝜎, l) are estimated using Maximum Likelihood Estimation (MLE). To find the values s∗
m
of

the unevaluated points Θ∗
m
on the posterior sensitivity manifold, we utilise that

(
s∗
m
, sn
)
have a joint normal

distribution, and the manifold is generated using the predictive mean of the fitted Gaussian process from the

predictive distribution

s∗
m
|sn,𝚯n,𝚯∗

m
∼ N(Kmn(Knn + 𝚺n)

−1sn,Kmm − Kmn(Knn + 𝚺n)
−1Knm), (4)

where Knm is the abbreviation of K𝜓 (𝚯n,𝚯m) and 𝚺n is the diagonal matrix where the diagonal entries are the

squared standard errors of sn. Hence, given a set of posterior estimates of a statistic h
b at the evaluation points,

ĥ ≈ 𝔼
[
hb(𝝓)|y,𝚯n

]
, a new set of values from the corresponding posterior sensitivity manifold over the prior

parameter region can be computed using

s∗
h,𝚯0

:=𝔼
[
h∗|ĥ,𝚯n,𝚯∗

m

]
= Kmn(Knn + 𝚺n)

−1ĥ. (5)

2.3.1 Choosing Evaluation Points with Active Learning

The choice of evaluation points affects both computational efficiency and finite sample performance of the

GP-based manifold estimates. Stuart and Teckentrup (2018) showed that the Hellinger distance between the pos-

terior distribution and the normal approximation centred at the predictive mean given by the Gaussian process

can be bounded above by a constant times the L2-distance between the posterior mean (i.e. h(𝜽) in our case) and

the predictive mean (i.e. s∗
h,𝚯0

(𝜽)). As the Gaussian process interpolates between the evaluation points, so the

predictive mean converges to the true posterior mean when the evaluation points “fills” the space, i.e. when the

fill distance of the evaluation points sup𝜽∈𝚯0
inf𝜽′∈𝚯0

d(𝜽,𝜽′) goes to 0, and it is justified to use Gaussian process

to estimate the sensitivity manifold.

While an uniform grid with decreasing grid size would fulfil the theoretical requirement, in practice it

is a computationally inefficient choice for high-dimensional problems and not well suited to achieve a high

precision of the sensitivity manifold estimates. In the high-dimensional settings, we use the Active Learning

(AL) strategy (Settles 2012) and choose the new evaluation points at the location with highest predictive variance

(i.e. uncertainty). From (4), we know at each interpolation point s∗
n
the predictive variance is given by Kmm −

Kmn(Knn + 𝚺n)
−1Knm. So, given the evaluated points (sn,𝚯n), the next evaluation point is chosen to be:

𝜃∗
1
= argmax

𝜽∈𝚯0

[
K𝜓 (𝜽,𝜽)− K𝜓 (𝜽,𝚯n)

(
K𝜓 (𝚯n,𝚯n)+ 𝚺n

)−1
K𝜓 (𝚯n,𝜽)

]
. (6)

The procedure begins with n′ < n evaluation points and iterates until one gets n evaluation points (for the

estimation of manifold), or until there are enough evaluation points such that the predictive variances over the

entire region is below a threshold 𝛾 , i.e. the stopping criterion is

sup
𝜽∈Θ0

[
K𝜎,l(𝜽,𝜽)− K𝜎,l

(
𝜽,𝚯n′

)(
K𝜎,l

(
𝚯n′ ,𝚯n′

)
+ 𝚺n′

)−1
K𝜎,l

(
𝚯n′ ,𝜽

)]
< 𝛾 .

In the latter case, it is recommended to set 𝛾 to be the mean of the squared standard errors of the MCMC esti-

mates. The rationale is that the uncertainty of the Gaussian process at the evaluated points should simply be

the uncertainty of the MCMC estimates. Interestingly, Gaussian process can actually achieve a better fit and
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lower uncertainty than the MCMC estimates by taking advantage of the smoothness of the posterior estimates

computed from prior parameters in a small neighbourhood. In the numerical examples in Section 2.4, we will

see how active learning can explore the region of interest efficiently and significantly speed up the posterior

sensitivity manifold estimation.

2.3.2 Incorporating Derivative Information

The derivative information provides local sensitivity information and can be used to discover regions of interest

in the prior parameter space, e.g. regions where results are highly sensitive/highly robust to the input, which

will be discussed in Section 3.2.3. In the context of the manifold estimation, the derivative information can also

be integrated into GP to improve the fit and precision of the posterior sensitivity manifold. The key observation

to incorporate derivative information into GP is that the derivative of a Gaussian process is also a Gaussian

process (Solak et al. 2003). Let∇sn denotes the partial derivatives of the posterior statistics sn with respect to the

prior parameters𝚯n. The joint distribution of
(
sn,∇sn, s

∗
m

)
follows the normal distribution, and the predictive

distribution is given by:

s∗
m
|sn,∇sn,𝚯n,𝚯∗

m
∼ N

(
K′
mn
K′−1
nn

(
sn

∇sn

)
,K′

mm
− K′

mn
K′−1
nn

K′
nm

)
.

This can be used to produce predictions and predictive variances in place of (4) for computing (5) and (6).

K′
mm
,K′

nn
,K′

nm
and K′

mm
are the derivative-adjusted version of the kernel matrices, and the exact expressions

are provided in Appendix A.1.

Analytical expressions for the required derivatives of the posterior statistics are mostly unavailable except

in simple examples. Numerical approaches such as finite differencing (FD) and recently introduced IPA-based

derivative analysis for MCMC inference (Jacobi, Zhu, and Joshi 2022) can be applied. FD relies on re-running

the algorithm, while IPA-based analysis proceeds via differentiating the algorithm (Glasserman 2013). Hence

FD is less suited for complex problems with longer MCMC chains and higher dimensional derivative vectors

as in the case considered in the empirical analysis. Recent work has introduced an approach to compute IPA

derivatives for MCMC output and shown that is possible augment MCMC evaluations with automatic differ-

entiation to compute the Jacobian of the posterior statistics with respect to all the prior parameters without

rerunning the MCMC evaluations and shown the unbiasedness of IPA derivative. We write the Jacobian as

J(𝜽) = ∇H𝜽(𝜽) ≈
1

G

∑G

g=1
𝜕h(𝝓g

)

𝜕𝜽
,where𝜙

g
, g = 1,… ,G are the posterior draws and 𝜕h(𝝓g )

𝜕𝜽
, g = 1,… ,G are

the augmentedderivative output from theMCMCevaluations. Under standardGibbs sampling, IPA-basedderiva-

tive estimations are unbiased.4

2.4 Implementation and Examples

To begin the estimation, let𝚯0 ⊂ Rp denote the space of prior parameters for the sensitivity manifold of inter-

est, given by common practice or expert knowledge (in Section 3, we will also discuss how to find a region of

interestwhen it is not available). And let the n′ initial evaluation points in𝚯0 be𝚯n′ = {𝜽i∈ 𝚯0, i = 1, 2,… ,n′}.
This set should include some points at the boundary of𝚯0. Observe that if wewere to use a naive grid and choose

Mk evaluation points for the hyperparameter 𝜃k, k = 1, 2,… , p, then the total number of evaluation points on

the gridwill be
∏ p

i=1Mi, giving us an exponentially large number of points to startwith due to the curse of dimen-

sionality. To circumvent the issue, we start with n′ points instead and use the active learning strategy to expand

the set of evaluation points. We first evaluate the n′ points using MCMC (optionally augmented with automatic

differentiation), fit a Gaussian process to the n′ evaluated points using MLE, then we apply the selection process

4 See Supplementary Section A.3 for a comparison of accuracy and efficiency of Gaussian Process with and without derivatives for

various dimensions.
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given by (6). In practice, the maximum is taken over a finite number of points, i.e. we sample5 M points from

𝚯0, compute the predictive variances at these points using the fitted Gaussian process, then we select the point

with the maximum predictive variance as the next point to evaluate (using MCMC). The process continues until

a pre-specified number of points n is reached, or when the predictive variances of theM sampled points are all

below a pre-specified threshold. We summarize the key steps of the proposed GP-based estimation strategy in

Algorithm 1alg1. In the application we further discuss and illustrate the flexibility of the approach by combin-

ing manifold-based sensitivity analysis with discovery of regions of high sensitivity defined in terms of prior

parameters that are the key drivers of changes in the sensitivity manifold.

Algorithm 1. Manifold Estimation

1: Initialization: Select N initial evaluation points {𝜽i∈ 𝚯0, i = 1, 2,… , n′} 𝚯0 ⊂ R p

2: MCMC estimation of posterior statistics at each 𝜽i
(i) Calculate the posterior estimate H𝜽i = 𝔼

[
h(𝝓)|y,𝜽i] ≈ 1

G

∑G

g=1 h(𝝓
g,i
).

(ii) Optional: Apply IPA Derivative Analysis via AD within the MCMC to compute Jacobian matrix J(𝜽i) =
𝜕H𝜽i
𝜕𝜽i

≈ 1

G

∑G

g=1
𝜕h(𝝓g,i

)

𝜕𝜽i
, where

𝜕h(𝝓g,i
)

𝜕𝜽i

3: Gaussian process (GP) estimation

(i) Estimate a GP from the posterior estimates
{(
𝜽i,H𝜽i , J(𝜽i)

)
, i = 1, 2,… ,N0

}
, J(𝜽i) is optional (using 5.1).

(ii) Optional: Estimate GP with derivative information (using (9)).

4: Active Learning with Gaussian process

(i) Apply AL to sample M points from𝚯.

(ii) Use the fitted Gaussian process to evaluate the predictive confidence variances at the M points using (5).

(iii) Select the point that has the highest predictive variance 𝜽∗; evaluate H𝜽∗ and J(𝜽
∗) (optional) with MCMC.

5: Repeat: Repeat from stage 3 using all the evaluated points, i.e. N←N + 1, until N reaches the pre-specified maximum number of

evaluations, or until the uncertainty over the sensitivity manifold (i.e. the maximum of the M predictive variances) is reduced to below a

pre-specified threshold.

In the remainder of this section we demonstrate key features of the proposed estimation strategies in two

simple examples in lower dimensional settings to illustrate performance (precision and computation) gains over

simple grid-based and GP-based estimation. The first example is continuation of the example in Section 2.2, and

the second is interesting due to inconsistency of the heteroskedasticity parameter as increasing with sample

size.

Example 1 (Bernoulli): Precision Gains. We revisit the Bernoulli example from Subsection 2.2 setting

𝜙 = 0.75, and estimate a sensitivity manifold for the posterior mean of 𝜙 = 𝑤 × 𝛼0
𝛼0+𝛽0

+ (1−𝑤) × ȳ where

𝑤 =
(

𝛼0+𝛽0
𝛼0+𝛽0+n

)
is the weight given to prior information, and ȳ is the sample average. We have n = 20 tri-

als, ȳ = 0.65, and for pedagogical exposition, we set 𝛼0 = 𝛽0 and select the initial evaluation points to be

𝚯0 = {0.1, 10.0, 40.0, 70.0, 100.0}. We generate draws from the posterior beta distribution, calculate the pos-

terior mean along with its derivative using these draws. Using active learning, we select the evaluation point(
𝛼∗
0
= 𝛽∗

0

)
with the maximum predictive uncertainty in the 95 % prediction intervals as the new point. Then,

for comparison purposes, we fit a Gaussian process to the posterior means with and without the derivative

information.

The results are presented in Figure 2. Figure 2A shows the true evolution of the posterior mean (dashed

black line) and the fitted Gaussian process (without automatic differentiation) (continuous blue line). Active

5 The sampling can be done with random or quasi-random numbers. Quasi-random numbers have better space coverage, but extra

care is needed inhighdimension. For example, theHalton sequence has high correlation between coordinate pairs in highdimension,

and shuffling/scrambling is required to break the correlation (Schlier 2008).
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Figure 2: Estimation gains from adding grid point selected via active learning (AL) and derivative information (via AD). (A) Shows how

active learning chooses the point with the maximum predictive variance from the Gaussian process (GP). (B) Shows the precision gain of

the Gaussian process from adding the active learning point and the derivative information.

learning picks the next evaluation point (red line) at the location with the highest uncertainty as indicated by

the Gaussian process.

Figure 2B shows the true evolution of the posterior mean (dashed black line), the fitted Gaussian process

without derivative (continuous blue line) and with derivative (continuous green line) after the active learning

step. Incorporating derivative into Guassian process improves predictive performance in the mean-squared-

error sense and reduces the predictive uncertainty, as measured by the 95 % predictive intervals (light green

area versus light blue area). Comparing Figure 2A and B, we also observe that the uncertainty of the Gaussian

process (without derivative) reduces considerably with the added point, and the fit has also improved.

Figure 2B shows that 𝛼0 = 𝛽0 ≈ 0means a posteriormean approximately equal to 0.64, then the posterior

mean decreases fast to stabilize after 𝛼0 = 𝛽0 ≈ 26 around 0.52. This aligns with the analytical expression of

the posterior mean, as we have that lim𝛼0,𝛽0→0𝔼[𝜙|y]→ ȳ = 0.65 and lim𝛼0,𝛽0→∞𝔼[𝜙|y]→ 𝔼[𝜙] = 0.5. Overall,

we see that Gaussian process can estimate the posterior (sensitivity) manifold well over the full range given

only a few evaluation points. This can be useful in more complicated settings where analytical solutions are not

available.

Example 2 (heteroskedasticity): Reduction in Evaluation Points. The second example illustrates sensitiv-

ity manifolds over prior mean and variance regions in a linear regression design with heteroskedasticity,

and we consider a linear regression design with heteroskedasticity of the form yi ∼ N
(
x⊤
i
𝜷, 𝜎2∕𝜆i

)
where

𝜎2 ∼ Inv− Γ(a0, b0), 𝜆i ∼ Γ(𝜌, 𝜌) and 𝜷 ∼ N(𝜷0,B0) with xik ∼ N(0, 1). Observe that in this setting, the

nuisance heteroskedasticity parameter increases with the sample size, then, it is not possible to be consistently
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Figure 3: Sensitivity manifold graphing the posterior mean of 𝛽1 over its prior mean and variance with increasing gamma parameter

(𝜌= 0.125 (left), 𝜌= 0.177 (middle) and 𝜌= 0.25 (right)).

estimated. We let i = 1, 2,… , 300 and k = 1,… , 56 and the population value (in two decimal places) for 𝜷 is

𝜷 = [−1.27, 1.73,−0.55, 2.30, 2.64]T , the baseline prior hyperparameters are 𝜷0 = [0, 0, 0, 0, 0]
⊤, B0 = I5,

a0 = 30, b0 = 3. We use different values for 𝜌 ∈ {2m,m = −3,−2.5,−2,… , 0} to demonstrate the effect of
heteroskedasticity on the posterior mean. Observe that in this example we do not have an analytical expression

for 𝔼[𝜷|y, x]. However, we can implement a Gibbs sampler to perform statistical inference given conditional

posteriors (see Greenberg 2012, p. 115). Figure 3 shows the sensitivity manifolds for 𝛽1 (against its prior mean

and variance) as the heteroskedasticity hyperparameter increases. The graphs in the figure were obtained by

a naive grid evaluation with evenly spaced grid points. They capture the geometrical aspects of the sensitivity

surface on the hyperparameter subspace given by the prior mean and prior variance of 𝛽1 under three differ-

ent heteroskedasticity hyperparameters. We observe that the shapes of the sensitivity manifold change with

the heteroskedasticity parameter. For instance, the posterior mean of 𝛽1 using 𝜌 = 0.125 is very sensitive to

the prior mean even with a high variance (Var[𝛽1] = 100). This is not the case when 𝜌 = 0.177 or 𝜌 = 0.25

using Var[𝛽1] ≥ 50 and Var[𝛽1] ≥ 2, respectively. As expected, the posterior mean is approximately equal to

the prior mean when the prior variance is very small. Observe the 45 % degrees line on the 𝔼[𝛽1],𝔼[𝛽1|y, x]
sub-plane given Var[𝛽1] = 0.01. This does not depend on the prior heteroskedasticity parameter. In addition,

inflection points can be read off from these figures.

In Figure 4, the first two panels show the reduction of grid points moving from a naive grid to a set of

points chosen by the Gaussian process with active learning for estimating the sensitivity manifold. Instead of

187 grid points we now require only 64 points to reach an (uniform) uncertainty level of 0.18 over the surface.

The last panel shows the reduction in uncertainty (the predictive variance is computed for 100 points randomly

sampled from the surface, then themaximum is taken) in the sensitivity surface under the active learning based

evaluation.

3 Application: Prior Sensitivity of Posterior Price and Expenditure

Elasticity Estimates

Reliable demand elasticity estimates are a key input for policy design, in many areas in economics, (public)

health and beyond as they characterize key features of consumer behaviour. Our example considers the esti-

mation of price and expenditure elasticities for food demand. Such estimates are used to examine the impact

6 See Supplementary Section A.3 for more results on the performance of Gaussian Process with active learning as the dimension

becomes large.
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Figure 4: Sensitivity manifold 𝛽1 over prior mean and variance with 𝜌= 0.25:11 × 17= 187 points on an uniform grid (left, run-time:

61.5 s); 64 points using GP with active learning at 0.18 uncertainty (middle, run-time: 22.3 s); uncertainty of GP against the number of

points evaluated after the initialisation (right).

of food prices on food consumption and subsequent health consequences to assess policies targeting the grow-

ing problem of obesity and nutrition related health issues, and to investigate welfare consequences of rising

food prices (Cornelsen et al. 2015; Gao 2012). Nonetheless, quality and robustness of empirical evidence on food

demand elasticities remain an ongoing concern (Afshin et al. 2017; Nghiem et al. 2013). These are due to data lim-

itations, but also estimation challenges relating to multivariate demand analysis under parameter constraints

from economic theory (Baumeister and Hamilton 2019). Posterior inference on elasticities, functions of differ-

ent demand parameters, requires the specification of a larger set of demand parameters and is likely to exhibit

complex prior parameter dependencies that are potentially exacerbated by data limitations.

3.1 Inferential Framework for Food Demand Elasticities

Our empirical analysis is set within a widely-used multivariate demand system derived from micro-economic

theory, efficiently estimated by standard MCMC methods, using data from an innovative Virtual Supermar-

ket experiment with exogenous price variation. The so-called Linear Almost Ideal Demand System (LAIDS) is

a popular framework to analyse nutrition choices and food policy interventions (Clements and Si 2016; Klonaris

and Hallam 2003; Rickertsen, Kristofersson, and Lothe 2003; Tiffin and Arnoult 2010). It provides a multivariate

demand analysis that captures a set of relevant food groups and choices. Importantly, the estimated substitution

patterns are consistent across food groups (Briggs et al. 2013) and with underlying economic assumptions, such

as the implied linear food Engel curves, supported by empirical evidence (Banks, Blundell, and Lewbel 1997).

Bayesian MCMC methods offer an efficient and flexible approach to obtain inference on both elasticity point

estimates and their precision within this demand framework for food shares that exhibits a number of econom-

ically motivated parameter restrictions (Bilgic and Yen 2014; Briggs et al. 2017; Kasteridis, Yen, and Fang 2011;

Tiffin and Arnoult 2010).

3.1.1 Model Specification

Under LAIDS, originally proposed by Deaton andMuellbauer (1980), inference on price and expenditure elastic-

ities are subject to restrictions arising frommicroeconomic theory. The Marshallian price elasticity (PE) of food

group i with respect to food group j, 𝜖ij and the expenditure elasticities for good i, 𝜂i under the LAIDS are:

𝜖ij =
𝛾ij − 𝛽i𝑤j

𝑤i

− 𝜌ij, 𝜂i = 1+ 𝛽i
𝑤i

,

where 𝜌ij = 𝟙{i = j} is an indicator for own price elasticities, and 𝑤j is the average budget share for good j

over all records. The elasticities are functions of price (𝛾 ij) and expenditure effects (𝛽 i) in a household demand
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system modelled in terms of the proportion of spending of a household (h = 1, 2,… ,H) on the food group

i ∈ {1, 2,… ,N},𝑤(h)

i
:

𝑤(h)

i
= 𝛼i +

N∑
j=1
𝛾ij log p(h)

j
+ 𝛽i log XR(h) + 𝜖(h)i

,

where 𝑤i represents the spending shares on each food group
(∑N

i=1𝑤i = 1
)
, pj are prices, XR

is the real expenditure and 𝜖i are i.i.d. Normal errors. Microeconomic theory requires additivity(∑n

i=1 𝛼i = 1,
∑n

i=1 𝛾ij = 0 and
∑n

i=1 𝛽i = 0
)
, homogeneity

(∑n

j=1 𝛾ij = 0
)

and symmetry (𝛾 ij = 𝛾 ji) cross-

equation restrictions to be satisfied in our inferential framework.

3.1.2 Prior-Posterior Inference for Virtual Supermarket Experiment

We focus on elasticity inference within a demand analysis of five main food groups (Fruits & Vegetables, Pro-

teins, Starchy Foods, Drinks, Other), similar to the analysis in Clements and Si (2016) and Cornelsen et al. (2015).

The anlaysis is based on a household sample from a Virtual Supermarket (VS) experiment (Waterlander et al.

2016) designed to address limitations in elasticity inference from insufficient and endogenous price variation in

observational studies (Naghavi et al. 2017). The VS experiment contained 1412 unique food items positioned on

supermarket shelves (about 75 % of the products in ‘real’ supermarkets) and was validated compared to actual

shopping purchases in Waterlander et al. (2015). The sample contains 4258 completed shops where a household

purchased from allmain groups. In terms of budget shares, Fruits & Vegetablesmade up for 23 % of expenditure,

Proteins (Meat and Dairy) 33 %, Starchy Foods 11 %, Non-Alcoholic Drinks 8 % and Other Foods (fats, oils, sweets,

condiments) 25 % (see Jacobi et al. (2021) for more data details).

Main interest is on the posterior mean estimates of 16 price elasticities, 𝝐 = {𝜖ij: i, j = 1, 2, 3, 4}, and four
expenditure elasticities, 𝜼 = {𝜂i: i = 1, 2, 3, 4} for the main food groups Fruits & Vegetables, Proteins, Starchy

Foods and Non-alcoholic Drinks:7

E
[
𝜖ij(𝝓)|y,𝜽0)] ≈ G−1

G∑
g=1

𝛾
g

ij
− 𝛽 g

i
𝑤j

𝑤i

− 𝜌ij, E
[
𝜂i(𝝓)|y,𝜽0)] ≈ G−1

G∑
g=1

1+
𝛽
g

i

𝑤i

, (7)

where draws of the model parameters come from the posterior distribution of the model parameters,

𝜋(𝝓,𝚺|y) ∝ p(y|𝝓,𝚺)𝜋(𝝓,𝚺).
Under the typical choice of conditionally conjugate priors in terms of independent Gaussian prior distribu-

tions on the vector of demand coefficients, 𝝓 = [𝜶⊤, 𝜸⊤,𝜷⊤]⊤, with 𝜶 = [𝛼i],𝜷 = [𝜷 i], 𝜸 = vech([𝛾 ij]) and

an Inverse Wishart prior on the covariance matrix of the errors,

𝜋(𝝓,𝚺) =  (𝝓|𝝁𝝓,V𝝓)(𝚺|𝜌0,R0),

draws from the posteriors are generated via a standard two-step Gibbs sampler with a multivariate Nor-

mal update for the demand parameters and an Inverse Wishart update for the covariance parameter (see

Appendix A.2 for the details on the Gibbs algorithm). There are 41 hyperparameters according to our specifi-

cation, consisting of 18 locations and variances in the normal prior, and four elements in the scale matrix in the

Inverse Wishart plus the degrees of freedom.

3.2 Sensitivity Analysis of Price Elasticities

In this section, we present the sensitivity analysis of the prior-posterior dependencies of the price elasticities.

Different to previous illustrative examples, the application presents a more complex setting and exhibits larger

7 Focus is on the first four groups. We can recover elasticity estimates of the fifth group using the adding-up restriction. However,

this process generates a high level of imprecision regarding these elasticities.
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prior parameter and output spaces. The analysis is structured around a series of questions that are relevant

to practitioners, and we will use our manifold approach to address them. Part of the novelty comes from how

our approach can give specific responses to key sensitivity-related questions that are not addressed by existing

approaches. Beginning with the first basic set of questions, we are interested in

– which input prior parameter has the biggest impact on the posterior output (i.e. price elasticity)?

– which posterior outputs are the most sensitive to fluctuations in prior parameters?

– how much would the posterior parameters change in response to small changes in a prior parameter?

These questions can be answered by studying the Jacobian of the posterior estimates, which we will

compute fromaugmenting theMCMC estimation procedurewith automatic differentiation (Jacobi, Zhu, and

Joshi 2022). In our application the derivative information is initially computed to identify high sensitivity

regions for the manifold construction, and hence is available for standard local analysis to complement the

extended sensitivity assessment. This will be discussed in Section 3.2.1. The second set of questions are

– what agreements/disagreements are there between the data and the expert opinion (expert-based priors)?

– what is the decision turning point or boundary between two opinions (prior settings) that disagree with

each other?

To answer these questions, we consider the scenario spectrum, which is the path connecting the two

priors of interest in the prior parameter space. The scenario spectrum contains the “intermediate” priors

between two priors, and we will build the posterior sensitivity manifold over this path. It will show how

the two priors disagree with each other, and when a decision or a conclusion gets overturned as we switch

from one prior to another in a continuous way. This will be discussed in Section 3.2.2. Finally, we investigate

the question

– how rapidly does the posterior statistics change across the region of interest?

This relates to the central question regarding the robustness of the analysis. The scenario spectrum provides a

tool to quantify the robustness via visual and numerical measures that capture the variation of the posterior

estimates as the input prior parameters change. We will use the Jacobian from the augmentedMCMC procedure

to explore the prior parameter space and identify the high sensitivity region, overwhich the posterior sensitivity

manifold will be built. The manifold provides formal assessment of sensitivity analysis beyond the pointwise

analysis, and this will be discussed in Section 3.2.3. The overview to our analysis is provided in Figure 5, and an

illustration of how our approach goes beyond local assessment is provided in Figure 6.

As the departure point of our extended sensitivity analysis, Figure 7 presents the posterior estimates and

frequentist estimates in the spirit of a standard scenario-type analysis. The posterior estimates are computed

based on the expert prior, elicited based on expert advice andavailable PE estimates fromprevious observational

studies (Jacobi et al. 2021). For comparison purposes, we also present the posterior estimates computed based

on the non-informative prior. This prior will serve as the proxy prior corresponding to the frequentist estimate

in some of the following analysis. As a technical note, the expert advice only provides estimates for the location

parameters, but not the precision parameters. The precision parameters are solved by matching the coefficient

of variations of the frequentist estimates at a particular ratio, and the ratio is set such that 50 % confidence is

placed on the expert prior and 50 % of confidence is placed on the data. For the non-informative prior, the ratio

is set such that 90 % confidence is placed on the data and 10 % confidence is placed on the expert prior. The

details are provided in Appendix A.2, and the full table of the prior parameters and the posterior estimates are

given in Appendix A.4.

3.2.1 Local Prior Parameter Dependence of Elasticity Estimates

We begin the sensitivity analysis locally at the expert prior by evaluating at the prior the Jacobian matrix of the

posterior price elasticities with respect to the prior parameters. The partial derivatives in the Jacobian matrix

provides valuable information about how the posterior output would respond to a small change in the prior
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Figure 5: Sensitivity analysis with manifolds. The choice of priors includes the expert prior, the frequentist’s “prior”, and the

non-informative prior. ROI stands for region of interest.

Figure 6: Illustration of the two strategies going beyond

local assessments of prior parameters. The line connecting

the two priors represents the prior “spectrum” which is the

path connecting two set of prior parameters in the prior

parameter space𝚯. The grey areas are the high sensitivity

regions discovered by the use of the Jacobian of the

posterior estimates, depicted by the arrows. Manifolds are

estimated over the spectrum and the high sensitivity

regions.

input parameters. This helps us identify the most influential prior input parameter, as well as the most sensitive

posterior price elasticity.

For computational efficiency and precision, the Jacobian matrix is computed based on the Gibbs IPA

approach introduced in Jacobi, Zhu, and Joshi (2022) using automatic differentiation (AD) (Kwok, Zhu, and Jacobi

2020, 2022) that enables us to obtain unbiased derivative estimates alongside the MCMC estimation. The results

are presented in Figure 8. The matrix entries are the sensitivities that represent howmuch the price and expen-

diture elasticities would respond to an instantaneous change in the prior specification. Each row reflects the

partial derivative of a posterior elasticity estimate with respect to the prior mean or variance demand parame-

ters, i.e. gradient information about the sensitivity manifold of a specific elasticity at a specific hyperparameters

set. The dots represent non-zero partial derivatives of a particular elasticity with respect to a particular input

with the magnitude indicated by size and colour.

We discuss two key findings from the results. Firstly, not all prior parameters matter, and not all elastic-

ity estimates are locally sensitive to changes in the prior parameters, as we observe from the sparseness of

the Jacobian matrix. For the Jacobian matrix with respect to the prior mean of the prior parameters, the large

sensitivities are observed only in the partial derivatives of 𝜖12 with respect to 𝛾 12, 𝜖14 with respect to 𝛽1, 𝜂1 with

respect to 𝛽1 and 𝜂3 with respect to 𝛽3. For each of them, a ceteris paribus small unit variation in the input would

change the posterior mean of the price elasticity by ≥1.51 units, for instance from 𝜖12 = 0.091 to 𝜖12 = 0.106
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Figure 7: Bayesian estimates using the expert prior and Bayesian estimates using the non-informative prior and frequentist estimates of

the price and expenditure elasticities.

approximately given a 0.01 change in 𝛾 12. Next, we can identify the most influential input parameter by finding

which column of the Jacobian matrix has the largest column absolute sum (i.e. the column sum of the absolute

values of the entries), as the sum aggregates the changes in all the price elasticities as the prior parameter of

interest varies. The three most influential location parameters are the prior mean of 𝛾 12, 𝛽1 and 𝛽3, and the

three most influential precision parameters are the prior variance of 𝛾24, 𝛾34, and 𝛾44. Similarly, the row of the

Jacobian matrix with the largest row absolute sum shows which price elasticity is the most sensitive. The three

most sensitive price elasticities with respect to prior means are 𝜖12 𝜖14 and 𝜂1, and the three most sensitive price

elasticities with respect to the prior variance are 𝜖24, 𝜖34, and 𝜖44.

Secondly, the Jacobianmatrix reveals interesting patterns in the input and output parameters. For the prior

mean of the input parameters, we know from equation (7) 𝛽 i, i = 1, 2, 3, 4 contribute to the expenditure elastic-

ity, but only from the Jacobianmatrixwe find out 𝛼i, i = 1, 2, 3, 4 alsomatter, although not thatmuch. Regarding

the price effect, while it is expected to see 𝛾 12 affects 𝜖12 and likewise 𝛾22 affects 𝜖22, it is not known apriori that

𝛾 11 and 𝛾 13 have little local effect on any of the price elasticities. The Jacobian matrix also shows non-trivial

interplay between the price effect and the price elasticity, as we see that 𝛾24 not only affects 𝜖24, but also 𝜖22,

𝜖44 in the opposite way, which can be confirmed by examining the reverse effect, i.e. the effect of 𝛾22 on 𝜖24.

Regarding the expenditure effects, 𝛽1 affects 𝜖12, 𝜖13, 𝜖14, 𝜂1 as expected, but 𝛽4 shows little effect on any of the

elasticities, while 𝛽3 shows effect on a wide range of elasticities. For the prior variance, we observe sensitivities

are concentrated on the price effects 𝛾24, 𝛾33, 𝛾34, 𝛾44. Overall, the Jacobian matrix offers a thorough summary

of the relationships between the input and output parameters, along with helpful empirical insights that theory

alone may not provide.
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Figure 8: Jacobian matrix for price and expenditure elasticities with 50 % confidence on expert priors. The left graphs show the

sensitivity with respect to the prior means; the positive part is capped at 1.51 to preserve the symmetry of the colour scale. The right

graphs show the sensitivity with respect to the log of the prior variance; the positive part is capped at 0.13.

3.2.2 Assessing Impacts of Prior Parameters with Scenario Spectrum

It is not uncommon in empirical studies to have more than one (expert) opinion or views, and it is instructive to

understand how two opinions differ and how a decision may change as we switch from one expert opinion to

another. As (expert) opinions are encoded via the prior specifications, it is possible to compare two (expert) opin-

ions by comparing two prior specifications. To that end, we propose to construct a manifold over the scenario

spectrum. A scenario spectrum is any path connecting two prior specifications in the prior parameter space that

allows one to continuously vary from one prior specification to another.

The scenario spectrum is built around the observation that for any two sets of hyperparameters, it is pos-

sible to form a valid convex set of hyperparameters by linearly interpolating between them. This is based on

the fact that both positivity of real numbers and positive semi-definiteness of real matrices are closed under the

convex transform (e.g. linearly interpolating two covariancematrices gives a covariancematrix), so the interpo-

lated hyperparameter would still be valid. These properties also generalise to multiple sets of hyperparameters.

Mathematically, given some hyperparameters labelled by𝜽1,𝜽2,… ,𝜽m, a scenario spectrum can be constructed

as the convex set

 =
{
𝜽 ∈ Rp:𝜽 = 𝑤1𝜽1 + · · · +𝑤m𝜽m,

m∑
i=1
𝑤i = 1,𝑤i ≥ 0, i = 1,… ,m

}
.

When {𝑤i, i = 1, 2,… ,m} take value from the standard basis, i.e. all zeros except one entry with value 1, the

scenario spectrum collapses back to the conventional scenario analysis. Hence, the scenario spectrum can be

viewed as an extension of the scenario (and perturbation) analysis, which compares posterior inference across

a few discrete points in the prior parameter space by rerunning the MCMC chains (An and Schorfheide 2007;

Chib and Ergashev 2009; Roos et al. 2015). As the scenario spectrum fills in the gaps of the scenario analysis, it

can be used to identify the points in the hyperparameter space where a policy decision is reversed, as well as

the inconsistencies between the various prior specifications.

Taking the convex set is one way to build the scenario spectrum, but in our case, there is no need to do so

because the way the expert prior is constructed naturally produces a scenario spectrum – we could simply vary

the confidence in the expert prior. Assigning low and high confidence to expert location parameters is a useful
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strategy for generating two priors that present opposite ends of the scenario spectrum, and then varying the

confidence in-between yields the entire spectrum.

In Figures 9 and 10, we show the manifold over the confidence in the expert prior information, ranging

from 10 % (little confidence) to 90 % (high confidence). Note that the 50 % point is the expert prior used in our

baseline analysis. It is observed that the non-informative prior recovers the frequentist estimates, whereas the

posterior estimate reduces to the prior specification when high confidence is placed in the expert prior.

Interpreting the frequentist estimate as the estimates representing the data,we observe agreement between

the data and the expert prior in the expenditure elasticities and own-price elasticities of food groups 1–4 with

Figure 9: Manifold of own-price and expenditure elasticities over the scenario spectrum varying the confidence on the expert prior.
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Figure 10: Manifold of cross-price elasticities over the scenario spectrum varying the confidence on the expert prior.

varying magnitudes of effects. For the expenditure elasticities of food groups 1, 2 and 4 and own-price elasticity

of food group 1, large changes are observed near the end of the spectrum where extremely high confidence is

placed in the expert prior information, indicating that the expert prior specification is excessive relative to the

data. For the cross-price elasticities, denoting the cross-price elasticity of food group iwith respect to food group

j by 𝜖ij, we observe minor disagreement between the data and the expert prior specification in 𝜖13, 𝜖21 and 𝜖31
and major disagreement, i.e. the elasticities at two ends lie on different sides of the reference line with large

gaps in-between, in 𝜖12, 𝜖14, 𝜖23, 𝜖24, 𝜖32, 𝜖34, 𝜖41, 𝜖42 and 𝜖43.

We observe the turning point where the cross-price elasticities cross the reference line at around 0.5–0.6

(see for example 𝜖12, 𝜖41 and 𝜖34). Note that 0.6 (or 60 %) confidence on the expert and 0.4 (or 40 %) confidence on

the data indicate that the variance of the expert prior parameter is approximately two-thirds the variance of the
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frequentist estimates. If the experts were confident about the location parameters and imposed tight variances

on them, then the Bayesian estimates would reflect this and lean towards the expert specifications.

In practice, it is recommended to build the manifold over the confidence range of 0.1–0.5, where 0.5 corre-

sponds to equal confidence on the expert prior and the data, since a confidence mix of 90 % on expert and 10 %

on data is implausible. We did this to emphasise the contrast between the prior and the data and to reinforce a

point seen in many of the classic examples in Bayesian analysis, namely that the posterior estimates interpolate

between the frequentist estimates and the expert prior information. In simple cases where analytic formulae

are available, interpolation can be linear, as seen in Example 1 of Section 2.4, whereas in complex cases where

MCMC inference is required, interpolation can be nonlinear, as shown by the presented results.

3.2.3 Assessing Impacts of Prior Parameters with High Sensitivity Region

Wenow turn to studying how rapidly the posterior statistics change across the region of interest, which provides

a mathematical response to the question “is your analysis robust?”. We begin by discussing how to identify a

high sensitivity region, which serves as a good starting point when the region of interest is unknown at the

outset, and then we measure and visualise the sensitivity using the posterior sensitivity manifold built on the

region.

To identify the high sensitivity region, we start with an expert prior and perform the AD-augmented MCMC

inference to get the Jacobian matrix. Using the Jacobian, we move the expert prior point towards the steepest

ascent in the prior parameter space and re-evaluate; iterating this step N0 times yields an ascent trajectory.

Then we restart from the beginning, but this time we move the expert prior point towards the direction of

the steepest descent and obtain the descent trajectory. At the original expert prior, the trajectory of descent

meets the trajectory of ascent. Overall, we explored the prior parameter space by taking the steepest paths and

attempting to cause the greatest change in the posterior output (i.e. the price elasticities). The high sensitivity

region is defined as the minimum bounding box of the full trajectory. It contains the starting expert prior, all the

evaluated points on the full trajectory and all scenario spectrum that are built as the convex set of the evaluated

points.

The comprehensiveness of the high sensitivity region comes at a cost that it is computationally more expen-

sive to build a manifold on the high sensitivity region, due to the curse of dimensionality. While active learning

can help to alleviate the problem, how well it works is determined by the complexity of the posterior sensitivity

manifold; the simpler the manifold, the better. In practice, it is advised to use the Jacobian matrices computed

along the trajectory to inform what input and output parameters to investigate. This builds on the sparseness

of the Jacobian matrices and reduces the high dimensions down to only the relevant ones, keeping the analysis

tractable.

We perform our analysis for the 20 expected values of the price elasticities and four expenditure elasticities.

The gradient exploration is based on N0 = 5 number of steps.8 We average over the 2N0 + 1 = 11 Jacobian

matrices to produce the aggregate Jacobian, shown in Figure 11.We can see that as in the case of the local analysis,

the aggregate Jacobian helps us identify the most influential inputs and most sensitive outputs.

Figure 11 indicates that the most influential inputs regarding the prior mean are associated with

𝛾 12, 𝛾22, 𝛾24, 𝛽1 and 𝛽3, whereas the most influential inputs associated with the prior covariance matrix of the

location parameters are Var(𝛼4), Var(𝛾24), Var(𝛾34), Var(𝛾44) and Var(𝛽1). On the other hand, the most sensitive

elasticities are 𝜖12, 𝜖14, 𝜖34, 𝜂1 and 𝜂3. For instance, a ceteris paribus 0.1 change in the prior mean of 𝛽1 would

cause a change in 𝜖14 approximately equal to −0.2.
As an auxiliary information, it is useful to report the max norms of the Jacobian matrices, which

corresponds to the change of the most sensitive entry with respect to its most influential

input. This provides a one-number summary for each of the Jacobian matrices. In the order of

8 The number of steps may be based on domain constraints over the hyperparameters region given by theory considerations. In

our case, five steps were enough to have a sensible hyperparameter region.
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Figure 11: The aggregate Jacobian of the price elasticities, averaged over the Jacobian matrices from the gradient steps.

[−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5] steps, the max norms of the Jacobian matrices along the trajectory are

[11.99, 11.99, 11.97, 11.99, 11.96, 4.05, 7.71, 6.57, 5.62, 6.85, 5.79]. Observe the asymmetry of the max norms along

the descent and ascent trajectories. It indicates that price and expenditure elasticities respond differently to

increment and decrement in the prior parameters.

Once the gradient trajectory is traced out, we identify the minimum bounding box of the trajectory as the

region of high sensitivity. Table 1 reports the prior input dimensions and the associated bounds of the most

influential prior demand parameters according to Figure 11. Using Equation 3.1.1 where 𝑤̄1 = 0.23, we see that

the bounding box of the prior mean of 𝛽1 implies a prior expenditure elasticity of Fruits & Vegetables from 0.98

to 1.17, that is, from normal to luxury goods, this translates into posteriormean between 0.82 and 1.00. Regarding

the bounding box of variance hyperparameters, we have that the Var(𝛾44) implies a posterior mean of the own-

price elasticity of Non-Alcoholic Drinks between −0.94 and −0.92. Our approach improves upon the ad hoc

scenario analysis in that it provides explicit criteria to select the inputs along with the ranges for investigation.

In addition, from Table 1, we observe that Var(𝛼4) is one of the most influential inputs, but since it does not

Table 1: Influential prior parameter dimensions from 5-step gradient procedure around the expert prior. Reported are the upper and

lower bounds of the prior mean and variance settings. Variance hyperparameters are in log-scale. Results given for most influential prior

inputs, i.e. yielding largest change in posterior elasticity inference in the most sensitive elasticity outputs.

Range of influential location and variance input dimensions

Location settings (log) Variance settings

Coeff. Mean LB Expert Mean UB Coeff. Var LB Var Var UB

𝛾 −0.099 −0.032 0.035 𝛼 −8.599 −8.317 −8.023
𝛾 0.000 0.071 0.142 𝛾 −9.920 −9.881 −9.842
𝛾 0.083 0.124 0.165 𝛾 −9.165 −9.101 −9.037
𝛽 −0.005 0.017 0.039 𝛾 −9.108 −9.078 −9.049
𝛽 −0.288 −0.021 0.246 𝛽 −12.068 −12.047 −12.014
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appear explicitly in the elasticity equations, it is unlikely to be considered in a scenario analysis. Our approach,

in contrast, did not overlook it.

Next, we will construct the manifold over the region of high sensitivity. Note that the total of 36 prior mean

and variance parameters makes estimating the manifold challenging. Because, in order to specify a bounding

box, two endpoints per dimension would be required, and there would be approximately 236 ≈ 68 billion ver-

tices. But aswe saw in the analysis of the aggregate Jacobianmatrix, only a few inputs and outputs are significant,

so wewill focus on these parameters. They are the priormean of 𝛾 12, 𝛾22, 𝛾24, 𝛽1, 𝛽3 for themost influential input

and the price elasticities of 𝜖12, 𝜖14, 𝜖34, 𝜂1, 𝜂3 for the most sensitive output. The remaining prior parameters are

set at the expert prior levels. Once the five dimensional manifold embedded in the 36 dimensional space is esti-

mated, we compute the maximum variation range using Equation (2) for each of the sensitive elasticities. The

results are presented in Table 2.These numerical measures indicates the robustness of the analysis. We observe

that the cross-price elasticity 𝜖12, 𝜖14 are stable despite the change of sign in the 𝜖12. The cross-price elasticity 𝜖34
and the expenditure elasticities 𝜂1 and 𝜂3 have large variations, with 𝜖34 switching from complementary effect

to substitute effect and 𝜂3 varying from small increase of demand to large increase of demand in response to an

increase in expenditure.

Finally, we present visualisations of the sensitivity manifold to highlight its geometric aspects. A limitation

of the ad hoc scenario analysis, as well as themaximum variation range sensitivity measure, is that they cannot

uncover relationships between variables at a more granular level. We saw earlier that scenario spectrum can

help us discover the inflection points where decisions are overturned, we will show how three-dimensional

subspace plots can show the interplay between the posterior output and the different prior input parameters.

We generate the plots based on themost influential input parameters andmost sensitive output shown inTables 1

and 2, and Figure 11. In particular, we perform the sensitivity analysis for the posterior mean of the cross price

elasticity between Starchy Foods and non-alcoholic drinks (𝔼[𝜖34]), the cross price elasticity between Fruits &

Vegetables and non-alcoholic drinks (𝔼[𝜖14]), and the expenditure elasticity of the Starchy Foods (𝔼[𝜂3]). The
result is presented in Figure 12. Variables that are not shown in the plots are kept fixed at the default (expert)

priors.

The three plots in Figure 12 showdifferent aspects of the posterior inference. Starting on the right,we can see

that the expenditure elasticity of food group 3 remains positive even when the prior expenditure effect changes

sign from −0.2 to 0.2, and the 0.4 variation in the expenditure effect translates into the magnified 1.4 variation
in the elasticity. The magnitude of the elasticity is determined largely by the prior effect, as we observe a clear

linear relationship between the prior effect and the posterior elasticity. The changes in the tight variance only

affect the elasticity slightly. In the middle plot of the cross-price elasticity of the first and fourth food groups, we

observed a peculiar non-negligible effect from prior mean of 𝛾 12, a term that does not appear in Equation (7).

This shows that while 𝛾 12 does not theoretically relate to 𝜖14, its prior specification has a competing effect with

𝛾 14 during estimation. At low variance, the variation in the prior mean maps linearly to the variation of the

elasticity, and as the variance increases, the prior mean loses its effect. In contrast to the right plot, the size of

the prior variance determines where the elasticity will be given a fixed prior mean.

Table 2: Bounds (min and max) of sensitivity manifolds of top five most sensitive price and expenditure elasticities over the

5-dimensional high sensitivity region

Summary of high sensitivity region manifolds

Price elasticities Min Max Variation

𝜖 −0.02 0.06 0.09

𝜖 −0.03 −0.00 0.03

𝜖 −0.19 0.37 0.56

𝜂 0.71 1.19 0.48

𝜂 0.18 1.64 1.47
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Figure 12: Cross-price elasticity surface of food group 3 and 4 (left), cross-price elasticity surface of food group 1 and 4 (middle), and

expenditure elasticity of food group 3 (right). Variances are displayed in log-scale.

In the left plot, we show the cross-price elasticity of the third and fourth food groups against two prior vari-

ances in log-scale. The upper bounds of the variances are expanded, in part to enhance the visualisation and

in part because the ranges were so narrow that there was ample computational power remaining. We observe

non-linear relationship between each of the prior variance and the elasticity, with 𝛾44 having a larger effect than

𝛾34. If we were to slice the surface with a horizontal plane, we would find the level set, i.e. the set in which elas-

ticity has a constant value, which reveals the relationship between the two variances. Specifically, it describes

how increased confidence in one variable and decreased confidence in another can cancel each other out and

leave the results unchanged. The interdependence demonstrates that the specification of prior variances is a

complex endeavour. Finally, we observe as both prior variances increase, the elasticity surface becomes flat,

and the value stabilises.

As a closing remark, we saw that the interaction between the prior mean and the prior variance specifica-

tion can be subtle. When the prior mean specification differs greatly from the sample information and a tight

variance is imposed, the posterior inference can be highly sensitive. Other factors, however, can come into play.

For example, when the likelihood function becomes flat, as in the case of the normal density with a very high

variance, or when the prior distribution is concentrated on the likelihood’s tails, the sensitivity can be further

magnified (Ramírez-Hassan and Pericchi 2018).

4 Conclusions

The introduced concept of sensitivity manifolds over hyperparameter regions and the computational approach

to estimate manifold-based sensitivity measures for MCMC inference links popular pointwise and local perspec-

tives. Importantly, by doing so it extends assessment of prior parameter dependence beyond their limited scope

to answer questions regarding the prior parameter sensitivity (robustness) that arise inmany practical problems

of Bayesian MCMC inference. Firstly, researchers typically consider values within a feasible or sensible region

of the hyperparameter(s), often informed by previous studies or theoretical considerations, rather than a set

of possible discrete points in the hyperparameter space. Secondly, researchers are often interested not just in

whether an analysis is robust to misspecification – in fact, it is well understood that assumptions matter a great

deal in practical problems, and they are not always robust – but also how the analysis would change when the

prior specification changes.9 Further, understanding how the posterior analysis depends on the prior parame-

ters helps researchers set sensible prior parameters which remains a challenging task due to well-known issues

such as model complexity, cost of prior elicitation, flat priors and identification issues.

The approach acknowledges that reliable specification of prior information remains difficult and that

researchers often consider a range of potentially reasonable prior parameter settings for each parameter.

9 In Bayesian analysis, the terms “robust” and “sensitive” are technically not antonyms. Robustness is with respect to data contam-

ination/model misspecification, while sensitivity is with respect to the prior parameters.
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We hope that the proposed methods contribute to the appeal of Bayesian inference for applied analysis as a

well-designed prior robustness analysis can further increase transparency and confidence of policy makers in

Bayesian inference. The methods also offer a tool to better understand the impact of common or default pri-

ors widely used in many applications, which is important as the extent to which prior assumptions influence

posterior inference will vary across applications and data sets.
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Appendix A

A.1 Gaussian Processes

AGaussian process (GP) is a collection of randomvariables, any finite ofwhich have a joint Gaussian distribution

(Rasmussen and Williams 2006). It is specified as


(
m(𝜽), k(𝜽,𝜽′)

)
,

where m(𝜽):Rp → R is the mean function and k(𝜽,𝜽′):Rp × Rp → R is the kernel/covariance function and

𝜽 and 𝜽′ are two input values. It can handle a wide range of data generating processes, adapt to data, capture

uncertainty well and it is easy to implement.

Given some function values s (n × 1) evaluated at the coordinates 𝚯n (n × p), the zero mean function

and a kernel function k𝝍 (⋅, ⋅), the estimation of the kernel parameters 𝝍 proceeds as follows. Under the model

assumption, we have

s ∼ N(0,K𝝍 (𝚯n,𝚯n)),

where K𝜓 (𝚯n,𝚯n) is the n × nmatrix with the (i, j) entry= k𝝍 (𝜽i∗,𝜽 j∗), 𝜽i∗ denotes the i-th row of the matrix

𝚯n. Writing K𝝍 (𝚯n,𝚯n) as K𝝍 and denoting the determinant function by | ⋅ |, the log-likelihood is given by
l(𝝍 ) ∝ − 1

2

(
log |K𝝍 |− s⊤K−1

𝝍
s
)
.

The kernel parameters 𝝍 can be found using Maximum Likelihood Estimation (MLE). Note that the computa-

tional complexity is O(n3) due to the inversion of matrix needed to evaluate the likelihood. But this will not pose

a problem as n is small in our application. If needed, approximate methods are also available to reduce the com-

putational complexity from O(n3) to O(n); interested readers are referred to Gardner et al. (2018), Pleiss et al.

(2018) and Wilson and Nickisch (2015).

Given new evaluation points𝚯∗
m
with function values s∗, the joint distribution of sn and s

∗
m
is(

sn

s∗
m

)
∼ N

(
0,

[
K𝝍 (𝚯n,𝚯n) K𝝍

(
𝚯n,𝚯∗

m

)
K𝝍

(
𝚯∗

m
,𝚯n

)
K𝝍

(
𝚯∗

m
,𝚯∗

m

)
])

. (8)

The conditional distribution is given by

s∗
m
|sn,𝚯n,𝚯∗

m
∼ N

(
K21K

−1
11
sn,K22 − K21K

−1
11
K12

)
,

where K ij is the (i, j)-th block entry in (8), and the conditional mean is used as the prediction.

https://doi.org/10.13039/501100000923
https://doi.org/10.13039/501100000923
https://doi.org/10.13039/501100000923
https://doi.org/10.13039/501100000923
https://doi.org/10.13039/501100001505
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To add derivative information for improving precision in the inferential process, the point of departure is

that the derivative of a GP is also a GP, and we have

⎛⎜⎜⎜⎝
sn

∇sn

s∗
m

⎞⎟⎟⎟⎠
= N

(
0,

[
K11(𝚯n,𝚯n) K12

(
𝚯n,𝚯∗

m

)
K21

(
𝚯∗

m
,𝚯n

)
K22

(
𝚯∗

m
,𝚯∗

m

)
])

, (9)

where

K11(𝚯n,𝚯n) = Cov

((
sn

∇sn

)
,

(
sn

∇sn

))
=
[
Cov(sn, sn) Cov(sn,∇sn)

Cov(∇sn, sn) Cov(∇sn,∇sn)

]
=
[
A B

C D

]
,

A = K𝜓 (𝚯n,𝚯n)+ 𝚺n,

[Bi∗] =
[
𝜕k𝜓 (𝜽i∗,𝜽1∗)

𝜕𝜽1∗

𝜕k𝜓 (𝜽i∗,𝜽2∗)

𝜕𝜽2∗
… 𝜕k𝜓 (𝜽i∗,𝜽a∗)

𝜕𝜽a∗

]
, i = 1, 2,… , n, a = n,

[C∗ j] =
[
𝜕k𝜓 (𝜽1∗,𝜽 j∗)

𝜕𝜽1∗

𝜕k𝜓 (𝜽2∗,𝜽 j∗)

𝜕𝜽2∗
…
𝜕k𝜓 (𝜽a∗,𝜽 j∗)

𝜕𝜽a∗

]⊤
, j = 1, 2,… , n, a = n,

[Dblock i,block j] =
𝜕2k𝜓 (𝜽i∗,𝜽 j∗)

𝜕𝜽i∗𝜕𝜽 j∗
, i = 1, 2,… , n, j = 1, 2,… , n,

K12

(
𝚯n,𝚯∗

m

)
= Cov

((
sn

∇sn

)
, s∗

m

)
=
[
K𝜓

(
𝚯n,𝚯∗

m

)
Cov

(
∇sn, s

∗
m

)
]
,

K21

(
𝚯∗

m
,𝚯n

)
= Cov

(
s∗
m
,

(
sn

∇sn

))
=
[
K𝜓

(
𝚯∗

m
,𝚯n

)
Cov

(
s∗
m
,∇sn

)]
,

K22

(
𝚯∗

m
,𝚯∗

m

)
= Cov

(
s∗
m
, s∗

m

)
= K𝜓

(
𝚯∗

m
,𝚯∗

m

)
,

Cov
(
∇sn, s

∗
m

)
has the same expression as Cov(∇sn, sn) except the corresponding𝚯n is replaced by𝚯∗

m
(in which

case a is equal to m rather than n), and the same goes for Cov
(
s∗
m
,∇sn

)
. 𝚺n is the diagonal matrix where the

diagonal entries are the squared standard errors of sn.

A.2 Real Data Analysis: MCMC Inference

Given the standard assumption, 𝝐(h) ∼ N5(0,𝚺), the resulting LAIDS model can then be rewritten into the

Seemingly Unrelated Regression (SUR) model so that the likelihood, without loss of generality, is given by

f (y|𝝓,𝚺) = H∏
h=1

 (𝒘(h)|X (h)𝝓,𝚺).

where X (h) =
[
I4 (I4⊗ [log(p(h)

1
∕p(h)

5
)… log(p(h)

4
∕p(h)

5
)]) ⋅ D4 logXR(h) ⋅ I4

]
, 𝝓 = [𝜶⊤, 𝜸⊤,𝜷⊤]⊤ is the vector of

demand parameters, with 𝜶 and 𝜷 vectors of dimension 4, 𝜸 = vech(Γ⊤) of dimension 10, D4 is the duplication

matrix and𝒘(h) is the vector of shares for household h.

Table 7 shows the default elicited prior hyperparameters for the location parameters in the LAIDS model.

That is, our point of departure for 𝜽0 are the parameters in this table, and R0 = I4 and 𝜌0 = 4, which we set

in order to be non-informative regarding the hyperparameters of the covariance matrix.

The prior variances of the demand parameters are specified in terms of a prior weight ratio r:

V𝜙,ii =
⎛⎜⎜⎝

𝜇𝜙,i ×
(
1−ri
ri

)
(coef esti) ∕ (se esti)

⎞⎟⎟⎠
2

,
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where “coef esti” and “se esti” are the frequentist estimates of the coefficients and their standard errors. Observe

that ri =
(𝜇𝜙,i∕V𝜙,ii)2

(𝜇𝜙,i∕V𝜙,ii)2+(coef est∕se est)2
which is the proportion of the uncertainty standardized signal from prior infor-

mation to total information. We consider that this is a better elicitation strategy rather than directly eliciting

the variance due to people being poor both at interpreting its meaning and establishing numerical values to it

(Garthwaite, Kadane, and O’Hagan 2005). Observe that higher values of ri implies higher information coming

from the prior.

Without loss of generality, 𝛼i, i = 1,… , 4, 𝛾 ij, i ≤ j, j = 1,… , 4 and 𝛽 i, i = 1,… , 4 are chosen as the free

parameters.

The data is modelled by the SUR model 𝒘(h) ∼ N
(
X (h)𝝓,𝚺

)
with prior distribution placed on the

𝝓 ∼ N(𝝁0,V0) and 𝚺 ∼ IW
(
𝜌0,R

−1
0

)
(or equivalently 𝚺−1 ∼ W(𝜌0,R0)).

1. Initialise 𝚺0, set g = 1.

2. Draw 𝝓(g) from 𝜋
(
𝝓(g)|𝚺(g−1)

)
∼ N

(
b(g),B(g)

)
, where

B(g) =
[

H∑
h=1

X (h)⊤𝚺(g−1)−1X (h) + V−1
0

]−1

b(g) = B(g)

[
H∑
h=1

X (h)⊤𝚺(g−1)−1𝒘(h) + V−1
0
𝝁0

]

3. Draw 𝚺−1
(g)

from 𝜋
(
𝚺(g)|𝝓(g)

)
∼ W

(
𝜌1,R(g)

)
, where 𝜌1 = 𝜌0 + H, H is the number of households, and

R(g) =
[
R−1
0
+

H∑
h=1

(
𝒘(h) − X (h)𝝓(g)

)(
𝒘(h) − X (h)𝝓(g)

)⊤]−1

4. Set g = g + 1. If the maximum number of iteration is not reached, go back to 2.

A.3 Supplementary Analysis

A.3.1 Gaussian Process versus Neural Network

It is instructive to compare the performance of Gaussian Process with artificial Neural Network (NN) on sparse

grid points.

We considered the Bayesian linear regression model, same as Example 2 in Section 2.4 but without

heteroskedasticity, y ∼ N(X𝜷, 𝜎2I), 𝜷|𝜎2 ∼ N
(
𝜷0, 𝜎

2B0
)
and 𝜎2 ∼ IG(𝛼0∕2, 𝛿0∕2). We used n = 50 with

𝛽0 = (−1.21, 0.28, 1.08,−2.35, 0.43), B0 is a diagonal matrix with entries 1.19, 1.04, 0.78, 1.42, 0.79 on the diagonal,
𝛼0 = 30, 𝛿0 = 3.

The NN is fitted using the nnet package in R. We considered fully connected networks with 1 hidden layer,

of size from 2 to 10, each with 100 random initialisations. We pick the best model for NN using the testing dataset

to favour it more.

Comparing the predictions with the ground truth, we get a mean squared error of 4.42 × 10−5 from GP and

1.346958 fromNN. The drastic difference here is due to that NN did not learn properly in some of the dimensions.

The mean squared errors by dimensions are provided in Table 3.

NN failed to learn for dimensions 1 and 4, while for dimensions 2 and 5, it did outperform GP. The result

confirms a well-accepted empirical observation that GP generally does better than NN in data-poor regime and

the other way around in data-rich regime.

Table 3: Dimension-by-dimension comparison of GP and NN on a fixed grid. Numbers are mean squared errors.

k-th dimension 1 2 3 4 5

GP 5.40 × 10− 8.48 × 10− 4.07 × 10− 2.29 × 10− 1.87 × 10−

NN 1.36 0.64 × 10− 0.012 5.36 0.47 × 10−
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A.3.2 Gaussian Process with Active Learning in Higher Dimension

It is helpful to investigate if Gaussian Process with active learning can handle larger hyperparameter

dimensions.

We consider the same linear regression model with conditional prior distributions as the last

section, i.e. y ∼ N(X𝜷, 𝜎2I), 𝜷|𝜎2 ∼ N
(
𝜷0, 𝜎

2B0
)
and 𝜎2 ∼ IG(𝛼0∕2, 𝛿0∕2). The conditionals are given by

𝜎2|y,X ∼ IG(𝛼∗∕2, 𝛿∗∕2), 𝛼∗ = 𝛼0 + n and 𝛿∗ = 𝛿0 + y′y+ 𝜷′
0
B−1
0
𝜷0 − 𝜷∗′

B−1𝜷∗, 𝜷∗ = B
(
B−1
0
𝜷0 + X′X𝜷̂

)
,

B =
(
B−1
0
+ X′X

)−1
, and 𝜷̂ is the MLE. 𝜷|y ∼ tk(𝛼

∗, 𝛽∗,H), and H = 𝛿
∗∕𝛼∗B.

We conducted the simulationwith increasing number of dimensions (p = 5, 10, 20, 40) and report themean

squared error (MSE) comparing with the analytical formula and the computing time. The experiment was con-

ducted using eight cores with 40 GB RAM on an HPC cluster. The result is provided in Table 4.The result supports

that our method can handle larger hyperparameters dimension with reasonable precision and computing time.

A.3.3 Gaussian Process with and without Derivatives

It is informative to explore the trade off between the use of derivatives and simply increasing the number of

grid points without derivatives.

Considering the trade-off between derivatives and grid points in terms of finite-differencing, in a

p-dimensional space, p + 1 evaluations are required to find all the partial derivatives at a point using finite

differencing. So the information contained in a derivative may be considered to correspond to p grid points in a

small neighbourhood. The correspondence is exact in the simple case when the sensitivity manifold is a hyper-

plane. In general, the “shape” of the sensitivity manifold determines the trade-off between derivatives and grid

points, and it should be studied on a case-by-case basis.

We conducted an experiment for when p = 10, 20, 30. In each setting, we first fit a GP with derivatives and

then a GP (without derivatives) with increasing number of grid size and observe when its accuracy becomes

as good as the GP with derivatives, or if it fails to reach the accuracy within the computing budget of GP with

derivatives. The result is summarised in Table 5.

For p = 10, GP (without derivative) caught up with GP with derivatives (100 grid points) in accuracy when

4000 grid points are used. The MSE of GP is about half of the MSE of GP with derivative, but the time taken to

reach that accuracy is three to four times more.

For p = 20, GP did not reach the accuracy of GP with derivative in all the cases considered. With 4000

evaluation points, GP reached a MSE that was about three times the MSE of GP with derivatives, and it also took

more time to complete.

For p = 30, like the first case, it took 4000 points for GP to reach the performance of GP with derivatives,

with half the MSE and about three times the computing budget.

The results show that GP with derivative is generally more accurate given the same computing budget.

However, if high precision is not required, then evaluating GP with more points (but not many more) may be

more efficient. Since computing the derivatives incur some overhead cost, GP with derivative is more efficient

only when the dimension is higher or a higher precision is sought.

Table 4: Accuracy and computing time of the sensitivity manifolds.

#Dimensions p = 5 p = 10 p = 20 p = 40

MSE 0.15 × 10− 0.22 × 10− 1.40 × 10− 4.02 × 10−

Time 46.00 s 331.98 s 1537.57 s 6043.86 s
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Table 5: Trade-off between the use of derivatives and increasing the number of grid points without derivatives for p= 10, 20, 30. Mean

squared errors (MSE) are computed by comparing with the analytical formula.

#Evaluation points 100 500 1000 2000 4000 100+ AD

p= 10

MSE (×10−) 1345.84 76.54 21.21 5.75 1.7 3.37

Time 6.44 s 49.95 s 148.58 s 453.16 s 1412.16 s 373.52 s

p= 20

MSE (×10−) 3295.89 630.06 196.41 48.5 15.05 5.13

Time 12.03 s 107.56 s 329.21 s 919.13 s 3457.73 s 1051.83 s

p= 30

MSE (×10−) 5169.67 1861.54 743.16 225.23 72.36 186.62

Time 22.46 s 209.96 s 619.68 s 2359.28 s 7372.63 s 2730.37 s

A.4 Supplementary Tables and Figures

See Tables 6 and 7.

Table 6: Prior parameters of the expert prior and the non-informative prior.

Expert prior Zero prior

Prior mean Prior variance (×10−4) Prior mean Prior variance (×10−2)

𝛼 0.25 2.65 0.00 2.14

𝛼 0.25 2.78 0.00 2.25

𝛼 0.25 25.37 0.00 20.55

𝛼 0.25 2.44 0.00 1.98

𝛾 −0.02 16.15 0.00 13.08

𝛾 −0.03 0.13 0.00 0.11

𝛾 0.03 0.86 0.00 0.70

𝛾 0.04 0.54 0.00 0.44

𝛾 0.07 0.88 0.00 0.71

𝛾 −0.11 14.77 0.00 11.96

𝛾 0.12 0.51 0.00 0.41

𝛾 −0.07 1.23 0.00 0.99

𝛾 0.12 1.12 0.00 0.90

𝛾 −0.34 1.14 0.00 0.92

𝛽 0.02 0.06 0.00 0.05

𝛽 0.02 0.60 0.00 0.48

𝛽 −0.02 0.07 0.00 0.05

𝛽 −0.02 11.65 0.00 9.44
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Table 7: Bayesian and frequentist estimates of price and expenditure elasticities.

Bayesian estimates Frequentist estimates

Price elasticities

𝜖 −0.99 −0.99
𝜖 0.02 0.05

𝜖 −0.01 −0.03
𝜖 −0.02 −0.02
𝜖 0.09 0.19

𝜖 −0.88 −0.81
𝜖 −0.02 0.02

𝜖 −0.04 −0.18
𝜖 −0.01 −0.02
𝜖 −0.03 0.06

𝜖 −0.99 −0.9
𝜖 0.00 −0.12
𝜖 −0.02 −0.04
𝜖 −0.03 −0.24
𝜖 0.02 −0.19
𝜖 −0.93 −0.59

Expenditure elasticities

𝜂 0.91 0.84

𝜂 1.00 0.96

𝜂 0.98 1.12

𝜂 1.06 1.01
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