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Abstract: Time-varying parameter (TVP) regression models can involve a huge number of coefficients. Careful

prior elicitation is required to yield sensible posterior and predictive inferences. In addition, the computational

demands ofMarkov ChainMonte Carlo (MCMC)methodsmean their use is limited to the case where the number

of predictors is not too large. In light of these two concerns, this paper proposes a new dynamic shrinkage

prior which reflects the empirical regularity that TVPs are typically sparse (i.e. time variation may occur only

episodically and only for some of the coefficients). A scalable MCMC algorithm is developed which is capable of

handling very high dimensional TVP regressions or TVP Vector Autoregressions. In an exercise using artificial

data we demonstrate the accuracy and computational efficiency of our methods. In an application involving the

term structure of interest rates in the eurozone, we find our dynamic shrinkage prior to effectively pick out

small amounts of parameter change and our methods to forecast well.

Keywords: time-varying parameter regression; dynamic shrinkage prior; global-local shrinkage prior; Bayesian

variable selection; scalable Markov Chain Monte Carlo

JEL Classification: C11; C30; C50; E3; E43

1 Introduction

The increasing availability of large data sets in economics has led to interest in regressions involving large num-

bers of explanatory variables. Given the evidence of instability and parameter change in many macroeconomic

variables, there is also an interest in time-varying parameter (TVP) regressionmodels andmulti-equation exten-

sions such as time-varying parameter Vector Autoregressions (TVP-VARs). This combination of large numbers

of explanatory variables with TVPs can lead to regressions with a huge number of parameters. But such regres-

sions are often sparse, in the sense that most of these parameters are zero. In this context, Bayesian methods

have proved particularly useful since Bayesian priors can be used to find and impose this sparsity, leading to

more accurate inferences and forecasts. A range of priors have been suggested for high-dimensional regres-

sion models (see, among many others, Bhattacharya et al. 2015; Carvalho, Polson, and Scott 2010; Griffin and

Brown 2010; Ishwaran and Rao 2005; Park and Casella 2008). There is also a growing literature which extends

these methods to the TVP case. Examples include Belmonte, Koop, and Korobilis (2014), Kalli and Griffin (2014),
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Chan, Eisenstat, and Strachan (2020), Eisenstat, Chan, and Strachan (2016), Fischer et al. (2023), Hauzenberger

et al. (2022), Kalli and Griffin (2018), Knaus et al. (2021), Kowal, Matteson, and Ruppert (2019), Petrova (2019).

Most of these papers assume particular forms of parameter change (e.g. it is common to assume parameters

evolve according to random walks) and use computationally-demanding Markov Chain Monte Carlo (MCMC)

methods. The former aspect can be problematic (e.g. if parameter change is rare and abrupt, then a model

which assumes all parameters evolve gradually according to random walks is inappropriate). The latter aspect

means these methods are not scalable (i.e. MCMC-based methods cannot handle models with huge numbers of

coefficients).

The contributions of the present paper relate to issues of prior elicitation and computation in TVP regres-

sions. With regards to prior elicitation, we develop novel dynamic shrinkage priors for TVP regressions. These

modify recent approaches to dynamic shrinkage priors in papers such as Kowal, Matteson, and Ruppert (2019).

We work with the static representation of the TVP regression model which breaks the coefficients into two

groups. One group contains constant coefficients (we call these 𝜶). The other, which we call 𝜷 , are TVPs. In

the static representation, the dimension of 𝜷 can be enormous. Our dynamic global-local shrinkage priors are

carefully designed to push unimportant elements in 𝜷 to zero in a time-varying fashion. This is done using a

global shrinkage parameter that varies over time as well as local shrinkage parameters. The global shrinkage

parameter has an interpretation similar to a dynamic factor model with a single factor. This single factor can be

used to find periods of time-variation in coefficients and periods when they are constant. Since the assumption

of a common volatility factor hampers the use of standard stochastic volatility MCMC algorithms based on a

mixture of Gaussians approximation (Kim, Shephard, and Chib 1998), we propose a simple approximation that

works particularly well in high dimensional settings.

With regards to computation, we develop a scalable MCMC algorithm. This algorithm is suitable for cases

where the posterior for 𝜷 , conditional on the other parameters in the model, is Gaussian. This occurs for a wide

range of global-local shrinkage priors including the dynamic shrinkage priors used in this paper. In this case, the

exact MCMC algorithm of Bhattacharya, Chakraborty, and Mallick (2016) is the state of the art.1 However, even it

is too computationally slow to handle the huge number of regressors that appear in the static representation of

the TVP regressionmodel. Recently, Johndrow, Orenstein, andBhattacharya (2017) has proposed an approximate

algorithm based on this exact algorithm which is computationally much more efficient in sparse models and,

thus, is scalable.

In our paper, it is precisely this scalable MCMC algorithm which forms the basis of the algorithm we

use. It involves a thresholding step (described below) which we implement in a different manner than

Johndrow, Orenstein, and Bhattacharya (2017). In particular, as opposed to fixing the threshold to a small num-

ber, we set it adaptively. Since this would typically imply a number of thresholds that match the dimension of 𝜷 ,

we use amethod called Signal Adaptive Variable Selection (SAVS), see Ray and Bhattacharya (2018), to determine

the thresholds in a novel way. SAVS has the advantage of being computationally fast and easy to implement.

Recent papers use SAVS for determining variable relevance (Hahn and Carvalho 2015), portfolio applications

(Puelz, Hahn, and Carvalho 2020) or improving macroeconomic forecasts (Huber Koop, and Onorante 2021). We

solely use SAVS to identify which variables can be safely set to zero in order to construct an approximate pos-

terior distribution for the TVPs. Thus, the use of SAVS in the context of the algorithm of Johndrow, Orenstein,

and Bhattacharya (2017) provides two-fold benefits: computational improvements andmore flexibility due to its

adaptive nature.

We investigate the use of our methods in artificial and real data. The artificial data exercise demonstrates

that our scalable algorithm is a good approximation to exact MCMC and that its computational benefits are

substantial. Our application to the eurozone yield curve shows how our methods can effectively pick out small

amounts of occasional parameter change in some parameters. Furthermore, allowing for such change in the

coefficients improves forecasts.

1 Kastner and Huber (2020), Hauzenberger (2021) and Korobilis (2022), for example, use this exact algorithm in the context of large

VARs to reduce the computational burden of estimating these models.
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The remainder of the paper is organized as follows. The second section defines the TVP regression and

TVP-VARmodels used in this paper. The third section discussesMCMCmethods for the regression coefficients and

introduces our computationally-efficient approximate method. Section 4 develops different dynamic shrinkage

priors and discusses Bayesian estimation. This section also describes a novel method for drawing the volatilities

in the context of a multivariate stochastic volatility process with a common factor. Sections 5 and 6 present our

artificial data exercise and our empirical application, respectively. Section 7 summarizes and concludes.

2 Static Representation of a TVP Regression

2.1 A TVP Regression

The static representation of a TVP regression model involving a T-dimensional dependent variable, y, and a

T × K-dimensional matrix of predictors, X is:

y = X𝜶 +W𝜷 + L𝝐, 𝝐 ∼  (0, IT ), 𝜷 =
(
𝜷′
1
,… ,𝜷′

T

)′
, (1)

where 𝜶 is a K-dimensional vector of time-invariant coefficients, 𝜷 t is a K-dimensional vector of time-varying

coefficients andL = diag(𝜎1,… , 𝜎T )with𝜎t denoting time-varying error volatilities. The TVPpart of thismodel

arises through theW𝜷 term.W is a T × k(= TK) matrix given by:

W =

⎛⎜⎜⎜⎜⎜⎝

x′
1

0′
K×1 … 0′

K×1

0′
K×1 x′

2
… 0′

K×1
...

... ⋱
...

0′
K×1 0′

K×1 … x′
T

⎞⎟⎟⎟⎟⎟⎠

, (2)

with xt denoting a K-dimensional sub-vector of X . Equation (1) is simply a regression which leads to the termi-

nology static representation. But it is a regression with an enormous number of explanatory variables.

Note that (2) implies that the TVPs are mean zero and uncorrelated over time. However, extensions to other

forms can be trivially done through a re-definition ofW . For instance, if we are interested in randomwalk-type

behavior in the TVPs, we can set

W =

⎛⎜⎜⎜⎜⎜⎝

x′
1

0′
K×1 … 0′

K×1

x′
2

x′
2

… 0′
K×1

...
... ⋱

...

x′
T

x′
T

… x′
T

⎞⎟⎟⎟⎟⎟⎠

. (3)

This specification implies that 𝜷 can be interpreted as the changes in the parameters andmultiplication withW

yields the cumulative sum over 𝜷 . In our empirical exercise, we consider both of these specifications forW and

refer to the former as the flexible (FLEX) and the latter as the random walk (RW) specification.

The existing literature using Bayesian shrinkage techniques typically uses MCMC methods. Exact MCMC

sampling, however, quickly becomes computationally cumbersome since k is extremely large even formoderate

values of T and K.

Various solutions to this have been proposed in the literature. The standard solution is simply not to work

with the static representation, but instead make some parametric assumption about how the TVPs evolve (e.g.

assume they follow random walks or a Markov switching process). Unless K is extremely large, exact MCMC

methods are feasible. However, with macroeconomic data it is common to find strong evidence of changes in

the conditional variance of a series, butmuch less evidence in favor of change in the conditionalmean of a series,

(see, e.g. Clark 2011).WhenK is large, it is plausible to assume that only some of the predictors have time-varying

coefficients and, even for these, coefficient change may only rarely happen. Common conventional approaches
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are not suited for data sets which exhibit such sparsity in the TVPs. If changes in the conditional mean of the

parameters happen only rarely then a random walk assumption, which assumes change is continually happen-

ing, is not appropriate. If changes in the conditional mean only occur for a small sub-set of the K variables (or

occur at different times for different variables), then a Markov switching model which assumes all coefficients

change at the same time is not appropriate. These considerations motivate our use of the static representation

and the development of a dynamic shrinkage prior suited for the case of TVP sparsity.

The literature has proposed a few ways of overcoming the computational hurdle that arises if the static

representation is used. Korobilis (2021) uses message passing techniques to estimate large TVP regressions and

shows that these large models outperform a range of competing models. Similarly, Huber, Koop, and Pfarrhofer

(2020) approximate the TVPs using message passing techniques based on a rotated model representation and

sample from the full conditional posterior of 𝜶 using MCMC methods. Both approaches have the drawback

that the quality of the approximation inherent in the use of message passing techniques might be questionable.

In another recent paper, Hauzenberger et al. (2022) propose using the singular value decomposition of W in

combination with a conjugate shrinkage prior on 𝜷 to ensure computational efficiency. However, this method

has the potential drawback that conjugate priors might be too restrictive for discriminating signals and noise in

high dimensional models.

In this paper, we develop another approach which should work particularly well when 𝜷 is extremely

sparse. This is the scalable MCMC method, based on posterior perturbations, of Johndrow, Orenstein, and Bhat-

tacharya (2017).

2.2 Extension to a TVP-VAR

Before discussing the scalableMCMC algorithm, we note thatmethods developed for the TVP regression can also

be used for the TVP-VAR if it is written in equation-by-equation form (see, for instance, Carriero, Clark, andMar-

cellino 2019; Huber Koop, and Onorante 2021). In particular, we can use the following structural representation

of the TVP-VAR:

yt = ct + A0tyt +
P∑
p=1

A ptyt− p + 𝝐t, 𝝐t ∼  (0M,𝚺t), (4)

with yt being an M-dimensional vector of endogenous variables, ct denoting an M-dimensional vector

of intercepts, Apt, for p = 1,… , P, denoting an M × M-dimensional time-varying coefficient matrix that

may be stacked in a matrix At = (A1t,… ,APt). Furthermore, 𝝐t is an M-dimensional vector of errors and

𝚺t = diag
(
𝜎2
1t
,… , 𝜎2

Mt

)
refers to its diagonal time-varying covariance matrix. Finally, A0t defines contempo-

raneous relationships between the elements of yt and is lower-triangular with zeros on the diagonal.

The ith (i = 2,… ,M) equation of yt can be written as a standard TVP regression model:

yit = x′
it
(𝜶i + 𝜷 it)
⏟⏞⏟⏞⏟

𝜸 it

+ 𝜎it𝜖it, 𝜖it ∼  (0, 1).

Here, xit is a Ki(= MP + i)-dimensional vector of covariates with xit =
(
1, {y jt}i−1j=1, y

′
t−1,… , y′

t−P

)′
, 𝜸 it = (𝜶i +

𝜷 it) =
(
cit, {ai j,0t}i−1j=1,Ai∙,t

)′
denotes a Ki-dimensional vector of time-varying coefficients, with cit referring to

the ith element in ct, aij,0t denoting the (i, j)th element of A0t and Ai∙,t referring to the ith row of At. For

i = 1, x1t =
(
1, y′

t−1,… , y′
t− p

)′
and 𝜸1t = (c1t,A1∙,t)

′. Thus, the TVP-VAR can be written as a set ofM indepen-

dent TVP regressions which can be estimated separately using the MCMC methods described in the following

section. An additional computational advantage arises in that theM equations can be estimated in parallel using

multiple CPUs.

Depending on the particular choice ofW , this model nests a variety of commonly used specifications in the

literature. For instance, ifW implies a randomwalk behavior of the latent states we arrive at a TVP-VAR closely

related to the one proposed in Primiceri (2005). As we will show below, the main difference is that we have
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a more flexible state equation by allowing for heteroskedasticity in the shocks to the states through dynamic

shrinkage priors. Another model that is closely related to ours is the one proposed in Cogley, Primiceri, and

Sargent (2010). This model assumes that the variances of the state innovations evolve according to independent

stochastic volatility models.

3 Scalable MCMC Algorithm for a Large TVP Model

In this section, we explain the MCMC algorithm of Johndrow, Orenstein, and Bhattacharya (2017) and

Johndrow, Orenstein, and Bhattacharya (2020) and discuss how we adapt it for our TVP regression model. The

parameters in the static representation are 𝜶 and 𝜷 . Since 𝜶 is typically of moderate size and potentially

non-sparse, we use conventional (exact) MCMC methods for it. It is 𝜷 which is high-dimensional and poten-

tially sparse, characteristics the algorithm of Johndrow, Orenstein, and Bhattacharya (2017) is perfectly suited

for. Thus, we use this algorithm for 𝜷 . Every model used in the empirical application also includes stochastic

volatility.

In the following section, we develop an MCMC algorithm to produce draws of L. Since there is nothing new

in our MCMC algorithm for 𝜶 and our algorithm for drawing L is discussed later, in this section we will proceed

conditionally on themandworkwith the transformed regression involving dependent variable ỹ = L−1(y− X𝜶)

and explanatory variables W̃ = L−1W . The appendix provides full details of ourMCMCalgorithm. In this section,

we will also assume that the prior on 𝜷 is (conditional on other parameters) Gaussian with mean zero and a

diagonal prior covariance matrix D0 = diag(d1,… , dk). Many different global-local shrinkage priors have this

general form and, in the following section, we will suggest several different choices likely to be well-suited to

TVP regressions.

The exact MCMC algorithm of Bhattacharya, Chakraborty, and Mallick (2016) for drawing 𝜷 proceeds as

follows:

1. Draw a k-dimensional vector 𝒗 ∼  (0k,D0),

2. Sample a T-dimensional vector q ∼  (0T , IT ),

3. Define𝒘 = W̃𝒗+ q

4. Solve (ỹ−𝒘) =
(
IT + W̃D0W̃

′)u for u,

5. Set 𝜷 =
(
D0W̃

′u
)
+ 𝒗.

Bhattacharya, Chakraborty, and Mallick (2016) show that this algorithm is fast compared to existing approaches

which involve taking the Cholesky factorization of the posterior covariance matrix. However, it can still be

slow when k is very large. The computational bottleneck lies in the calculation of 𝚪 = W̃D0W̃
′ which has

computational complexity of order (T2k). In macroeconomic or financial applications involving hundreds of

observations, T2k = T3K can be enormous.

Johndrow, Orenstein, and Bhattacharya (2017) and Johndrow, Orenstein, and Bhattacharya (2020) propose

an approximation to the algorithm of Bhattacharya, Chakraborty, and Mallick (2016) which, in sparse contexts,

will be much faster and, thus, scalable to huge dimensions. The basic idea of the algorithm is to approximate the

high-dimensional matrix 𝚪 by dropping irrelevant columns of W̃ so as to speed up computation. To be precise,

Steps 4 and 5 of the algorithm are replaced with

4∗ Solve (ỹ−𝒘) = (IT + 𝚪̂)u for u, with 𝚪̂ = W̃SD0,SW̃
′
S
,

5∗ Set 𝜷 =
(
D0,SW̃

′
S
u
)
+ 𝒗.

Here, W̃S denotes a T × s-dimensional sub-matrix of W̃ that consists of columns defined by a set S and D0,S is

constructed by taking the diagonal elements of D0 also defined by S. Let S = {j: 𝛿 j = 1} denote an index set
with 𝛿 j being the jth element of a k-dimensional selection vector 𝜹 with elements 𝛿 j = 1 with probability pj
and 𝛿 j = 0with probability (1 − pj). Johndrow, Orenstein, and Bhattacharya (2017) approximates 𝛿 j by setting

𝛿 j = 0 if dj ∈ (0, 𝜉] for 𝜉 being a small threshold. Computational complexity is reduced from(T2k) to(T2s),

where s = ∑k

j=1𝛿 j is the cardinality of the set S or equivalently the number of non-zero parameters in 𝜷 . Step
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5∗ yields a draw from the approximate posterior p̂(𝜷|∙) with the ∙ notation indicating that we condition on the
data and the remaining parameters in the model.

The algorithm requires a choice of a threshold for constructing 𝜹. Johndrow, Orenstein, and Bhattacharya

(2017) suggest simple thresholding rules that seem toworkwell in their workwith artificial data (e.g. recommen-

dations include setting the threshold to 0.01when explanatory variables are largely uncorrelated, but 10−4 when

they are more highly correlated). However, choosing the threshold might be problematic for real data applica-

tions and can require a significant amount of tuning in practice. Instead we propose to choose the thresholds in

a different way using SAVS.

To explain what SAVS is and how we use it in practice, note first that papers such as Hahn and Carvalho

(2015) recommend separating out shrinkage (i.e. use of a Bayesian prior to shrink coefficients towards zero) and

sparsification (i.e. setting the coefficents on de-selected variables to be precisely zero so as to remove them from

the model) into different steps. First, MCMC output from a standard model (e.g. a regression with global-local

shrinkage prior) is produced. Secondly, this MCMC output is then sparsified by choosing a sparse coefficient

vector that minimizes the distance between the predictive distribution of the shrunk model and the predictive

density of a model based on this sparse coefficient vector plus an additional penalty term for non-zero coeffi-

cients. This assumption is critically based on assuming normally distributed shocks. The optimal solution, 𝜷̃ , is

then a sparse vector which can be used to construct 𝜹.

The advantages of this shrink-then-sparsify approach are discussed in Hahn and Carvalho (2015) and, in

the context of TVP regressions, in Huber Koop, and Onorante (2021). One important advantage is that estimation

error is removed for the sparsified coefficients.Whenusing global shrinkage priors in high dimensional contexts

with huge numbers of parameters, small amounts of estimation error can build up andhave a deleterious impact

on forecasts. By sparsifying, estimation error in the small coefficients is eliminated, thus improving forecasts.

This paper differs from the aforementioned papers by using SAVS to approximate the indicators 𝜹which is then

used in our approximate MCMC algorithm.

The SAVS algorithm, developed in Ray and Bhattacharya (2018), is a fast method for solving the optimization

problem outlined above, making it feasible to sparsify each draw from the posterior of 𝜷 . In the present context,

our contention is that a strategy which uses SAVS to shrink-then-sparsify our coefficients can be used to provide

a sensible estimate of 𝜹 that does not lead to a deterioration in forecast accuracy. Using SAVS, we first produce

a sparsified draws 𝜷̃ .2 For each draw 𝜷̃ = (𝛽1,… , 𝛽k)
′, we then set

𝛿 j = I
(
𝛽j

∗ ≠ 0
)
.

Each draw of 𝛿 j is used in the construction of 𝚪̂ in the MCMC algorithm of Johndrow, Orenstein, and Bhat-

tacharya (2017) described above. We will refer to this algorithm as being approximate to distinguish it from the

exact algorithm of Ray and Bhattacharya (2018).

4 Bayesian Estimation and Inference

4.1 Dynamic Global-Local Shrinkage Priors

For the time-invariant coefficients, 𝜶, we use a horseshoe shrinkage prior (Carvalho, Polson, and Scott 2010).

Since the properties of this prior are familiar and posterior simulation methods for this prior are standard, we

do not discuss it further here. See the appendix for additional details.

The important contribution of the present paper lies in the development of a dynamic extension of the

horseshoe prior for 𝜷 . We modify methods outlined in Kowal, Matteson, and Ruppert (2019) to design a prior

2 Precise details for how SAVS works in TVP regressions, along with additional motivation for the approach, are provided in

Huber Koop, and Onorante (2021).
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which reflects our beliefs about what kinds of parameter change are commonly found in macroeconomic appli-

cations. In particular, we want to allow for a high degree of sparsity in the TVPs. That is, we want a prior that

allows for the possibility that parameter change is rare and may occur for only some coefficients in the regres-

sion. There may be periods of instability when parameters change and times of stability when they do not. A

dynamic global-local shrinkage prior which has these properties is:

p(𝜷 t) =
K∏
j=1



(
𝛽 jt|0, 𝜏𝜆t𝜙2

jt

)
, 𝜙 jt ∼ +(0, 1), (5)

where𝜷 t = (𝛽1t,… , 𝛽Kt)
′ denotes the coefficients at time t, 𝜏 denotes a global shrinkage parameter that pushes

all elements in 𝜷 towards zero, 𝜆t is a time-specific shrinkage factor that pushes all elements in 𝜷 t towards zero

and 𝜙jt is a coefficient and time-specific shrinkage term that follows a half-Cauchy distribution.

Thus, the prior covariance matrix of 𝜷 t is given by:

𝛀t = 𝜏𝜆t × diag
(
𝜙2
1t
,… , 𝜙2

Kt

)
,

which implies that 𝜆t acts as a common factor that aims to detect periods characterized by substantive amounts

of time variation.

The main innovation of this paper lies in our treatment of this common factor. Before we discuss the pre-

cise specifications for 𝜆t, it is worth summarizing the key innovation of this prior. As opposed to the dynamic

horseshoe of Kowal, Matteson, and Ruppert (2019), we only introduce persistence in the common shrinkage

factor 𝜆t. The key point to note here is that, as opposed to assuming a dynamic law of motion for the coefficient-

specific prior scaling parameters, we borrow strength from the cross-sectional dimension and by doing this we

substantially reduce the computational burden necessary.

For the global shrinkage parameter we consider four different laws of motion. The first and second of these

involve setting gt = log(𝜏𝜆t) and assuming it follows an AR(1) process:

gt = 𝜇 + 𝜌(gt−1 − 𝜇)+ 𝜈t,

with 𝜇 = log 𝜏 . We consider two possible distributions for 𝜈t. In the first of these it follows a four parameter Z-

distribution,(1∕2, 1∕2, 0, 0), leading to a variant of the dynamic horseshoe prior proposed in Kowal, Matteson,
and Ruppert (2019) (henceforth labeled dHS svol-Z). The second of these follows a Gaussian distribution, lead-
ing to a standard stochastic volatility model for this prior variance (labeled dHS svol-N). This model resembles
the one stipulated in Cogley, Primiceri, and Sargent (2010) but with a single dynamic volatility process. Both of

these processes imply a gradual evolution of gt and thus a smooth transition from times of rapid parameter

change to times of less parameter change.

The third and fourth specifications allow for more abrupt change between times of stability and times of

instability. They assume that 𝜆t is a regime switching process with:

𝜆t = 𝜅20(1− dt)+ 𝜅21dt, (6)

Here, dt denotes an indicator that either follows a Markov switching model (labeled dHS MS) or a mixture spec-
ification (labeled dHS Mix) and 𝜅0, 𝜅1 denote prior variances with the property that 𝜅1 ≫ 𝜅0. For the Markov

switchingmodel, we assume that dt is driven by a (2 × 2)-dimensional transition probabilitymatrix Pwith tran-

sitionprobabilities fromstate i to jdenotedby pij (with pii ∼ (ai,MS, bi,MS), for i = 0, 1, following aBeta distribu-

tion a priori). Themixturemodel assumes that p(dt = 1) = p, with p ∼ (aMix, bMix). In the empirical application

we specify 𝜅1 = 100∕K, 𝜅0 = 0.01∕K, aMix = a1,MS = b0,MS = 3 and bMix = a0,MS = b1,MS = 30.

We also include a fifth specification by setting 𝜆t = 1 for all t. We refer to this setup as the static horse-

shoe prior (abbreviated as sHS). For these last three specifications (i.e. the ones that do not assume 𝜆t to evolve
according to an AR(1) process), we use a half-Cauchy prior on

√
𝜏 ∼ +(0, 1).
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4.2 Markov Chain Monte Carlo (MCMC) Algorithm

For all of thesemodels, Bayesian estimation and prediction can be done usingMCMCmethods. In this sub-section

we mainly focus on how to sample 𝜆t under the assumption that it evolves according to an AR(1) process. For

this step we propose a simple and accurate approximation that renders the corresponding hierarchical model

linear and conditionally Gaussian. We only briefly discuss the remaining steps since most of them are standard

in the literature.

For the time varying regression coefficients, the scalable algorithms (with or without sparsification) of the

preceding section, based on Johndrow, Orenstein, and Bhattacharya (2017), can be used. The only modification

is that we construct D0 as follows:

D0 = diag(𝛀1,… ,𝛀T ),

with 𝜆t depending on the specific law of motion adopted. Most of the prior hyperparameters introduced in this

section have posterior conditionals of standard forms. These are given in the appendix.

Sampling 𝜆t for the specifications that assume it to be binary is also straightforward and can be carried out

using standard algorithms. To sample from the posterior of 𝜆t under the assumption that it evolves according to

an AR(1) process, the algorithm proposed in Jacquier, Polson, and Rossi (1995) can be used. However, since this

algorithm simulates the 𝜆t’s one at a time mixing is often an issue. A second option would be to view the prior

(after squaring each element of 𝜷 t and taking logs) as the observation equation of a dynamic factor model. This

strategy, however, would be computationally challenging for moderate to large values of K. As a solution, we

propose a new algorithm that is straightforward to implement and, if K is large, has good properties.

Let 𝜷̂ t be aK-dimensional vector of normalized TVPs with typical element 𝛽 jt = 𝛽 jt∕
(
𝜙 jt𝜏

1∕2). Using (5) and
squaring yields:

bt =
(
𝜷 t

′𝜷 t

)
= 𝜆t𝜈t, (7)

with 𝜈t = 𝒗′
t
𝒗t for 𝒗t ∼  (0K , IK ). Notice that 𝜈t follows a 𝜒

2 distribution with K degrees of freedom, denoted

by 𝜒 2
K
. This implies that sampling algorithms that rely on the Gaussian mixture approximation proposed in

Kim, Shephard, and Chib (1998) cannot be used. Instead we approximate the 𝜒 2
K
using a well-known limit

theorem that implies, as K → ∞,

𝜈t − K√
2K

d
←←←←←←←←←←→ (0, 1) ⇔ 𝜈t ≈ 𝜈t =

√
2Kqt + K, qt ∼  (0, 1).

This approximation works if K is large. In our case, K is often large. For instance, in the largest TVP-VAR model

we consider, K is around 100. Since we estimate the TVP-VAR one equation at a time, values of this order of

magnitude hold in each equation and the approximation is likely to be good. But if one were to do full sys-

tem estimation of the TVP-VAR, there are on the order of MK VAR coefficients at each point in time and the

approximation would be even better.

Substituting the Gaussian approximation into (7) and taking logs yields:

log bt = log𝜆t + log 𝜈t. (8)

Finally, under the assumption that (
√
2Kqt + K) > 0 and by using a Taylor series expansion,3 we approximate

log 𝑣̂t with a
(
log(K)− 1∕K, 2∕K

)
to render (8) conditionally Gaussian. This implies that any of the standard

algorithms proposed in the literature on Gaussian linear state space models can be used. In this paper, we

simulate log 𝜆t using the precision sampler outlined, for example, in Chan and Jeliazkov (2009) and McCaus-

land, Miller, and Pelletier (2011).

The accuracy of this approximation for different values of K is illustrated in Figure 1. From this figure it is

clearly visible that, ifK is greater than 5, our approximationworks extremelywell. In these cases, there is hardly

3 More precisely, we compute the mean and variance of log 𝜈t using a second and first order Taylor series expansion of E(log(K +
𝜈t − K)) and Var(log(K + 𝜈t − K)) around K, respectively.
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Figure 1: This figure shows the approximation error of a single-component Gaussian used to approximate a log 𝜒 2
K
distribution. It

illustrates the approximation error resulting from approximating the error distribution (which is log 𝜒 2
K
) with a single-component

Gaussian with mean log(K) − 1∕K and variance 2∕K . For different values of K , the blue shaded areas show the exact error distribution,

while the red shaded areas indicate the approximate error distribution.

any difference visible between the log 𝜒 2
K
and the single-component Gaussian distribution. For K = 1 (themost

extreme case) andK = 5, some differences arisewhichmainly relate to the left tail of the distribution. However,

already for K = 5 these differences are so small that we do not expect them to have any serious consequences

on our estimates of 𝜆t, even for small values of K.

5 Illustration Using Artificial Data

In this section we illustrate the merits of our approach using synthetic data.

5.1 How Does our Algorithm Compare to Exact MCMC?

We start by showing that using our approximate (sparsified) algorithm yields estimates that are close to the

exact ones in terms of precision. This is achieved by considering five different data generating processes (DGPs).

These are all based on Equation (1) but make different assumptions about the density and nature of parameter

change. Dense DGPs are characterized by having time-variation in a large number of parameters (with sparse

DGPs being the opposite of dense). The nature of parameter change canbe gradual (e.g. characterized by constant
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evolution of the parameters) or abrupt. For each of the five DGPs, we simulate a time series of length T = 250

and with K = 50.

The different DGPs assume that the states evolve as follows:

– dense gradual: 𝜷 t ∼  (𝜷 t−1,
1

100
× IK ),

– dense mixed: 𝜷 t ∼ 

(
𝜷 t−1,

(
dt + (1−dtt)

100

)
× IK

)
with Prob(dt = 1) = 0.1,

– medium-dense gradual: 𝜷 t ∼  (𝜷 t−1,
dt
100

× IK ) with Prob(dt = 1) = 0.3,

– sparse abrupt: 𝜷 t ∼  (𝜷 t−1, IK ) with Prob(dt = 1) = 0.02,

– no TVPs: 𝜷 t = 0K×1 for all t.

The remaining parameters are set as follows: 𝜷0 = 0, L = 0.01 × IT , 𝜶 ∼  (0, IK ) and X j ∼  (0, IT ) for

j = 1,… ,K. Based on these, we use the true path of the parameters 𝜷 t to obtain a realization of yt. In all

simulation experiments and for all models considered we simulate 2500 draws from the joint posterior of the

parameters and latent states and discard the first 500 draws as burn-in.

We investigate the accuracy of our scalable approximate MCMC methods relative to the exact MCMC

algorithm of Bhattacharya, Chakraborty, andMallick (2016) (i.e. it is the version of our algorithmwhich imposes

𝛿 j = 1 for all j). Table 1 shows the ratio of mean absolute errors (MAEs), computed using the posterior mean

of {𝜷 t}Tt=1 and the true parameters, for the approximate relative to the exact approach for the five priors aver-
aged over the five DGPs. With one exception, MAE ratios are essentially one indicating that the approximate and

exact algorithms are producing almost identical results. The one exception is for the DGP which does not have

any TVPs. For this case, the approximate algorithm is substantially better than the exact one. This is because

our approximate algorithm uses SAVS which (correctly for this DGP) can set the TVPs to be precisely zero.

In this case, draws from the posterior will coincide with draws from the prior that induce heavy shrinkage.

Hence, compared to the exact model, the likelihood does not influence the prior and more shrinkage can be

achieved.

Thus, Table 1 shows that, where there is substantial time variation in parameters, the approximation inher-

ent in our scalable MCMC algorithm is an excellent one, yielding results that are virtually identical to the slower

exact algorithm. The table also shows the usefulness of SAVS in cases of very sparse DGPs.

5.2 How Big are the Computational Gains of our Algorithm?

Our second artificial data experiment is designed to investigate the computational gains of our algorithm rela-

tive to exact MCMC for various choices of K, T , degrees of sparsity and data configurations. Since we are only

interested in computation timewe just generate one artificial data set for each of two differentways of specifying

W . The random numbers refered to below are drawn from the standard Gaussian distribution.

For K = 1,… , 400 and T ∈ {100, 200} we randomly draw a y and an X . The W is drawn in two ways

which correspond to the flexible and random walk specifications of equations (2) and (3), respectively.

Table 1:Mean absolute errors of the TVPs relative to exact estimation.

Specification MAE ratios: different forms of TVPs

Dense gradual Dense mixed Medium-dense gradual Sparse abrupt No TVPs

dHS Mix 1.001 1.003 1.001 1.002 0.755

dHS MS 0.998 0.999 1.000 0.999 0.558

dHS svol-N 1.000 1.000 1.000 1.000 0.817

dHS svol-Z 1.001 1.001 1.000 1.000 0.696

sHS 0.999 1.000 1.000 1.001 0.653

Notes: numbers are averages based on 20 replications from each of the DGPs.
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In terms of sparsity, we consider four scenarios based on how we choose W̃S:

− 100 % dense: W̃S = W . This is the exact algorithm.

− 50 % dense: W̃S contains 50 % of the columns ofW (i.e. s = 0.5k).

− 10 % dense: W̃S contains 10 % of the columns ofW (i.e. s = 0.1k).

− 1 % dense: W̃S contains 1 % of the columns ofW (i.e. s = 0.01k).

Figure 2 depicts the computational advantages of our approximate MCMC algorithm relative to the exact

algorithm of Bhattacharya, Chakraborty, and Mallick (2016). It shows the time necessary to obtain a draw of

𝜷 . It can be seen that when the TVPs are highly correlated over time as with the randomwalk specification, then

our scalable algorithm has substantial computational advantages relative to the exact algorithm particularly for

large K and in sparse data sets. When the TVPs are uncorrelated the computational advantages of our approach

relative to the exact algorithm are smaller, but still appreciable.4
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Figure 2: This figure shows the time necessary to obtain a draw for K time-varying coefficients. It depicts the estimation time in seconds

required to obtain a draw for K time-varying coefficients for different degrees of overall sparsity (i.e. 1 %, 10 %, 50 %, and 100 % dense).

The dots refer to the empirical run times for which we fit a nonlinear trend (indicated by the solid lines). The red colored dots and red

solid lines indicate run times of the exact algorithm (100 % dense, with s = k).

4 The relatively good performance of the exact algorithm in this case is partly due to the fact that we are coding using sparse

algorithms. In the flexible specification forW , the underlying matrices are block-diagonal and thus exact sampling is already quite

fast.
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6 Empirical Application Using Eurozone Yield Data

6.1 Data Overview and Specification Issues

We illustrate our methods using a monthly data set of 30 government bond yields in the euro area (EA). As

opposed to forecasting standard US macroeconomic time series such as output, inflation and unemployment

rates, forecasting EA government bond yields is challenging due to, at least, three reasons. The first is that the

researcher has to decide on the segment of yield curve she is interested in or use techniques that allow for

analyzing the full term structure of government bond yields. Following the latter approach leads to overfitting

issues whereas the former approach might suffer from omitted variable bias. The second challenge is that these

time series are often subject to outliers as well as sharp shifts in the conditional variance. The final reason is that

the time series we consider are rather short and in such circumstances TVP-VARs risk overfitting if the estimates

of the TVPs are not regularized sufficiently. We expect that the techniques proposed in this paper are capable of

handling both issues well.

We use monthly yield curve data obtained from Eurostat. This dataset includes the yield to maturity of

a (hypothetical) zero coupon bond on AAA-rated government bonds of eurozone countries for 30 different

maturities. These maturities range from one-year to 30-years and span the period from 2005:01 to 2019:12.

If we wish to model all 30 yields jointly we have to estimate a TVP-VAR with M = 30 equations, a chal-

lenging statistical and computational task which we will take on in the next sub-section. Since the parameter

space of such a model is vast and difficult to interpret, in this sub-section where we present some in-sample

results, we will use a small-scale example. This model is based on the Nelson-Siegel three factor model (see, e.g.

Diebold, Rudebusch, and Aruoba 2006; Nelson and Siegel 1987) and assumes that the yield on a security with

maturity t, labeled rt(t), features a factor structure:

rt(t) = Lt + St

(
1− e−𝜁t

𝜁t

)
+ Ct

(
1− e−𝜁t

𝜁t
− e−𝜁t

)
+ 𝜂t(t), 𝜂t(t) ∼ 

(
0, 𝜎2𝜂(t)

)
. (9)

Here, Lt, St and Ct refer to the level, slope and curvature factor, respectively, while 𝜂t(t) denotesmaturity-specific
measurement errors which are independent across maturities and feature variance 𝜎2𝜂(t). 𝜁 denotes a param-
eter that controls the shape of the factor loadings. Following Diebold, Rudebusch, and Aruoba (2006), we set

𝜁 = 0.7308 (12 × 0.0609). Since the loading of the level factor is one for all maturities and does not feature

a discount factor, it defines the behavior at the long end of the yield curve. Moreover, the slope factor mainly

shapes the short end of the yield curve and the curvature factor defines the middle part of the curve. The latent

yield curve factors are obtained by running OLS on a t-by-t basis. These estimates are then consequently used

as our endogenous variables by setting yt = (Lt, St, Ct)
′ and estimating the TVP-VAR defined in (4). We use the

flexible specification forW in (2) and the approximate algorithm to estimate the model. In addition, we set the

lag length to two. After obtaining forecasts for yt, we use (9) to map the factors back to the observed yields. It is

worth noting that (9) constitutes an observation equation which links the observed yields to the latent Nelson-

Siegel factors. To compute predictive densities, we also take the correspondingmeasurement errors into account

by estimating the measurement error variance independently for each observed series.

6.2 In-Sample Results

To provide some information on the amount of time variation, Figures 3 and 4 depicts heatmaps of the posterior

inclusion probability (PIPs) for a Nelson-Siegel model with panels a)–d) referring to the four different dynamic

priors for 𝜆t. These PIPs are the posterior means of the elements of 𝜹.

The main impression provided by Figures 3 and 4 is that there is little evidence of strong time-variation in

the parameters when using this data set. However, there does seem to be some in the sense that there are many

variables and time periods where the PIPs are appreciably above zero. That is, even though the figures contain

a lot of white (PIPs essentially zero) and just a handful of deep reds (PIPs above one half), there is a great deal
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Figure 3: This figure shows heatmaps of posterior inclusion probability (PIPs) for time-variation in structural TVP-VAR coefficients with a

gradually changing common shrinkage factor. Gray shaded areas indicate coefficients which do not appear in the model due to the lower

triangularity of A0t .
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Figure 4: This figure shows heatmaps of posterior inclusion probability (PIPs) for time-variation in structural TVP-VAR coefficients with a

regime-switching common shrinkage factor. Gray shaded areas indicate coefficients which do not appear in the model due to the lower

triangularity of A0t .
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of pink of various shades (e.g. PIPs 20 %–30 %). This is consistent with time-variation being small, episodic and

only occurring in some coefficients.

Results for our four different dynamic horseshoe priors are slightly different indicating the dynamic prior

choice can have an impact on results. A clear pattern emerges only for the dynamic horseshoe prior with a

mixture specification. It is finding that small amounts of time-variation occur only for the coefficients on the

curvature factor. If the mixture part of the prior is replaced by a Markov switching specification, we tend to find

short-lived periods where a small amount of time-variation occurs for all of the coefficients in an equation. But,

interestingly, dHS MS finds that different equations have time-variation occuring at different periods of time.

Evidence for TVPs is the least when we use stochastic volatility specifications in the dynamic horseshoe priors.

For these priors, tiny amounts of time variation (i.e. tiny PIPs) are spread much more widely throughout the

sample and across variables.

6.3 Forecast Exercise

The dataset covers the entire yield curve and includes yields from one-year to thirty-year bonds in one-year

steps. We choose {1y, 3y, 5y, 7y, 10y, 15y, 30y} maturities as our target variables that we wish to forecast and

consider one-month and one-quarter ahead as forecast horizons.We use a range of competingmodels that differ

in terms of how they model time-variation in coefficients and the number of endogenous variables they have.

All models feature stochastic volatility in the measurement errors and have two lags. We also offer comparison

between the two MCMC algorithms: exact and approximate.

In terms of VAR dimension, we have large TVP-VARs and VARs with all 30 maturities (M = 30) as well as

the three factor Nelson-Siegel model described in the previous sub-section (M = 3).

In terms of time variation specified through the likelihood function (i.e. through the definition of W ), we

consider theflexible (FLEX) and randomwalk (RW) specifications defined in (2) and (3). In terms of time variation

specified through the prior, we consider the five global-local shrinkage priors (four dynamic and one static)

given in Sub-Section 4.1. In addition, we consider as a competitor the conventional TVP-VAR setup of Primiceri

(2005). We estimate the TVP-VAR only for the Nelson-Siegel model since the original prior overfits in higher

dimensions.5

We also have VARmodels where coefficients are constant over time. For these we do two versions, one with

aMinnesota prior (MIN) and the other a horseshoe prior (HS). Thesemodels are estimated by setting 𝜷 = 0 and

then using the sampling steps for 𝜶 detailed in the appendix. For the Minnesota prior, we use a non-conjugate

version that allows for asymmetric shrinkage patterns and integrate out the corresponding hyperparameters

within MCMC.

To evaluate one-month and one-quarter ahead forecasts, we use a recursive prediction design and split the

sample into an initial estimation period that ranges from2005:01 to 2008:12 and a forecast evaluation period from

2009:01 to 2019:12. We use Root Mean Squared Forecast Errors (RMSEs) as the measure of performance for our

point forecasts and Continuous Ranked Probability Scores (CRPSs, Gneiting and Raftery 2007) as the measure of

performance of our density forecasts. Both are presented in ratio form relative to the benchmark model which

is the large VAR with Minnesota prior. Values less than one indicate an approach is beating the benchmark.

We present our forecasting results in two tables. Table 2 shows the one-month ahead forecast performance

of the different models while Table B.1 in the appendix shows the one-quarter ahead forecasting results. Our

focus on one-step ahead forecasts is predicated by the fact that the density forecast measures based on proper

scoring rules (such as CRPSs) can be viewed as a training sample marginal likelihood and thus enables model

comparison (see Gneiting and Raftery 2007).

Overall, the evidence in Table 2 (and Table B.1) is mixed, with no single approach being dominant. In prin-

ciple, one robust pattern is that models with TVPs tend to produce more accurate forecasts than the large VAR

5 The priors of the conventional Primiceri (2005) TVP-VAR are informed by OLS estimates using an initial training sample (in our

case the initial first 18 observations). Such an empirical Bayesian calibration strategy is only sensible for models that feature a small

number of endogenous variables.
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Table 2: One-month ahead forecast performance for EA central government bond yields at different maturities using non-sparsified

models.

Specification One-month-ahead

Avg. 1y 3y 5y 7y 10y 15y 30y

VAR with constant coefficients

Large with MIN 0.99 0.70 0.84 0.90 0.96 1.04 1.16 1.23

(0.51) (0.34) (0.43) (0.50) (0.54) (0.57) (0.60) (0.60)

Large VAR with HS prior 0.93 0.98 0.96 0.97 0.98 0.96 0.90 0.82

(0.96) (0.98) (0.97) (0.98) (0.98) (0.97) (0.95) (0.90)

Nelson-Siegel VAR with HS prior 0.91 1.02 0.98 0.97 0.97 0.94 0.88 0.78

(0.96) (1.01) (1.01) (0.99) (0.98) (0.96) (0.94) (0.87)

Nelson-Siegel with MIN prior 0.92 1.01 0.99 0.98 0.97 0.94 0.88 0.78

(0.97) (1.03) (1.03) (1.01) (0.99) (0.96) (0.94) (0.87)

Large TVP-VAR with the random walk specification forW

dHS Mix 0.98 1.00 0.97 1.01 1.04 1.03 0.96 0.92

(1.00) (0.99) (0.98) (0.99) (1.01) (1.01) (1.00) (0.98)

dHS Mix (approx.) 0.93 0.99 0.98 0.99 0.99 0.95 0.90 0.83

(0.97) (0.97) (0.98) (0.98) (0.98) (0.97) (0.97) (0.94)

dHS MS 0.97 0.97 0.97 1.00 1.02 1.01 0.96 0.87

(0.99) (0.98) (0.98) (1.00) (1.01) (1.01) (1.00) (0.95)

dHS MS (approx.) 0.91 0.97 0.95 . . 0.94 0.88 0.82

(.) (0.98) (.) (.) (.) (0.96) (0.95) (0.92)

dHS svol-N 0.92 0.99 0.98 0.98 0.98 0.94 0.88 0.81

(0.96) (0.98) (0.99) (0.99) (0.98) (0.97) (0.95) (0.89)

dHS svol-N (approx.) 0.93 0.98 0.97 0.99 0.99 0.96 0.90 0.82

(1.01) (0.98) (0.98) (0.99) (0.99) (1.03) (1.06) (1.02)

dHS svol-Z 0.94 0.98 0.96 0.98 0.99 0.97 0.92 0.83

(0.99) (0.97) (0.97) (0.99) (0.99) (0.99) (0.97) (1.02)

dHS svol-Z (approx.) 0.93 0.98 0.97 0.99 0.99 0.97 0.90 0.83

(0.97) (0.98) (0.98) (0.99) (0.99) (0.98) (0.96) (0.92)

sHS 0.96 1.00 0.96 0.99 1.02 1.01 0.95 0.88

(1.04) (0.99) (0.97) (0.99) (1.02) (1.02) (1.13) (1.09)

sHS (approx.) 0.93 0.99 . 0.97 0.98 0.96 0.91 0.82

(0.97) (0.98) (0.97) (0.98) (0.98) (0.98) (0.97) (0.92)

Large TVP-VAR with the flexible specification forW

dHS Mix 1.05 0.99 0.96 1.01 1.07 1.09 1.07 1.05

(1.04) (0.98) (0.98) (1.02) (1.05) (1.07) (1.08) (1.06)

dHS Mix (approx.) 0.91 0.98 0.96 0.97 0.97 0.94 0.89 0.78

(1.01) (0.98) (0.97) (0.98) (0.98) (0.98) (0.99) (1.18)

dHS MS 1.13 1.00 1.03 1.12 1.17 1.17 1.17 1.14

(1.18) (1.04) (1.10) (1.16) (1.20) (1.21) (1.22) (1.26)

dHS MS (approx.) 0.93 0.98 0.97 0.99 0.99 0.95 0.89 0.82

(1.01) (0.98) (0.98) (0.99) (0.99) (0.97) (0.96) (1.15)

dHS svol-N 0.92 0.98 0.95 0.96 0.97 0.95 0.89 0.85

(0.96) (0.98) (0.97) (0.97) (0.98) (0.97) (0.95) (0.91)

dHS svol-N (approx.) 0.92 0.98 0.95 0.97 0.97 0.95 0.91 0.83

(1.00) (0.98) (0.97) (0.97) (0.97) (0.97) (0.96) (1.15)

dHS svol-Z 0.95 0.98 0.96 0.98 1.00 0.98 0.92 0.88

(0.98) (0.98) (0.98) (0.99) (1.00) (1.00) (0.99) (0.95)
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Table 2: (continued)

Specification One-month-ahead

Avg. 1y 3y 5y 7y 10y 15y 30y

dHS svol-Z (approx.) 0.93 0.97 0.96 0.98 0.98 0.96 0.92 0.83

(0.96) (0.98) (0.97) (0.98) (0.98) (0.97) (0.96) (0.91)

sHS 0.92 0.98 0.96 0.97 0.97 0.94 0.89 0.82

(0.95) (0.98) (0.97) (0.98) (0.97) (0.96) (0.95) (0.89)

sHS (approx.) 0.93 0.96 0.95 0.97 0.98 0.96 0.91 0.83

(0.96) (.) (0.97) (0.98) (0.98) (0.97) (0.95) (0.92)

Nelson-Siegel TVP-VAR with the random walk specification forW

dHS Mix 1.11 1.14 1.21 1.19 1.18 1.15 1.08 0.98

(1.12) (1.10) (1.16) (1.14) (1.13) (1.13) (1.12) (1.06)

dHS Mix (approx.) 1.10 1.27 1.06 1.11 1.14 1.13 1.08 1.00

(1.04) (1.09) (1.05) (1.06) (1.05) (1.04) (1.04) (0.98)

dHS MS 1.06 1.11 1.11 1.14 1.13 1.11 1.03 0.92

(1.07) (1.09) (1.12) (1.10) (1.09) (1.08) (1.07) (1.00)

dHS MS (approx.) 0.98 1.01 1.06 1.08 1.07 1.02 0.94 0.81

(0.99) (1.02) (1.05) (1.03) (1.01) (0.99) (0.97) (0.88)

dHS svol-N 1.07 1.14 1.15 1.14 1.14 1.11 1.04 0.92

(1.07) (1.09) (1.11) (1.09) (1.09) (1.08) (1.07) (0.99)

dHS svol-N (approx.) 0.92 0.99 0.98 0.99 0.99 0.96 0.89 0.78

(0.97) (1.00) (1.02) (1.00) (0.99) (0.97) (0.95) (0.87)

dHS svol-Z 1.11 1.19 1.21 1.19 1.18 1.14 1.07 0.96

(1.10) (1.11) (1.14) (1.12) (1.11) (1.11) (1.10) (1.03)

dHS svol-Z (approx.) 0.92 1.03 1.00 0.99 0.98 0.94 0.88 0.78

(0.97) (1.02) (1.02) (1.00) (0.99) (0.96) (0.94) (0.87)

sHS 1.09 1.09 1.15 1.15 1.15 1.13 1.08 0.96

(1.13) (1.10) (1.16) (1.15) (1.14) (1.14) (1.14) (1.07)

sHS (approx.) 0.91 1.00 0.97 0.98 0.97 0.94 0.88 0.78

(0.96) (1.01) (1.02) (1.00) (0.98) (0.96) (0.94) (0.86)

Nelson-Siegel TVP-VAR with the flexible specification forW

dHS Mix 1.19 1.25 1.38 1.36 1.28 1.20 1.10 0.99

(1.33) (1.32) (1.43) (1.40) (1.35) (1.31) (1.29) (1.27)

dHS Mix (approx.) . 1.02 0.98 0.98 0.97 . . .

(0.95) (1.01) (1.03) (1.00) (0.98) (.) (.) (.)

dHS MS 1.00 . 1.13 1.13 1.10 1.04 0.95 0.83

(1.01) (0.99) (1.06) (1.05) (1.04) (1.01) (0.99) (0.91)

dHS MS (approx.) 1.06 1.20 1.20 1.18 1.16 1.09 0.98 0.85

(1.01) (1.05) (1.07) (1.06) (1.04) (1.02) (0.98) (0.90)

dHS svol-N 1.11 1.26 1.09 1.11 1.14 1.14 1.08 1.02

(1.11) (1.18) (1.14) (1.13) (1.13) (1.11) (1.10) (1.05)

dHS svol-N (approx.) 0.92 1.01 0.98 0.99 0.98 0.95 0.88 0.78

(0.97) (1.01) (1.02) (1.01) (0.99) (0.97) (0.95) (0.87)

dHS svol-Z 1.07 1.20 1.18 1.17 1.14 1.09 1.01 0.92

(1.23) (1.23) (1.29) (1.28) (1.26) (1.22) (1.20) (1.16)

dHS svol-Z (approx.) 0.93 1.09 1.07 1.03 1.00 0.94 0.86 0.75

(0.97) (1.03) (1.04) (1.01) (0.99) (0.97) (0.94) (0.86)
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Table 2: (continued)

Specification One-month-ahead

Avg. 1y 3y 5y 7y 10y 15y 30y

sHS 0.93 1.11 0.97 0.98 0.99 0.96 0.90 0.80

(0.98) (1.03) (1.02) (1.01) (1.00) (0.98) (0.97) (0.89)

sHS (approx.) 0.91 1.01 0.99 0.98 0.98 0.94 0.87 0.77

(0.96) (1.02) (1.03) (1.00) (0.98) (0.96) (0.94) (0.86)

Nelson-Siegel TVP-VAR with the conventional Primiceri (2005) setup

0.99 1.05 1.14 1.09 1.06 1.01 0.93 0.82

(1.02) (1.06) (1.12) (1.07) (1.03) (1.01) (0.99) (0.92)

Notes: this table displays the one-step ahead forecast performance for non-sparsified models. We focus on seven maturities (1y, 3y, 5y,

7y, 10y, 15y, and 30y) as our target variables and use a hold-out period from 2009:01 to 2019:12. Point forecast performance is measured

by relative root mean square errors (RMSEs), while density forecast performance (shown in parentheses) by relative continuous ranked

probability scores (CRPSs). We consider two different models in terms of the dimension of the (TVP-)VARs: a large model including all 30

maturities (M = 30) and a small model specified as a three factor Nelson-Siegel model (M = 3). For the main TVP-VARs, we consider a

flexible and a RW specification of W , each with five different global-local shrinkage priors (four dynamic and one static). These TVP-VARs

are estimated with two different algorithms: our proposed approximate approach and an exact algorithm. In addition, we consider the

conventional TVP-VAR setup of Primiceri (2005) for the Nelson-Siegel model and a set of VARs with constant coefficients. For the VARs

with constant parameters, we adopt either a Minnesota or a horseshoe (HS) shrinkage prior. As overall benchmark model we choose a

large VAR with constant parameters and a Minnesota prior. The red shaded rows correspond to the actual RMSE and CRPS values of this

benchmark model, while the gray shaded rows correspond to models for which we use our approximate (but non-sparsified) MCMC

algorithm. The best performing specification is in bold.

with stochastic volatility benchmark. These gains range from being rather small (particularly at the short-end

of the yield curve) to appreciable (when the focus is on the long-end of the yield curve). This is consistent with

recent findings in Fischer et al. (2023) who document that flexible models work well for this particular dataset

when longer maturities are considered.

If we compare results for the large TVP-VARs to results for the smaller TVP-VARs based on the Nelson-Siegel

factors reveals that both specifications produce forecasts of similar quality. When forecasting one-month ahead

and focusing on the CRPS as a measure of forecast performance, the best average forecast performance is pro-

duced by one of the large TVP-VARs. But when we focus on point forecasting performance, one of the NS models

emerges as the best forecasting model. This finding indicates that using more information in an unrestricted

manner seems to exert benign effect on higher order moments of the predictive density whereas for the first

moment the effect is negligible (or even negative). Interestingly, this finding only holds for one-month ahead

predictive densities. When we focus on one-quarter ahead forecasts (see Table B.1 in the appendix), this result

is reversed with CRPSs indicating one of the NSmodels is forecasting best and RMSEs indicating one of the large

TVP-VARs is forecasting best.

The comparison of the different choices forW also yields a mixed pattern of results. At the short end of the

yield curve the RW specification tends to forecast better, but at the longer end the FLEX specification does better.

It is interesting to note, however, that the good performance for RW occurs with a large TVP-VAR whereas for

the FLEX specification it occurs for a Nelson-Siegel version of the model.

In terms ofwhich of our dynamic horseshoe priors forecasts best, it does seem to be the priorswhich assume

𝜆t to exhibit rapid change between values forecast better than the gradual change of the stochastic volatility

specifications. That is, the Markov switching or mixture versions of the prior, dHS MS and dHS Mix, tend to

forecast better than dHS svol-Z or dHS svol-N. Although there are several exceptions to this pattern. At this
point it is also worth highlighting that the original Primiceri (2005) model is outperformed by our shrinkage

specifications in all segments of the yield curve. This suggests that using proper shrinkage priors on the state

innovation variances and allowing for dynamic shrinkage pays off.
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Thus, overall (and with several exceptions) we have a story where, in this data set, time variation in the

regression coefficients is present and there are gains to be made from capturing them. This can be seen by

noting that the constant parameter VARs with stochastic volatility are never the best performing specifications

across the different maturities and also for both time horizons we consider. As we have shown in the previous

sub-section, this time variation is episodic (rather than gradually evolving) and only occurs occasionally and for

some of the coefficients. However, ignoring this time variation and using constant parameter models leads to a

deterioration in forecasts in almost all situations.

In terms of computation, our scalable algorithm does seem to work well. If we compare results from

the exact MCMC algorithm to our approximate (non-sparsified) algorithm, it can be seen that using the

computationally-faster approximation is not leading to a deterioration in forecast performance. In fact, there

are some cases where the approximate forecasts are better than their exact counterparts.

7 Closing Remarks

VARs modeled with many macroeconomic and financial data sets exhibit parameter change and structural

breaks. Typically, most parameter change is found in the error covariance matrix. But there can be small

amounts of time-variation in VAR coefficients where only some coefficients change and even they only change

at points in time. The problem is how to uncover TVPs of this sort. Simply working with a model where all

VAR coefficients change can lead to over-fitting and poor forecast performance. In light of this situation, one

contribution of this paper lies in our development of several dynamic horseshoe priors which are designed for

picking up the kind of parameter change that often occurs in practice. In an application involving eurozone

yield data our methods find small amounts of time variation in parameters. In a forecasting exercise we find

that appropropriately modeling this time variation leads to forecast improvements.

The second contribution of this paper lies in computation. The approximate MCMC algorithm developed in

this paper is scalable in a manner that exact MCMC algorithms are not. Thus, we have developed an algorithm

which can be used in the huge dimensional models that are increasingly being used by economists. Finally,

we have developed an MCMC algorithm for common stochastic volatility specifications which is particularly

well-suited for large k applications such as the one considered in this paper.
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Appendix A: Details of the MCMC Algorithm

A.1 Sampling the Log-Volatilities

We assume a stochastic volatility process of the following form for ht = log
(
𝜎2
t

)
:

ht = 𝜇h + 𝜌h(ht−1 − 𝜇h)+ 𝜎h𝑣t, 𝑣t ∼  (0, 1), h0 ∼ 

(
𝜇,

𝜎2
h

1− 𝜌2
h

)
.

Following Kastner and Frühwirth-Schnatter (2014) we make the prior assumptions that 𝜇h ∼  (0, 10), 𝜌h+1
2

∼
(5, 1.5) and 𝜎2

h
∼ (1∕2, 1∕2) where and  denote the Beta and Gamma distributions, respectively. We use the

algorithm of Kastner and Frühwirth-Schnatter (2014) to take draws of ht.
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A.2 Sampling the Time-Invariant Regression Coefficients

Most of the conditional posterior distributions take a simple and well-known form. Here we briefly summarize

these and provide some information on the relevant literature.

The time-invariant coefficients 𝜶 follow a K-dimensional multivariate Gaussian posterior given by

𝜶|∙ ∼  (𝜶,V𝛼),

V𝛼 =
(
X̃′X̃ + D−1

𝛼

)−1
,

𝜶 = V𝛼X̃ŷ,

with X̃ = L−1X , ŷ = L−1(y−W𝜷) and D𝛼 = 𝜏𝛼 diag
(
𝜓 2
1
,… , 𝜓 2

K

)
denoting a K × K-dimensional prior

variance-covariance matrix with 𝜓 j (j = 1,… ,K) and
√
𝜏𝛼 following a half-Cauchy distribution, respectively.

A.3 Sampling the Horseshoe Prior on the Constant and the Time-Varying Parameters

Makalic and Schmidt (2015) show that one can simulate from the posterior distribution of 𝜓 j using standard

distributions only. This is achieved by introducing additional auxiliary quantities 𝜚 j (j = 1,… ,K). Using these,

the posterior of 𝜓 j follows an inverted Gamma distribution:

𝜓 2
j
|∙ ∼ −1

(
1,

1

𝜚 j
+
𝛼2
j

2𝜏𝛼

)

where 𝛼 j denotes the jth element of 𝜶. The posterior of 𝜚 j is also inverse Gamma distributed with 𝜚 j|∙ ∼
−1

(
1, 1+ 𝜓−2

j

)
.

For the global shrinkage parameter, we introduce yet another auxiliary quantity 𝜛𝛼 . This enables us to

derive a conditional posterior for 𝜏𝛼 which is also inverse Gamma distributed:

𝜏𝛼|∙ ∼ −1

(
K + 1

2
,
1

𝜛𝛼

+
K∑
j=1

𝛼2
j

2𝜓 2
j

)

and the posterior of𝜛𝛼 being given by:

𝜛𝛼|∙ ∼ −1
(
1, 1+ 𝜏−1𝛼

)
.

The local shrinkage parameters 𝜙jt can be simulated conditionally on 𝜏 and {𝜆t}Tt=1 similarly to the 𝜓 j’s.

Specificially, the posterior distribution of 𝜙2
jt
follows an inverse Gamma:

𝜙2
jt
|∙ ∼ −1

(
1,

1

𝜗 jt

+
𝛽2
jt

2𝜏𝜆t

)

with 𝜗jt denoting yet another scaling parameter that follows an inverse Gamma posterior distribution: 𝜗 jt|∙ ∼
−1

(
1, 1+ 𝜙−2

jt

)
.

If we do not assume 𝜆t to evolve according to an AR(1) process, we sample the global shrinkage parameter

𝜏 similar to 𝜏𝛼 . The conditional posterior of 𝜏 also follows an inverse Gamma:

𝜏|∙ ∼ −1

(
k + 1

2
,
1

𝜛
+

T∑
t=1

K∑
j=1

𝛽2
jt

2𝜆t𝜙
2
jt

)

with the posterior of the auxiliary variable𝜛 given by:

𝜛|∙ ∼ −1(1, 1+ 𝜏−1).
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A.4 Sampling the Dynamic Shrinkage Parameters

As stated in Sub-Section 4.1, the full history of 𝜆t in the case that it follows amixture orMarkov switching specifi-

cation can be easily obtained through standard techniques.More precisely, if dt in (6) follows aMarkov switching

model, we adopt the algorithm discussed in, e.g. Kim and Nelson (1999a, 1999b). The posterior of the transition

probabilities is Beta distributed:

pii|∙ ∼ (ai,MS + Ti0, bi,MS + Ti1),

whereby Tij denotes the number of times a transition from state i to j has been observed in the full history of dt.

In the case of the mixture model, the posterior distribution of dt follows a Bernoulli distribution for each t:

Prob(dt = 1|∙) = Ber(pt)

with pt given by:

pt =

𝜅
−K∕2
1

exp

⎛⎜⎜⎝
−

K∑
j=1
𝛽 jt

2𝜅2
1

⎞⎟⎟⎠
× p

𝜅
−K∕2
1

exp

⎛⎜⎜⎝
−

K∑
j=1
𝛽 jt

2𝜅2
1

⎞⎟⎟⎠
× p + 𝜅−K∕2

0
exp

⎛⎜⎜⎝
−

K∑
j=1
𝛽 jt

2𝜅2
0

⎞⎟⎟⎠
× (1− p)

.

and the posterior of p follows a Beta distribution p|∙ ∼ 

(∑T

t=1dt + aMix, 1−
∑T

t=1dt + bMix

)
.

Finally, in the case that 𝜆t evolves according to an AR(1) process with Gaussian shocks, we use precisely

the same algorithm as Kastner and Frühwirth-Schnatter (2014) for simulating 𝜇 and 𝜌. In the case that we use

Z-distributed shocks, the algorithm proposed in Kowal, Matteson, and Ruppert (2019) is adopted. This implies

that we use Polya-Gamma (PG) auxiliary random variables to approximate the Z-distribution using a scale-

mixture of Gaussians. Essentially, the main implication is that conditional on the T PG random variates, the

parameters of the state evolution equation can be estimated similarly to the Gaussian case after normalizing

everything by rendering the AR(1) conditionally homoskedastic. For more details, see Kowal, Matteson, and

Ruppert (2019).
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Appendix B: Higher-Order Forecast Performance

Table B.1: One-quarter ahead forecast performance for EA central government bond yields at different maturities using non-sparsified

models.

Specification One-quarter-ahead

Avg. 1y 3y 5y 7y 10y 15y 30y

VAR with constant coefficients

Large VAR with MIN prior 0.97 0.74 0.83 0.95 1.03 1.08 1.10 0.99

(0.53) (0.36) (0.45) (0.53) (0.58) (0.61) (0.62) (0.56)

Large VAR with HS prior 0.95 0.92 0.94 0.94 0.94 0.94 0.96 1.00

(0.95) (0.95) (0.96) (0.96) (0.95) (0.95) (0.95) (0.96)

Nelson-Siegel VAR with HS prior 0.95 1.02 0.97 0.94 0.92 0.92 0.94 0.98

(0.95) (1.03) (1.01) (0.96) (0.93) (0.92) (0.93) (0.94)

Nelson-Siegel VAR with MIN prior 0.96 1.02 1.00 0.95 0.93 0.93 0.95 0.99

(0.97) (1.05) (1.03) (0.97) (0.95) (0.94) (0.94) (0.95)

Large TVP-VAR with random walk specification forW

dHS Mix 1.06 0.94 0.96 0.99 1.01 1.04 1.09 1.25

(1.01) (0.96) (0.97) (0.99) (1.00) (1.02) (1.03) (1.07)

dHS Mix (approx.) . . 0.94 0.93 0.91 . 0.94 1.00

(0.96) (0.95) (.) (.) (0.93) (0.94) (0.97) (1.09)

dHS MS 0.97 0.93 0.95 0.94 0.93 0.95 0.99 1.08

(0.97) (0.95) (0.97) (0.96) (0.96) (0.96) (0.98) (1.01)

dHS MS (approx.) 0.94 0.95 0.93 0.92 0.92 0.93 0.94 0.99

(0.96) (0.95) (0.95) (0.95) (0.95) (0.95) (0.96) (0.99)

dHS svol-N 0.95 0.92 0.94 0.94 0.93 0.94 0.95 1.01

(0.97) (0.95) (0.96) (0.96) (0.95) (0.96) (0.97) (1.04)

dHS svol-N (approx.) 0.95 0.94 0.94 0.94 0.93 0.94 0.95 1.00

(1.10) (1.16) (1.13) (1.10) (1.08) (1.07) (1.07) (1.11)

dHS svol-Z 0.95 0.93 0.94 0.93 0.93 0.94 0.96 1.01

(1.09) (1.15) (1.12) (1.09) (1.07) (1.06) (1.07) (1.10)

dHS svol-Z (approx.) 0.96 0.93 0.96 0.94 0.93 0.94 0.96 1.02

(1.03) (0.95) (0.97) (0.97) (0.96) (1.08) (1.08) (1.13)

sHS 1.00 0.97 0.96 0.96 0.96 0.99 1.02 1.07

(1.13) (1.18) (1.14) (1.12) (1.11) (1.12) (1.12) (1.16)

sHS (approx.) 0.94 0.93 0.93 0.93 0.92 0.92 0.94 0.99

(1.02) (0.96) (0.96) (0.96) (0.95) (1.07) (1.08) (1.12)

Large TVP-VAR with the flexible specification forW

dHS Mix 1.11 0.96 0.93 0.95 1.01 1.11 1.22 1.36

(1.10) (0.98) (0.99) (1.03) (1.07) (1.13) (1.18) (1.25)

dHS Mix (approx.) 0.99 0.97 0.99 0.98 0.96 0.95 0.97 1.11

(1.52) (1.06) (1.20) (1.26) (1.27) (1.37) (1.60) (2.68)

dHS MS 2.11 0.95 1.66 2.06 2.10 2.22 2.30 2.49

(2.58) (1.45) (2.02) (2.37) (2.53) (2.71) (2.90) (3.50)

dHS MS (approx.) 0.96 0.94 0.96 0.95 0.94 0.95 0.97 1.01

(1.26) (1.39) (1.31) (1.25) (1.22) (1.21) (1.21) (1.29)

dHS svol-N 0.96 0.93 0.93 0.93 0.93 0.94 0.98 1.03

(0.96) (0.95) (0.95) (0.95) (0.95) (0.95) (0.96) (0.97)
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Table B.1: (continued)

Specification One-quarter-ahead

Avg. 1y 3y 5y 7y 10y 15y 30y

dHS svol-N (approx.) 0.94 0.91 . . 0.92 0.93 0.95 0.99

(1.23) (1.36) (1.28) (1.23) (1.20) (1.19) (1.19) (1.22)

dHS svol-Z 0.98 0.91 0.93 0.94 0.94 0.97 1.01 1.09

(0.98) (0.95) (0.96) (0.97) (0.96) (0.98) (1.01) (1.03)

dHS svol-Z (approx.) 0.95 0.97 0.96 0.95 0.93 0.93 0.95 0.99

(0.95) (0.96) (0.96) (0.96) (0.95) (0.95) (0.95) (0.95)

sHS 0.95 0.93 0.95 0.94 0.93 0.93 0.95 0.99

(0.95) (0.95) (0.96) (0.95) (0.95) (0.94) (0.95) (0.94)

sHS (approx.) 0.94 0.93 0.94 0.93 0.92 0.92 0.94 0.97

(0.95) (.) (0.96) (0.96) (0.95) (0.95) (0.94) (0.95)

Nelson-Siegel TVP-VAR with random walk specification forW

dHS Mix 1.02 1.02 1.07 1.03 1.00 0.99 1.01 1.05

(1.08) (1.13) (1.17) (1.10) (1.05) (1.03) (1.03) (1.08)

dHS Mix (approx.) 1.37 1.93 1.47 1.34 1.27 1.24 1.24 1.33

(1.12) (1.35) (1.21) (1.12) (1.08) (1.06) (1.07) (1.10)

dHS MS 0.98 0.96 1.00 0.97 0.96 0.96 0.98 1.04

(1.05) (1.09) (1.12) (1.06) (1.02) (1.01) (1.02) (1.06)

dHS MS (approx.) 0.94 0.95 0.98 0.94 0.92 0.92 0.94 0.98

(0.96) (1.01) (1.02) (0.97) (0.94) (0.94) (0.94) (0.95)

dHS svol-N 0.98 0.98 1.02 0.99 0.97 0.96 0.97 1.02

(1.02) (1.08) (1.10) (1.03) (1.00) (0.98) (0.99) (1.02)

dHS svol-N (approx.) 0.97 1.23 0.96 0.94 0.92 0.93 0.95 0.98

(0.96) (1.08) (1.01) (0.96) (0.94) (0.93) (0.94) (0.94)

dHS svol-Z 1.00 0.97 1.04 1.00 0.98 0.98 0.99 1.03

(1.04) (1.10) (1.13) (1.06) (1.02) (1.00) (1.01) (1.05)

dHS svol-Z (approx.) 1.00 1.53 0.98 0.94 0.92 0.92 0.94 0.97

(0.96) (1.15) (1.01) (0.96) (0.93) (0.92) (0.93) (0.93)

sHS 1.28 1.54 1.15 1.17 1.22 1.28 1.28 1.36

(1.21) (1.32) (1.27) (1.21) (1.17) (1.16) (1.18) (1.24)

sHS (approx.) 0.98 1.04 1.09 1.05 0.97 0.93 . .

(0.97) (1.05) (1.05) (1.00) (0.96) (0.93) (0.93) (0.93)

Nelson-Siegel TVP-VAR with the flexible specification forW

dHS Mix 1.90 2.10 2.49 1.89 1.64 1.59 1.70 2.15

(2.13) (2.24) (2.55) (2.23) (2.01) (1.92) (1.94) (2.15)

dHS Mix (approx.) 1.22 1.51 1.42 1.11 1.26 1.19 1.12 1.06

(1.06) (1.18) (1.16) (1.09) (1.06) (1.03) (1.01) (0.97)

dHS MS 1.03 1.04 1.28 1.10 1.00 0.96 0.95 0.99

(1.00) (1.05) (1.09) (1.02) (0.98) (0.97) (0.97) (0.98)

dHS MS (approx.) 0.96 0.99 1.07 0.97 0.92 0.92 0.93 0.97

(0.98) (1.07) (1.06) (0.99) (0.96) (0.95) (0.96) (0.96)

dHS svol-N 1.37 1.23 1.63 1.44 1.33 1.30 1.32 1.37

(1.33) (1.36) (1.51) (1.38) (1.30) (1.26) (1.26) (1.29)

dHS svol-N (approx.) 0.94 0.97 0.97 0.93 0.91 0.91 0.93 0.97

(.) (1.01) (1.00) (0.95) (.) (.) (0.93) (0.94)
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Table B.1: (continued)

Specification One-quarter-ahead

Avg. 1y 3y 5y 7y 10y 15y 30y

dHS svol-Z 1.61 1.50 2.00 1.70 1.52 1.46 1.49 1.68

(1.73) (1.70) (2.04) (1.83) (1.68) (1.61) (1.62) (1.75)

dHS svol-Z (approx.) 0.94 1.00 0.95 0.92 . 0.91 0.94 0.98

(0.95) (1.02) (1.00) (0.95) (0.92) (0.92) (0.93) (0.93)

sHS 1.00 1.07 1.11 1.01 0.95 0.94 0.96 1.01

(1.00) (1.06) (1.09) (1.02) (0.97) (0.96) (0.97) (0.97)

sHS (approx.) 0.95 1.04 0.98 0.94 0.92 0.92 0.94 0.97

(0.95) (1.03) (1.01) (0.96) (0.93) (0.92) (.) (.)

Nelson-Siegel TVP-VAR with the conventional Primiceri (2005) setup

1.00 0.98 1.02 1.00 0.98 0.98 0.99 1.04

(1.02) (1.07) (1.11) (1.04) (1.01) (0.99) (0.99) (1.00)

Notes: this table displays the three-step ahead forecast performance for non-sparsified models. We focus on seven maturities (1y, 3y, 5y,

7y, 10y, 15y, and 30y) as our target variables and use a hold-out period from 2009:01 to 2019:12. Point forecast performance is measured

by relative root mean square errors (RMSEs), while density forecast performance (shown in parentheses) by relative continuous ranked

probability scores (CRPSs). We consider two different models in terms of the dimension of the (TVP-)VARs: a large model including all 30

maturities (M = 30) and a small model specified as a three factor Nelson-Siegel model (M = 3). For the main TVP-VARs, we consider a

flexible and a RW specification of W , each with five different global-local shrinkage priors (four dynamic and one static). These TVP-VARs

are estimated with two different algorithms: our proposed approximate approach and an exact algorithm. In addition, we consider the

conventional TVP-VAR setup of Primiceri (2005) for the Nelson-Siegel model and a set of VARs with constant coefficients. For the VARs

with constant parameters, we adopt either a Minnesota or a horseshoe (HS) shrinkage prior. As overall benchmark model we choose a

large VAR with constant parameters and a Minnesota prior. The red shaded rows correspond to the actual RMSE and CRPS values of this

benchmark model, while the gray shaded rows correspond to models for which we use our approximate (but non-sparsified) MCMC

algorithm. The best performing specification is in bold.
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